1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
8 //
9 // It also defines a set of simple functions and utilities that people want
10 // when using Callback<> and Bind().
11 //
12 //
13 // ARGUMENT BINDING WRAPPERS
14 //
15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
16 // base::ConstRef(), and base::IgnoreResult().
17 //
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
19 // refcounting on arguments that are refcounted objects.
20 //
21 // Owned() transfers ownership of an object to the Callback resulting from
22 // bind; the object will be deleted when the Callback is deleted.
23 //
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25 // through a Callback. Logically, this signifies a destructive transfer of
26 // the state of the argument into the target function.  Invoking
27 // Callback::Run() twice on a Callback that was created with a Passed()
28 // argument will CHECK() because the first invocation would have already
29 // transferred ownership to the target function.
30 //
31 // RetainedRef() accepts a ref counted object and retains a reference to it.
32 // When the callback is called, the object is passed as a raw pointer.
33 //
34 // ConstRef() allows binding a constant reference to an argument rather
35 // than a copy.
36 //
37 // IgnoreResult() is used to adapt a function or Callback with a return type to
38 // one with a void return. This is most useful if you have a function with,
39 // say, a pesky ignorable bool return that you want to use with PostTask or
40 // something else that expect a Callback with a void return.
41 //
42 // EXAMPLE OF Unretained():
43 //
44 //   class Foo {
45 //    public:
46 //     void func() { cout << "Foo:f" << endl; }
47 //   };
48 //
49 //   // In some function somewhere.
50 //   Foo foo;
51 //   Closure foo_callback =
52 //       Bind(&Foo::func, Unretained(&foo));
53 //   foo_callback.Run();  // Prints "Foo:f".
54 //
55 // Without the Unretained() wrapper on |&foo|, the above call would fail
56 // to compile because Foo does not support the AddRef() and Release() methods.
57 //
58 //
59 // EXAMPLE OF Owned():
60 //
61 //   void foo(int* arg) { cout << *arg << endl }
62 //
63 //   int* pn = new int(1);
64 //   Closure foo_callback = Bind(&foo, Owned(pn));
65 //
66 //   foo_callback.Run();  // Prints "1"
67 //   foo_callback.Run();  // Prints "1"
68 //   *n = 2;
69 //   foo_callback.Run();  // Prints "2"
70 //
71 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
72 //                          // |foo_callback| goes out of scope.
73 //
74 // Without Owned(), someone would have to know to delete |pn| when the last
75 // reference to the Callback is deleted.
76 //
77 // EXAMPLE OF RetainedRef():
78 //
79 //    void foo(RefCountedBytes* bytes) {}
80 //
81 //    scoped_refptr<RefCountedBytes> bytes = ...;
82 //    Closure callback = Bind(&foo, base::RetainedRef(bytes));
83 //    callback.Run();
84 //
85 // Without RetainedRef, the scoped_refptr would try to implicitly convert to
86 // a raw pointer and fail compilation:
87 //
88 //    Closure callback = Bind(&foo, bytes); // ERROR!
89 //
90 //
91 // EXAMPLE OF ConstRef():
92 //
93 //   void foo(int arg) { cout << arg << endl }
94 //
95 //   int n = 1;
96 //   Closure no_ref = Bind(&foo, n);
97 //   Closure has_ref = Bind(&foo, ConstRef(n));
98 //
99 //   no_ref.Run();  // Prints "1"
100 //   has_ref.Run();  // Prints "1"
101 //
102 //   n = 2;
103 //   no_ref.Run();  // Prints "1"
104 //   has_ref.Run();  // Prints "2"
105 //
106 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
107 // its bound callbacks.
108 //
109 //
110 // EXAMPLE OF IgnoreResult():
111 //
112 //   int DoSomething(int arg) { cout << arg << endl; }
113 //
114 //   // Assign to a Callback with a void return type.
115 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
116 //   cb->Run(1);  // Prints "1".
117 //
118 //   // Prints "1" on |ml|.
119 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
120 //
121 //
122 // EXAMPLE OF Passed():
123 //
124 //   void TakesOwnership(std::unique_ptr<Foo> arg) { }
125 //   std::unique_ptr<Foo> CreateFoo() { return std::unique_ptr<Foo>(new Foo());
126 //   }
127 //
128 //   std::unique_ptr<Foo> f(new Foo());
129 //
130 //   // |cb| is given ownership of Foo(). |f| is now NULL.
