1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/strings/string_util.h"
6 
7 #include <ctype.h>
8 #include <errno.h>
9 #include <math.h>
10 #include <stdarg.h>
11 #include <stdint.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <time.h>
16 #include <wchar.h>
17 #include <wctype.h>
18 
19 #include <algorithm>
20 #include <limits>
21 #include <vector>
22 
23 #include "base/logging.h"
24 #include "base/macros.h"
25 #include "base/memory/singleton.h"
26 #include "base/strings/utf_string_conversion_utils.h"
27 #include "base/strings/utf_string_conversions.h"
28 #include "base/third_party/icu/icu_utf.h"
29 #include "build/build_config.h"
30 
31 namespace base {
32 
33 namespace {
34 
35 // Force the singleton used by EmptyString[16] to be a unique type. This
36 // prevents other code that might accidentally use Singleton<string> from
37 // getting our internal one.
38 struct EmptyStrings {
EmptyStringsbase::__anon21c934200111::EmptyStrings39   EmptyStrings() {}
40   const std::string s;
41   const string16 s16;
42 
GetInstancebase::__anon21c934200111::EmptyStrings43   static EmptyStrings* GetInstance() {
44     return Singleton<EmptyStrings>::get();
45   }
46 };
47 
48 // Used by ReplaceStringPlaceholders to track the position in the string of
49 // replaced parameters.
50 struct ReplacementOffset {
ReplacementOffsetbase::__anon21c934200111::ReplacementOffset51   ReplacementOffset(uintptr_t parameter, size_t offset)
52       : parameter(parameter),
53         offset(offset) {}
54 
55   // Index of the parameter.
56   uintptr_t parameter;
57 
58   // Starting position in the string.
59   size_t offset;
60 };
61 
CompareParameter(const ReplacementOffset & elem1,const ReplacementOffset & elem2)62 static bool CompareParameter(const ReplacementOffset& elem1,
63                              const ReplacementOffset& elem2) {
64   return elem1.parameter < elem2.parameter;
65 }
66 
67 // Assuming that a pointer is the size of a "machine word", then
68 // uintptr_t is an integer type that is also a machine word.
69 typedef uintptr_t MachineWord;
70 const uintptr_t kMachineWordAlignmentMask = sizeof(MachineWord) - 1;
71 
IsAlignedToMachineWord(const void * pointer)72 inline bool IsAlignedToMachineWord(const void* pointer) {
73   return !(reinterpret_cast<MachineWord>(pointer) & kMachineWordAlignmentMask);
74 }
75 
AlignToMachineWord(T * pointer)76 template<typename T> inline T* AlignToMachineWord(T* pointer) {
77   return reinterpret_cast<T*>(reinterpret_cast<MachineWord>(pointer) &
78                               ~kMachineWordAlignmentMask);
79 }
80 
81 template<size_t size, typename CharacterType> struct NonASCIIMask;
82 template<> struct NonASCIIMask<4, char16> {
valuebase::__anon21c934200111::NonASCIIMask83     static inline uint32_t value() { return 0xFF80FF80U; }
84 };
85 template<> struct NonASCIIMask<4, char> {
valuebase::__anon21c934200111::NonASCIIMask86     static inline uint32_t value() { return 0x80808080U; }
87 };
88 template<> struct NonASCIIMask<8, char16> {
valuebase::__anon21c934200111::NonASCIIMask89     static inline uint64_t value() { return 0xFF80FF80FF80FF80ULL; }
90 };
91 template<> struct NonASCIIMask<8, char> {
valuebase::__anon21c934200111::NonASCIIMask92     static inline uint64_t value() { return 0x8080808080808080ULL; }
93 };
94 #if defined(WCHAR_T_IS_UTF32)
95 template<> struct NonASCIIMask<4, wchar_t> {
valuebase::__anon21c934200111::NonASCIIMask96     static inline uint32_t value() { return 0xFFFFFF80U; }
97 };
98 template<> struct NonASCIIMask<8, wchar_t> {
valuebase::__anon21c934200111::NonASCIIMask99     static inline uint64_t value() { return 0xFFFFFF80FFFFFF80ULL; }
100 };
101 #endif  // WCHAR_T_IS_UTF32
102 
103 }  // namespace
104 
IsWprintfFormatPortable(const wchar_t * format)105 bool IsWprintfFormatPortable(const wchar_t* format) {
106   for (const wchar_t* position = format; *position != '\0'; ++position) {
107     if (*position == '%') {
108       bool in_specification = true;
109       bool modifier_l = false;
110       while (in_specification) {
111         // Eat up characters until reaching a known specifier.
112         if (*++position == '\0') {
113           // The format string ended in the middle of a specification.  Call
114           // it portable because no unportable specifications were found.  The
115           // string is equally broken on all platforms.
116           return true;
117         }
118 
119         if (*position == 'l') {
120           // 'l' is the only thing that can save the 's' and 'c' specifiers.
121           modifier_l = true;
122         } else if (((*position == 's' || *position == 'c') && !modifier_l) ||
123                    *position == 'S' || *position == 'C' || *position == 'F' ||
124                    *position == 'D' || *position == 'O' || *position == 'U') {
125           // Not portable.