131 //   // You can use std::move(f) in place of &f, but it's more verbose.
132 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
133 //
134 //   // Run was never called so |cb| still owns Foo() and deletes
135 //   // it on Reset().
136 //   cb.Reset();
137 //
138 //   // |cb| is given a new Foo created by CreateFoo().
139 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
140 //
141 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
142 //   // no longer owns Foo() and, if reset, would not delete Foo().
143 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
144 //   cb.Run();  // This CHECK()s since Foo() already been used once.
145 //
146 // Passed() is particularly useful with PostTask() when you are transferring
147 // ownership of an argument into a task, but don't necessarily know if the
148 // task will always be executed. This can happen if the task is cancellable
149 // or if it is posted to a TaskRunner.
150 //
151 //
152 // SIMPLE FUNCTIONS AND UTILITIES.
153 //
154 //   DoNothing() - Useful for creating a Closure that does nothing when called.
155 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
156 //                        pointer when invoked. Only use this when necessary.
157 //                        In most cases MessageLoop::DeleteSoon() is a better
158 //                        fit.
159 
160 #ifndef BASE_BIND_HELPERS_H_
161 #define BASE_BIND_HELPERS_H_
162 
163 #include <stddef.h>
164 
165 #include <type_traits>
166 #include <utility>
167 
168 #include "base/callback.h"
169 #include "base/memory/weak_ptr.h"
170 #include "build/build_config.h"
171 
172 namespace base {
173 
174 template <typename T>
175 struct IsWeakReceiver;
176 
177 namespace internal {
178 
179 template <typename T>
180 class UnretainedWrapper {
181  public:
UnretainedWrapper(T * o)182   explicit UnretainedWrapper(T* o) : ptr_(o) {}
get()183   T* get() const { return ptr_; }
184  private:
185   T* ptr_;
186 };
187 
188 template <typename T>
189 class ConstRefWrapper {
190  public:
ConstRefWrapper(const T & o)191   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
get()192   const T& get() const { return *ptr_; }
193  private:
194   const T* ptr_;
195 };
196 
197 template <typename T>
198 class RetainedRefWrapper {
199  public:
RetainedRefWrapper(T * o)200   explicit RetainedRefWrapper(T* o) : ptr_(o) {}
RetainedRefWrapper(scoped_refptr<T> o)201   explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
get()202   T* get() const { return ptr_.get(); }
203  private:
204   scoped_refptr<T> ptr_;
205 };
206 
207 template <typename T>
208 struct IgnoreResultHelper {
IgnoreResultHelperIgnoreResultHelper209   explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
210   explicit operator bool() const { return !!functor_; }
211 
212   T functor_;
213 };
214 
215 // An alternate implementation is to avoid the destructive copy, and instead
216 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
217 // a class that is essentially a std::unique_ptr<>.
218 //
219 // The current implementation has the benefit though of leaving ParamTraits<>
220 // fully in callback_internal.h as well as avoiding type conversions during
221 // storage.
222 template <typename T>
223 class OwnedWrapper {
224  public:
OwnedWrapper(T * o)225   explicit OwnedWrapper(T* o) : ptr_(o) {}
~OwnedWrapper()226   ~OwnedWrapper() { delete ptr_; }
get()227   T* get() const { return ptr_; }
OwnedWrapper(OwnedWrapper && other)228   OwnedWrapper(OwnedWrapper&& other) {
229     ptr_ = other.ptr_;
230     other.ptr_ = NULL;
231   }
232 
233  private:
234   mutable T* ptr_;
235 };
236 
237 // PassedWrapper is a copyable adapter for a scoper that ignores const.
238 //
239 // It is needed to get around the fact that Bind() takes a const reference to
240 // all its arguments.  Because Bind() takes a const reference to avoid
241 // unnecessary copies, it is incompatible with movable-but-not-copyable
242 // types; doing a destructive "move" of the type into Bind() would violate
243 // the const correctness.