126           return false;
127         }
128 
129         if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
130           // Portable, keep scanning the rest of the format string.
131           in_specification = false;
132         }
133       }
134     }
135   }
136 
137   return true;
138 }
139 
140 namespace {
141 
142 template<typename StringType>
ToLowerASCIIImpl(BasicStringPiece<StringType> str)143 StringType ToLowerASCIIImpl(BasicStringPiece<StringType> str) {
144   StringType ret;
145   ret.reserve(str.size());
146   for (size_t i = 0; i < str.size(); i++)
147     ret.push_back(ToLowerASCII(str[i]));
148   return ret;
149 }
150 
151 template<typename StringType>
ToUpperASCIIImpl(BasicStringPiece<StringType> str)152 StringType ToUpperASCIIImpl(BasicStringPiece<StringType> str) {
153   StringType ret;
154   ret.reserve(str.size());
155   for (size_t i = 0; i < str.size(); i++)
156     ret.push_back(ToUpperASCII(str[i]));
157   return ret;
158 }
159 
160 }  // namespace
161 
ToLowerASCII(StringPiece str)162 std::string ToLowerASCII(StringPiece str) {
163   return ToLowerASCIIImpl<std::string>(str);
164 }
165 
ToLowerASCII(StringPiece16 str)166 string16 ToLowerASCII(StringPiece16 str) {
167   return ToLowerASCIIImpl<string16>(str);
168 }
169 
ToUpperASCII(StringPiece str)170 std::string ToUpperASCII(StringPiece str) {
171   return ToUpperASCIIImpl<std::string>(str);
172 }
173 
ToUpperASCII(StringPiece16 str)174 string16 ToUpperASCII(StringPiece16 str) {
175   return ToUpperASCIIImpl<string16>(str);
176 }
177 
178 template<class StringType>
CompareCaseInsensitiveASCIIT(BasicStringPiece<StringType> a,BasicStringPiece<StringType> b)179 int CompareCaseInsensitiveASCIIT(BasicStringPiece<StringType> a,
180                                  BasicStringPiece<StringType> b) {
181   // Find the first characters that aren't equal and compare them.  If the end
182   // of one of the strings is found before a nonequal character, the lengths
183   // of the strings are compared.
184   size_t i = 0;
185   while (i < a.length() && i < b.length()) {
186     typename StringType::value_type lower_a = ToLowerASCII(a[i]);
187     typename StringType::value_type lower_b = ToLowerASCII(b[i]);
188     if (lower_a < lower_b)
189       return -1;
190     if (lower_a > lower_b)
191       return 1;
192     i++;
193   }
194 
195   // End of one string hit before finding a different character. Expect the
196   // common case to be "strings equal" at this point so check that first.
197   if (a.length() == b.length())
198     return 0;
199 
200   if (a.length() < b.length())
201     return -1;
202   return 1;
203 }
204 
CompareCaseInsensitiveASCII(StringPiece a,StringPiece b)205 int CompareCaseInsensitiveASCII(StringPiece a, StringPiece b) {
206   return CompareCaseInsensitiveASCIIT<std::string>(a, b);
207 }
208 
CompareCaseInsensitiveASCII(StringPiece16 a,StringPiece16 b)209 int CompareCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) {
210   return CompareCaseInsensitiveASCIIT<string16>(a, b);
211 }
212 
EqualsCaseInsensitiveASCII(StringPiece a,StringPiece b)213 bool EqualsCaseInsensitiveASCII(StringPiece a, StringPiece b) {
214   if (a.length() != b.length())
215     return false;
216   return CompareCaseInsensitiveASCIIT<std::string>(a, b) == 0;
217 }
218 
EqualsCaseInsensitiveASCII(StringPiece16 a,StringPiece16 b)219 bool EqualsCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) {
220   if (a.length() != b.length())
221     return false;
222   return CompareCaseInsensitiveASCIIT<string16>(a, b) == 0;
223 }
224 
EmptyString()225 const std::string& EmptyString() {
226   return EmptyStrings::GetInstance()->s;
227 }
228 
EmptyString16()229 const string16& EmptyString16() {
230   return EmptyStrings::GetInstance()->s16;
231 }
232 
233 template<typename STR>
ReplaceCharsT(const STR & input,const STR & replace_chars,const STR & replace_with,STR * output)234 bool ReplaceCharsT(const STR& input,
235                    const STR& replace_chars,
236                    const STR& replace_with,
237                    STR* output) {
238   bool removed = false;
239   size_t replace_length = replace_with.length();
240 
241   *output = input;
242 
243   size_t found = output->find_first_of(replace_chars);
244   while (found != STR::npos) {
245     removed = true;
246     output->replace(found, 1, replace_with);
247     found = output->find_first_of(replace_chars, found + replace_length);
248   }
249 
250   return removed;
251 }
252 
ReplaceChars(const string16 & input,const StringPiece16 & replace_chars,const string16 & replace_with,string16 * output)253 bool ReplaceChars(const string16& input,
254                   const StringPiece16& replace_chars,
255                   const string16& replace_with,
256                   string16* output) {
257   return ReplaceCharsT(input, replace_chars.as_string(), replace_with, output);
258 }
259 
ReplaceChars(const std::string & input,const StringPiece & replace_chars,const std::string & replace_with,std::string * output)260 bool ReplaceChars(const std::string& input,
261                   const StringPiece& replace_chars,
262                   const std::string& replace_with,
263                   std::string* output) {
264   return ReplaceCharsT(input, replace_chars.as_string(), replace_with, output);
265 }
266 
RemoveChars(const string16 & input,const StringPiece16 & remove_chars,string16 * output)267 bool RemoveChars(const string16& input,
268                  const StringPiece16& remove_chars,
269                  string16* output) {
270   return ReplaceChars(input, remove_chars.as_string(), string16(), output);
271 }
272 
RemoveChars(const std::string & input,const StringPiece & remove_chars,std::string * output)273 bool RemoveChars(const std::string& input,
274                  const StringPiece& remove_chars,
275                  std::string* output) {
276   return ReplaceChars(input, remove_chars.as_string(), std::string(), output);
277 }
278 
279 template<typename Str>
TrimStringT(const Str & input,BasicStringPiece<Str> trim_chars,TrimPositions positions,Str * output)280 TrimPositions TrimStringT(const Str& input,
281                           BasicStringPiece<Str> trim_chars,
282                           TrimPositions positions,
283                           Str* output) {
284   // Find the edges of leading/trailing whitespace as desired. Need to use
285   // a StringPiece version of input to be able to call find* on it with the
286   // StringPiece version of trim_chars (normally the trim_chars will be a
287   // constant so avoid making a copy).
288   BasicStringPiece<Str> input_piece(input);
289   const size_t last_char = input.length() - 1;
290   const size_t first_good_char = (positions & TRIM_LEADING) ?
291       input_piece.find_first_not_of(trim_chars) : 0;
292   const size_t last_good_char = (positions & TRIM_TRAILING) ?
293       input_piece.find_last_not_of(trim_chars) : last_char;
294 
295   // When the string was all trimmed, report that we stripped off characters
296   // from whichever position the caller was interested in. For empty input, we
297   // stripped no characters, but we still need to clear |output|.
298   if (input.empty() ||
299       (first_good_char == Str::npos) || (last_good_char == Str::npos)) {
300     bool input_was_empty = input.empty();  // in case output == &input
301     output->clear();
302     return input_was_empty ? TRIM_NONE : positions;
303   }
304 
305   // Trim.
306   *output =
307       input.substr(first_good_char, last_good_char - first_good_char + 1);
308 
309   // Return where we trimmed from.
310   return static_cast<TrimPositions>(
311       ((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
312       ((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
313 }
314 
TrimString(const string16 & input,StringPiece16 trim_chars,string16 * output)315 bool TrimString(const string16& input,
316                 StringPiece16 trim_chars,
317                 string16* output) {
318   return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
319 }
320 
TrimString(const std::string & input,StringPiece trim_chars,std::string * output)321 bool TrimString(const std::string& input,
322                 StringPiece trim_chars,
323                 std::string* output) {
324   return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
325 }
326 
327 template<typename Str>
TrimStringPieceT(BasicStringPiece<Str> input,BasicStringPiece<Str> trim_chars,TrimPositions positions)328 BasicStringPiece<Str> TrimStringPieceT(BasicStringPiece<Str> input,
329                                        BasicStringPiece<Str> trim_chars,
330                                        TrimPositions positions) {
331   size_t begin = (positions & TRIM_LEADING) ?
332       input.find_first_not_of(trim_chars) : 0;
333   size_t end = (positions & TRIM_TRAILING) ?
334       input.find_last_not_of(trim_chars) + 1 : input.size();
335   return input.substr(begin, end - begin);
336 }
337 
TrimString(StringPiece16 input,const StringPiece16 & trim_chars,TrimPositions positions)338 StringPiece16 TrimString(StringPiece16 input,
339                          const StringPiece16& trim_chars,
340                          TrimPositions positions) {
341   return TrimStringPieceT(input, trim_chars, positions);
342 }
343 
TrimString(StringPiece input,const StringPiece & trim_chars,TrimPositions positions)344 StringPiece TrimString(StringPiece input,
345                        const StringPiece& trim_chars,
346                        TrimPositions positions) {
347   return TrimStringPieceT(input, trim_chars, positions);
348 }
349 
TruncateUTF8ToByteSize(const std::string & input,const size_t byte_size,std::string * output)350 void TruncateUTF8ToByteSize(const std::string& input,
351                             const size_t byte_size,
352                             std::string* output) {
353   DCHECK(output);
354   if (byte_size > input.length()) {
355     *output = input;
356     return;
357   }
358   DCHECK_LE(byte_size,
359             static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
360   // Note: This cast is necessary because CBU8_NEXT uses int32_ts.
361   int32_t truncation_length = static_cast<int32_t>(byte_size);
362   int32_t char_index = truncation_length - 1;
363   const char* data = input.data();
364 
365   // Using CBU8, we will move backwards from the truncation point
366   // to the beginning of the string looking for a valid UTF8
367   // character.  Once a full UTF8 character is found, we will
368   // truncate the string to the end of that character.