244 //
245 // This conundrum cannot be solved without either C++11 rvalue references or
246 // a O(2^n) blowup of Bind() templates to handle each combination of regular
247 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
248 // that is copyable to transmit the correct type information down into
249 // BindState<>. Ignoring const in this type makes sense because it is only
250 // created when we are explicitly trying to do a destructive move.
251 //
252 // Two notes:
253 //  1) PassedWrapper supports any type that has a move constructor, however
254 //     the type will need to be specifically whitelisted in order for it to be
255 //     bound to a Callback. We guard this explicitly at the call of Passed()
256 //     to make for clear errors. Things not given to Passed() will be forwarded
257 //     and stored by value which will not work for general move-only types.
258 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
259 //     scoper to a Callback and allow the Callback to execute once.
260 template <typename T>
261 class PassedWrapper {
262  public:
PassedWrapper(T && scoper)263   explicit PassedWrapper(T&& scoper)
264       : is_valid_(true), scoper_(std::move(scoper)) {}
PassedWrapper(PassedWrapper && other)265   PassedWrapper(PassedWrapper&& other)
266       : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
Take()267   T Take() const {
268     CHECK(is_valid_);
269     is_valid_ = false;
270     return std::move(scoper_);
271   }
272 
273  private:
274   mutable bool is_valid_;
275   mutable T scoper_;
276 };
277 
278 // Unwrap the stored parameters for the wrappers above.
279 template <typename T>
Unwrap(T && o)280 T&& Unwrap(T&& o) {
281   return std::forward<T>(o);
282 }
283 
284 template <typename T>
Unwrap(const UnretainedWrapper<T> & unretained)285 T* Unwrap(const UnretainedWrapper<T>& unretained) {
286   return unretained.get();
287 }
288 
289 template <typename T>
Unwrap(const ConstRefWrapper<T> & const_ref)290 const T& Unwrap(const ConstRefWrapper<T>& const_ref) {
291   return const_ref.get();
292 }
293 
294 template <typename T>
Unwrap(const RetainedRefWrapper<T> & o)295 T* Unwrap(const RetainedRefWrapper<T>& o) {
296   return o.get();
297 }
298 
299 template <typename T>
Unwrap(const OwnedWrapper<T> & o)300 T* Unwrap(const OwnedWrapper<T>& o) {
301   return o.get();
302 }
303 
304 template <typename T>
Unwrap(const PassedWrapper<T> & o)305 T Unwrap(const PassedWrapper<T>& o) {
306   return o.Take();
307 }
308 
309 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
310 // method.  It is used internally by Bind() to select the correct
311 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
312 // the target object is invalidated.
313 //
314 // The first argument should be the type of the object that will be received by
315 // the method.
316 template <bool is_method, typename... Args>
317 struct IsWeakMethod : std::false_type {};
318 
319 template <typename T, typename... Args>
320 struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
321 
322 // Packs a list of types to hold them in a single type.
323 template <typename... Types>
324 struct TypeList {};
325 
326 // Used for DropTypeListItem implementation.
327 template <size_t n, typename List>
328 struct DropTypeListItemImpl;
329 
330 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
331 template <size_t n, typename T, typename... List>
332 struct DropTypeListItemImpl<n, TypeList<T, List...>>
333     : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
334 
335 template <typename T, typename... List>
336 struct DropTypeListItemImpl<0, TypeList<T, List...>> {
337   using Type = TypeList<T, List...>;
338 };
339 
340 template <>
341 struct DropTypeListItemImpl<0, TypeList<>> {
342   using Type = TypeList<>;
343 };
344 
345 // A type-level function that drops |n| list item from given TypeList.
346 template <size_t n, typename List>
347 using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
348 
349 // Used for TakeTypeListItem implementation.
350 template <size_t n, typename List, typename... Accum>
351 struct TakeTypeListItemImpl;
352 
353 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
354 template <size_t n, typename T, typename... List, typename... Accum>
355 struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
356     : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
357 
358 template <typename T, typename... List, typename... Accum>
359 struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
360   using Type = TypeList<Accum...>;
361 };
362 
363 template <typename... Accum>
364 struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
365   using Type = TypeList<Accum...>;
366 };
367 
368 // A type-level function that takes first |n| list item from given TypeList.
369 // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
370 // TypeList<A, B, C>.