369   while (char_index >= 0) {
370     int32_t prev = char_index;
371     base_icu::UChar32 code_point = 0;
372     CBU8_NEXT(data, char_index, truncation_length, code_point);
373     if (!IsValidCharacter(code_point) ||
374         !IsValidCodepoint(code_point)) {
375       char_index = prev - 1;
376     } else {
377       break;
378     }
379   }
380 
381   if (char_index >= 0 )
382     *output = input.substr(0, char_index);
383   else
384     output->clear();
385 }
386 
TrimWhitespace(const string16 & input,TrimPositions positions,string16 * output)387 TrimPositions TrimWhitespace(const string16& input,
388                              TrimPositions positions,
389                              string16* output) {
390   return TrimStringT(input, StringPiece16(kWhitespaceUTF16), positions, output);
391 }
392 
TrimWhitespace(StringPiece16 input,TrimPositions positions)393 StringPiece16 TrimWhitespace(StringPiece16 input,
394                              TrimPositions positions) {
395   return TrimStringPieceT(input, StringPiece16(kWhitespaceUTF16), positions);
396 }
397 
TrimWhitespaceASCII(const std::string & input,TrimPositions positions,std::string * output)398 TrimPositions TrimWhitespaceASCII(const std::string& input,
399                                   TrimPositions positions,
400                                   std::string* output) {
401   return TrimStringT(input, StringPiece(kWhitespaceASCII), positions, output);
402 }
403 
TrimWhitespaceASCII(StringPiece input,TrimPositions positions)404 StringPiece TrimWhitespaceASCII(StringPiece input, TrimPositions positions) {
405   return TrimStringPieceT(input, StringPiece(kWhitespaceASCII), positions);
406 }
407 
408 template<typename STR>
CollapseWhitespaceT(const STR & text,bool trim_sequences_with_line_breaks)409 STR CollapseWhitespaceT(const STR& text,
410                         bool trim_sequences_with_line_breaks) {
411   STR result;
412   result.resize(text.size());
413 
414   // Set flags to pretend we're already in a trimmed whitespace sequence, so we
415   // will trim any leading whitespace.
416   bool in_whitespace = true;
417   bool already_trimmed = true;
418 
419   int chars_written = 0;
420   for (typename STR::const_iterator i(text.begin()); i != text.end(); ++i) {
421     if (IsUnicodeWhitespace(*i)) {
422       if (!in_whitespace) {
423         // Reduce all whitespace sequences to a single space.
424         in_whitespace = true;
425         result[chars_written++] = L' ';
426       }
427       if (trim_sequences_with_line_breaks && !already_trimmed &&
428           ((*i == '\n') || (*i == '\r'))) {
429         // Whitespace sequences containing CR or LF are eliminated entirely.
430         already_trimmed = true;
431         --chars_written;
432       }
433     } else {
434       // Non-whitespace chracters are copied straight across.
435       in_whitespace = false;
436       already_trimmed = false;
437       result[chars_written++] = *i;
438     }
439   }
440 
441   if (in_whitespace && !already_trimmed) {
442     // Any trailing whitespace is eliminated.
443     --chars_written;
444   }
445 
446   result.resize(chars_written);
447   return result;
448 }
449 
CollapseWhitespace(const string16 & text,bool trim_sequences_with_line_breaks)450 string16 CollapseWhitespace(const string16& text,
451                             bool trim_sequences_with_line_breaks) {
452   return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
453 }
454 
CollapseWhitespaceASCII(const std::string & text,bool trim_sequences_with_line_breaks)455 std::string CollapseWhitespaceASCII(const std::string& text,
456                                     bool trim_sequences_with_line_breaks) {
457   return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
458 }
459 
ContainsOnlyChars(const StringPiece & input,const StringPiece & characters)460 bool ContainsOnlyChars(const StringPiece& input,
461                        const StringPiece& characters) {
462   return input.find_first_not_of(characters) == StringPiece::npos;
463 }
464 
ContainsOnlyChars(const StringPiece16 & input,const StringPiece16 & characters)465 bool ContainsOnlyChars(const StringPiece16& input,
466                        const StringPiece16& characters) {
467   return input.find_first_not_of(characters) == StringPiece16::npos;
468 }
469 
470 template <class Char>
DoIsStringASCII(const Char * characters,size_t length)471 inline bool DoIsStringASCII(const Char* characters, size_t length) {
472   MachineWord all_char_bits = 0;
473   const Char* end = characters + length;
474 
475   // Prologue: align the input.
476   while (!IsAlignedToMachineWord(characters) && characters != end) {
477     all_char_bits |= *characters;
478     ++characters;
479   }
480 
481   // Compare the values of CPU word size.
482   const Char* word_end = AlignToMachineWord(end);
483   const size_t loop_increment = sizeof(MachineWord) / sizeof(Char);
484   while (characters < word_end) {
485     all_char_bits |= *(reinterpret_cast<const MachineWord*>(characters));
486     characters += loop_increment;
487   }
488 
489   // Process the remaining bytes.
490   while (characters != end) {
491     all_char_bits |= *characters;
492     ++characters;
493   }
494 
495   MachineWord non_ascii_bit_mask =
496       NonASCIIMask<sizeof(MachineWord), Char>::value();
497   return !(all_char_bits & non_ascii_bit_mask);
498 }
499 
IsStringASCII(const StringPiece & str)500 bool IsStringASCII(const StringPiece& str) {
501   return DoIsStringASCII(str.data(), str.length());
502 }
503 
IsStringASCII(const StringPiece16 & str)504 bool IsStringASCII(const StringPiece16& str) {
505   return DoIsStringASCII(str.data(), str.length());
506 }
507 
IsStringASCII(const string16 & str)508 bool IsStringASCII(const string16& str) {
509   return DoIsStringASCII(str.data(), str.length());
510 }
511 
512 #if defined(WCHAR_T_IS_UTF32)
IsStringASCII(const std::wstring & str)513 bool IsStringASCII(const std::wstring& str) {
514   return DoIsStringASCII(str.data(), str.length());
515 }
516 #endif
517 
IsStringUTF8(const StringPiece & str)518 bool IsStringUTF8(const StringPiece& str) {
519   const char *src = str.data();
520   int32_t src_len = static_cast<int32_t>(str.length());
521   int32_t char_index = 0;
522 
523   while (char_index < src_len) {
524     int32_t code_point;
525     CBU8_NEXT(src, char_index, src_len, code_point);
526     if (!IsValidCharacter(code_point))
527       return false;
528   }
529   return true;
530 }
531 
532 // Implementation note: Normally this function will be called with a hardcoded
533 // constant for the lowercase_ascii parameter. Constructing a StringPiece from
534 // a C constant requires running strlen, so the result will be two passes
535 // through the buffers, one to file the length of lowercase_ascii, and one to
536 // compare each letter.
537 //
538 // This function could have taken a const char* to avoid this and only do one
539 // pass through the string. But the strlen is faster than the case-insensitive
540 // compares and lets us early-exit in the case that the strings are different
541 // lengths (will often be the case for non-matches). So whether one approach or
542 // the other will be faster depends on the case.
543 //
544 // The hardcoded strings are typically very short so it doesn't matter, and the
545 // string piece gives additional flexibility for the caller (doesn't have to be
546 // null terminated) so we choose the StringPiece route.
547 template<typename Str>
DoLowerCaseEqualsASCII(BasicStringPiece<Str> str,StringPiece lowercase_ascii)548 static inline bool DoLowerCaseEqualsASCII(BasicStringPiece<Str> str,
549                                           StringPiece lowercase_ascii) {
550   if (str.size() != lowercase_ascii.size())
551     return false;
552   for (size_t i = 0; i < str.size(); i++) {
553     if (ToLowerASCII(str[i]) != lowercase_ascii[i])
554       return false;
555   }
556   return true;
557 }
558 
LowerCaseEqualsASCII(StringPiece str,StringPiece lowercase_ascii)559 bool LowerCaseEqualsASCII(StringPiece str, StringPiece lowercase_ascii) {
560   return DoLowerCaseEqualsASCII<std::string>(str, lowercase_ascii);
561 }
562 
LowerCaseEqualsASCII(StringPiece16 str,StringPiece lowercase_ascii)563 bool LowerCaseEqualsASCII(StringPiece16 str, StringPiece lowercase_ascii) {
564   return DoLowerCaseEqualsASCII<string16>(str, lowercase_ascii);
565 }
566 
EqualsASCII(StringPiece16 str,StringPiece ascii)567 bool EqualsASCII(StringPiece16 str, StringPiece ascii) {
568   if (str.length() != ascii.length())
569     return false;
570   return std::equal(ascii.begin(), ascii.end(), str.begin());
571 }
572 
573 template<typename Str>
StartsWithT(BasicStringPiece<Str> str,BasicStringPiece<Str> search_for,CompareCase case_sensitivity)574 bool StartsWithT(BasicStringPiece<Str> str,
575                  BasicStringPiece<Str> search_for,
576                  CompareCase case_sensitivity) {
577   if (search_for.size() > str.size())
578     return false;
579 
580   BasicStringPiece<Str> source = str.substr(0, search_for.size());
581 
582   switch (case_sensitivity) {
583     case CompareCase::SENSITIVE:
584       return source == search_for;
585 
586     case CompareCase::INSENSITIVE_ASCII:
587       return std::equal(
588           search_for.begin(), search_for.end(),
589           source.begin(),
590           CaseInsensitiveCompareASCII<typename Str::value_type>());
591 
592     default:
593       NOTREACHED();
594       return false;
595   }
596 }
597 
StartsWith(StringPiece str,StringPiece search_for,CompareCase case_sensitivity)598 bool StartsWith(StringPiece str,
599                 StringPiece search_for,
600                 CompareCase case_sensitivity) {
601   return StartsWithT<std::string>(str, search_for, case_sensitivity);
602 }
603 
StartsWith(StringPiece16 str,StringPiece16 search_for,CompareCase case_sensitivity)604 bool StartsWith(StringPiece16 str,
605                 StringPiece16 search_for,
606                 CompareCase case_sensitivity) {
607   return StartsWithT<string16>(str, search_for, case_sensitivity);
608 }
609 
610 template <typename Str>