371 template <size_t n, typename List>
372 using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
373 
374 // Used for ConcatTypeLists implementation.
375 template <typename List1, typename List2>
376 struct ConcatTypeListsImpl;
377 
378 template <typename... Types1, typename... Types2>
379 struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
380   using Type = TypeList<Types1..., Types2...>;
381 };
382 
383 // A type-level function that concats two TypeLists.
384 template <typename List1, typename List2>
385 using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
386 
387 // Used for MakeFunctionType implementation.
388 template <typename R, typename ArgList>
389 struct MakeFunctionTypeImpl;
390 
391 template <typename R, typename... Args>
392 struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
393   // MSVC 2013 doesn't support Type Alias of function types.
394   // Revisit this after we update it to newer version.
395   typedef R Type(Args...);
396 };
397 
398 // A type-level function that constructs a function type that has |R| as its
399 // return type and has TypeLists items as its arguments.
400 template <typename R, typename ArgList>
401 using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
402 
403 // Used for ExtractArgs and ExtractReturnType.
404 template <typename Signature>
405 struct ExtractArgsImpl;
406 
407 template <typename R, typename... Args>
408 struct ExtractArgsImpl<R(Args...)> {
409   using ReturnType = R;
410   using ArgsList = TypeList<Args...>;
411 };
412 
413 // A type-level function that extracts function arguments into a TypeList.
414 // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
415 template <typename Signature>
416 using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
417 
418 // A type-level function that extracts the return type of a function.
419 // E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
420 template <typename Signature>
421 using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
422 
423 }  // namespace internal
424 
425 template <typename T>
426 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
427   return internal::UnretainedWrapper<T>(o);
428 }
429 
430 template <typename T>
431 static inline internal::RetainedRefWrapper<T> RetainedRef(T* o) {
432   return internal::RetainedRefWrapper<T>(o);
433 }
434 
435 template <typename T>
436 static inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) {
437   return internal::RetainedRefWrapper<T>(std::move(o));
438 }
439 
440 template <typename T>
441 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
442   return internal::ConstRefWrapper<T>(o);
443 }
444 
445 template <typename T>
446 static inline internal::OwnedWrapper<T> Owned(T* o) {
447   return internal::OwnedWrapper<T>(o);
448 }
449 
450 // We offer 2 syntaxes for calling Passed().  The first takes an rvalue and
451 // is best suited for use with the return value of a function or other temporary
452 // rvalues. The second takes a pointer to the scoper and is just syntactic sugar
453 // to avoid having to write Passed(std::move(scoper)).
454 //
455 // Both versions of Passed() prevent T from being an lvalue reference. The first
456 // via use of enable_if, and the second takes a T* which will not bind to T&.
457 template <typename T,
458           typename std::enable_if<!std::is_lvalue_reference<T>::value>::type* =
459               nullptr>
460 static inline internal::PassedWrapper<T> Passed(T&& scoper) {
461   return internal::PassedWrapper<T>(std::move(scoper));
462 }
463 template <typename T>
464 static inline internal::PassedWrapper<T> Passed(T* scoper) {
465   return internal::PassedWrapper<T>(std::move(*scoper));
466 }
467 
468 template <typename T>
469 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
470   return internal::IgnoreResultHelper<T>(std::move(data));
471 }
472 
473 BASE_EXPORT void DoNothing();
474 
475 template<typename T>
476 void DeletePointer(T* obj) {
477   delete obj;
478 }
479 
480 // An injection point to control |this| pointer behavior on a method invocation.
481 // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
482 // method, base::Bind cancels the method invocation if the receiver is tested as
483 // false.
484 // E.g. Foo::bar() is not called:
485 //   struct Foo : base::SupportsWeakPtr<Foo> {
486 //     void bar() {}
487 //   };
488 //
489 //   WeakPtr<Foo> oo = nullptr;
490 //   base::Bind(&Foo::bar, oo).Run();
491 template <typename T>
492 struct IsWeakReceiver : std::false_type {};
493 
494 template <typename T>
495 struct IsWeakReceiver<internal::ConstRefWrapper<T>> : IsWeakReceiver<T> {};
496 
497 template <typename T>
498 struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
499 
500 }  // namespace base
501 
502 #endif  // BASE_BIND_HELPERS_H_
503