EndsWithT(BasicStringPiece<Str> str,BasicStringPiece<Str> search_for,CompareCase case_sensitivity)611 bool EndsWithT(BasicStringPiece<Str> str,
612                BasicStringPiece<Str> search_for,
613                CompareCase case_sensitivity) {
614   if (search_for.size() > str.size())
615     return false;
616 
617   BasicStringPiece<Str> source = str.substr(str.size() - search_for.size(),
618                                             search_for.size());
619 
620   switch (case_sensitivity) {
621     case CompareCase::SENSITIVE:
622       return source == search_for;
623 
624     case CompareCase::INSENSITIVE_ASCII:
625       return std::equal(
626           source.begin(), source.end(),
627           search_for.begin(),
628           CaseInsensitiveCompareASCII<typename Str::value_type>());
629 
630     default:
631       NOTREACHED();
632       return false;
633   }
634 }
635 
EndsWith(StringPiece str,StringPiece search_for,CompareCase case_sensitivity)636 bool EndsWith(StringPiece str,
637               StringPiece search_for,
638               CompareCase case_sensitivity) {
639   return EndsWithT<std::string>(str, search_for, case_sensitivity);
640 }
641 
EndsWith(StringPiece16 str,StringPiece16 search_for,CompareCase case_sensitivity)642 bool EndsWith(StringPiece16 str,
643               StringPiece16 search_for,
644               CompareCase case_sensitivity) {
645   return EndsWithT<string16>(str, search_for, case_sensitivity);
646 }
647 
HexDigitToInt(wchar_t c)648 char HexDigitToInt(wchar_t c) {
649   DCHECK(IsHexDigit(c));
650   if (c >= '0' && c <= '9')
651     return static_cast<char>(c - '0');
652   if (c >= 'A' && c <= 'F')
653     return static_cast<char>(c - 'A' + 10);
654   if (c >= 'a' && c <= 'f')
655     return static_cast<char>(c - 'a' + 10);
656   return 0;
657 }
658 
IsUnicodeWhitespace(wchar_t c)659 bool IsUnicodeWhitespace(wchar_t c) {
660   // kWhitespaceWide is a NULL-terminated string
661   for (const wchar_t* cur = kWhitespaceWide; *cur; ++cur) {
662     if (*cur == c)
663       return true;
664   }
665   return false;
666 }
667 
668 static const char* const kByteStringsUnlocalized[] = {
669   " B",
670   " kB",
671   " MB",
672   " GB",
673   " TB",
674   " PB"
675 };
676 
FormatBytesUnlocalized(int64_t bytes)677 string16 FormatBytesUnlocalized(int64_t bytes) {
678   double unit_amount = static_cast<double>(bytes);
679   size_t dimension = 0;
680   const int kKilo = 1024;
681   while (unit_amount >= kKilo &&
682          dimension < arraysize(kByteStringsUnlocalized) - 1) {
683     unit_amount /= kKilo;
684     dimension++;
685   }
686 
687   char buf[64];
688   if (bytes != 0 && dimension > 0 && unit_amount < 100) {
689     base::snprintf(buf, arraysize(buf), "%.1lf%s", unit_amount,
690                    kByteStringsUnlocalized[dimension]);
691   } else {
692     base::snprintf(buf, arraysize(buf), "%.0lf%s", unit_amount,
693                    kByteStringsUnlocalized[dimension]);
694   }
695 
696   return ASCIIToUTF16(buf);
697 }
698 
699 // Runs in O(n) time in the length of |str|.
700 template<class StringType>
DoReplaceSubstringsAfterOffset(StringType * str,size_t offset,BasicStringPiece<StringType> find_this,BasicStringPiece<StringType> replace_with,bool replace_all)701 void DoReplaceSubstringsAfterOffset(StringType* str,
702                                     size_t offset,
703                                     BasicStringPiece<StringType> find_this,
704                                     BasicStringPiece<StringType> replace_with,
705                                     bool replace_all) {
706   DCHECK(!find_this.empty());
707 
708   // If the find string doesn't appear, there's nothing to do.
709   offset = str->find(find_this.data(), offset, find_this.size());
710   if (offset == StringType::npos)
711     return;
712 
713   // If we're only replacing one instance, there's no need to do anything
714   // complicated.
715   size_t find_length = find_this.length();
716   if (!replace_all) {
717     str->replace(offset, find_length, replace_with.data(), replace_with.size());
718     return;
719   }
720 
721   // If the find and replace strings are the same length, we can simply use
722   // replace() on each instance, and finish the entire operation in O(n) time.
723   size_t replace_length = replace_with.length();
724   if (find_length == replace_length) {
725     do {
726       str->replace(offset, find_length,
727                    replace_with.data(), replace_with.size());
728       offset = str->find(find_this.data(), offset + replace_length,
729                          find_this.size());
730     } while (offset != StringType::npos);
731     return;
732   }
733 
734   // Since the find and replace strings aren't the same length, a loop like the
735   // one above would be O(n^2) in the worst case, as replace() will shift the
736   // entire remaining string each time.  We need to be more clever to keep
737   // things O(n).
738   //
739   // If we're shortening the string, we can alternate replacements with shifting
740   // forward the intervening characters using memmove().
741   size_t str_length = str->length();
742   if (find_length > replace_length) {
743     size_t write_offset = offset;
744     do {
745       if (replace_length) {
746         str->replace(write_offset, replace_length,
747                      replace_with.data(), replace_with.size());
748         write_offset += replace_length;
749       }
750       size_t read_offset = offset + find_length;
751       offset = std::min(
752           str->find(find_this.data(), read_offset, find_this.size()),
753           str_length);
754       size_t length = offset - read_offset;
755       if (length) {
756         memmove(&(*str)[write_offset], &(*str)[read_offset],
757                 length * sizeof(typename StringType::value_type));
758         write_offset += length;
759       }
760     } while (offset < str_length);
761     str->resize(write_offset);
762     return;
763   }
764 
765   // We're lengthening the string.  We can use alternating replacements and
766   // memmove() calls like above, but we need to precalculate the final string
767   // length and then expand from back-to-front to avoid overwriting the string
768   // as we're reading it, needing to shift, or having to copy to a second string
769   // temporarily.
770   size_t first_match = offset;
771 
772   // First, calculate the final length and resize the string.
773   size_t final_length = str_length;
774   size_t expansion = replace_length - find_length;
775   size_t current_match;
776   do {
777     final_length += expansion;
778     // Minor optimization: save this offset into |current_match|, so that on
779     // exit from the loop, |current_match| will point at the last instance of
780     // the find string, and we won't need to find() it again immediately.
781     current_match = offset;
782     offset = str->find(find_this.data(), offset + find_length,
783                        find_this.size());
784   } while (offset != StringType::npos);
785   str->resize(final_length);
786 
787   // Now do the replacement loop, working backwards through the string.
788   for (size_t prev_match = str_length, write_offset = final_length; ;
789        current_match = str->rfind(find_this.data(), current_match - 1,
790                                   find_this.size())) {
791     size_t read_offset = current_match + find_length;
792     size_t length = prev_match - read_offset;
793     if (length) {
794       write_offset -= length;
795       memmove(&(*str)[write_offset], &(*str)[read_offset],
796               length * sizeof(typename StringType::value_type));
797     }
798     write_offset -= replace_length;
799     str->replace(write_offset, replace_length,
800                  replace_with.data(), replace_with.size());
801     if (current_match == first_match)
802       return;
803     prev_match = current_match;
804   }
805 }
806 
ReplaceFirstSubstringAfterOffset(string16 * str,size_t start_offset,StringPiece16 find_this,StringPiece16 replace_with)807 void ReplaceFirstSubstringAfterOffset(string16* str,
808                                       size_t start_offset,
809                                       StringPiece16 find_this,
810                                       StringPiece16 replace_with) {
811   DoReplaceSubstringsAfterOffset<string16>(
812       str, start_offset, find_this, replace_with, false);  // Replace first.
813 }
814 
ReplaceFirstSubstringAfterOffset(std::string * str,size_t start_offset,StringPiece find_this,StringPiece replace_with)815 void ReplaceFirstSubstringAfterOffset(std::string* str,
816                                       size_t start_offset,
817                                       StringPiece find_this,
818                                       StringPiece replace_with) {
819   DoReplaceSubstringsAfterOffset<std::string>(
820       str, start_offset, find_this, replace_with, false);  // Replace first.
821 }
822 
ReplaceSubstringsAfterOffset(string16 * str,size_t start_offset,StringPiece16 find_this,StringPiece16 replace_with)823 void ReplaceSubstringsAfterOffset(string16* str,
824                                   size_t start_offset,
825                                   StringPiece16 find_this,
826                                   StringPiece16 replace_with) {
827   DoReplaceSubstringsAfterOffset<string16>(
828       str, start_offset, find_this, replace_with, true);  // Replace all.
829 }
830 
ReplaceSubstringsAfterOffset(std::string * str,size_t start_offset,StringPiece find_this,StringPiece replace_with)831 void ReplaceSubstringsAfterOffset(std::string* str,
832                                   size_t start_offset,
833                                   StringPiece find_this,
834                                   StringPiece replace_with) {
835   DoReplaceSubstringsAfterOffset<std::string>(
836       str, start_offset, find_this, replace_with, true);  // Replace all.
837 }
838 
839 template <class string_type>
WriteIntoT(string_type * str,size_t length_with_null)840 inline typename string_type::value_type* WriteIntoT(string_type* str,
841                                                     size_t length_with_null) {
842   DCHECK_GT(length_with_null, 1u);
843   str->reserve(length_with_null);
844   str->resize(length_with_null - 1);
845   return &((*str)[0]);
846 }
847 
WriteInto(std::string * str,size_t length_with_null)848 char* WriteInto(std::string* str, size_t length_with_null) {
849   return WriteIntoT(str, length_with_null);
850 }
851 
WriteInto(string16 * str,size_t length_with_null)852 char16* WriteInto(string16* str, size_t length_with_null) {
853   return WriteIntoT(str, length_with_null);
854 }
855 
856 template<typename STR>
JoinStringT(const std::vector<STR> & parts,BasicStringPiece<STR> sep)857 static STR JoinStringT(const std::vector<STR>& parts,
858                        BasicStringPiece<STR> sep) {
859   if (parts.empty())
860     return STR();
861 
862   STR result(parts[0]);
863   auto iter = parts.begin();
864   ++iter;
865 
866   for (; iter != parts.end(); ++iter) {
867     sep.AppendToString(&result);
868     result += *iter;
869   }
870 
871   return result;
872 }
873 
JoinString(const std::vector<std::string> & parts,StringPiece separator)874 std::string JoinString(const std::vector<std::string>& parts,
875                        StringPiece separator) {
876   return JoinStringT(parts, separator);
877 }
878 
JoinString(const std::vector<string16> & parts,StringPiece16 separator)879 string16 JoinString(const std::vector<string16>& parts,
880                     StringPiece16 separator) {
881   return JoinStringT(parts, separator);
882 }
883 
884 template<class FormatStringType, class OutStringType>
DoReplaceStringPlaceholders(const FormatStringType & format_string,const std::vector<OutStringType> & subst,std::vector<size_t> * offsets)885 OutStringType DoReplaceStringPlaceholders(
886     const FormatStringType& format_string,
887     const std::vector<OutStringType>& subst,
888     std::vector<size_t>* offsets) {
889   size_t substitutions = subst.size();
890   DCHECK_LT(substitutions, 10U);
891 
892   size_t sub_length = 0;
893   for (const auto& cur : subst)
894     sub_length += cur.length();
895 
896   OutStringType formatted;
897   formatted.reserve(format_string.length() + sub_length);
898 
899   std::vector<ReplacementOffset> r_offsets;
900   for (auto i = format_string.begin(); i != format_string.end(); ++i) {
901     if ('$' == *i) {
902       if (i + 1 != format_string.end()) {
903         ++i;
904         if ('$' == *i) {
905           while (i != format_string.end() && '$' == *i) {
906             formatted.push_back('$');
907             ++i;
908           }
909           --i;
910         } else {
911           if (*i < '1' || *i > '9') {
912             DLOG(ERROR) << "Invalid placeholder: $" << *i;
913             continue;
914           }
915           uintptr_t index = *i - '1';
916           if (offsets) {
917             ReplacementOffset r_offset(index,
918                 static_cast<int>(formatted.size()));
919             r_offsets.insert(std::lower_bound(r_offsets.begin(),
920                                               r_offsets.end(),
921                                               r_offset,
922                                               &CompareParameter),
923                              r_offset);
924           }
925           if (index < substitutions)
926             formatted.append(subst.at(index));
927         }
928       }
929     } else {
930       formatted.push_back(*i);
931     }
932   }
933   if (offsets) {
934     for (const auto& cur : r_offsets)
935       offsets->push_back(cur.offset);
936   }
937   return formatted;
938 }
939 
ReplaceStringPlaceholders(const string16 & format_string,const std::vector<string16> & subst,std::vector<size_t> * offsets)940 string16 ReplaceStringPlaceholders(const string16& format_string,
941                                    const std::vector<string16>& subst,
942                                    std::vector<size_t>* offsets) {
943   return DoReplaceStringPlaceholders(format_string, subst, offsets);
944 }
945 
ReplaceStringPlaceholders(const StringPiece & format_string,const std::vector<std::string> & subst,std::vector<size_t> * offsets)946 std::string ReplaceStringPlaceholders(const StringPiece& format_string,
947                                       const std::vector<std::string>& subst,
948                                       std::vector<size_t>* offsets) {
949   return DoReplaceStringPlaceholders(format_string, subst, offsets);
950 }
951 
ReplaceStringPlaceholders(const string16 & format_string,const string16 & a,size_t * offset)952 string16 ReplaceStringPlaceholders(const string16& format_string,
953                                    const string16& a,
954                                    size_t* offset) {
955   std::vector<size_t> offsets;
956   std::vector<string16> subst;
957   subst.push_back(a);
958   string16 result = ReplaceStringPlaceholders(format_string, subst, &offsets);
959 
960   DCHECK_EQ(1U, offsets.size());
961   if (offset)
962     *offset = offsets[0];
963   return result;
964 }
965 
966 // The following code is compatible with the OpenBSD lcpy interface.  See:
967 //   http://www.gratisoft.us/todd/papers/strlcpy.html
968 //   ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
969 
970 namespace {
971 
972 template <typename CHAR>
lcpyT(CHAR * dst,const CHAR * src,size_t dst_size)973 size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
974   for (size_t i = 0; i < dst_size; ++i) {
975     if ((dst[i] = src[i]) == 0)  // We hit and copied the terminating NULL.
976       return i;
977   }
978 
979   // We were left off at dst_size.  We over copied 1 byte.  Null terminate.
980   if (dst_size != 0)
981     dst[dst_size - 1] = 0;
982 
983   // Count the rest of the |src|, and return it's length in characters.
984   while (src[dst_size]) ++dst_size;
985   return dst_size;
986 }
987 
988 }  // namespace
989 
strlcpy(char * dst,const char * src,size_t dst_size)990 size_t strlcpy(char* dst, const char* src, size_t dst_size) {
991   return lcpyT<char>(dst, src, dst_size);
992 }
wcslcpy(wchar_t * dst,const wchar_t * src,size_t dst_size)993 size_t wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
994   return lcpyT<wchar_t>(dst, src, dst_size);
995 }
996 
997 }  // namespace base
998