1;
2; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
3;
4; Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
5; Copyright (C) 2015, Matthieu Darbois.
6;
7; Based on the x86 SIMD extension for IJG JPEG library
8; Copyright (C) 1999-2006, MIYASAKA Masaru.
9; For conditions of distribution and use, see copyright notice in jsimdext.inc
10;
11; This file should be assembled with NASM (Netwide Assembler),
12; can *not* be assembled with Microsoft's MASM or any compatible
13; assembler (including Borland's Turbo Assembler).
14; NASM is available from http://nasm.sourceforge.net/ or
15; http://sourceforge.net/project/showfiles.php?group_id=6208
16;
17; This file contains an SSE2 implementation for Huffman coding of one block.
18; The following code is based directly on jchuff.c; see jchuff.c for more
19; details.
20;
21; [TAB8]
22
23%include "jsimdext.inc"
24
25; --------------------------------------------------------------------------
26        SECTION SEG_CONST
27
28        alignz  16
29        global  EXTN(jconst_huff_encode_one_block)
30
31EXTN(jconst_huff_encode_one_block):
32
33%include "jpeg_nbits_table.inc"
34
35        alignz  16
36
37; --------------------------------------------------------------------------
38        SECTION SEG_TEXT
39        BITS    32
40
41; These macros perform the same task as the emit_bits() function in the
42; original libjpeg code.  In addition to reducing overhead by explicitly
43; inlining the code, additional performance is achieved by taking into
44; account the size of the bit buffer and waiting until it is almost full
45; before emptying it.  This mostly benefits 64-bit platforms, since 6
46; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
47
48%macro EMIT_BYTE 0
49        sub put_bits, 8  ; put_bits -= 8;
50        mov edx, put_buffer
51        mov ecx, put_bits
52        shr edx, cl  ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
53        mov byte [eax], dl  ; *buffer++ = c;
54        add eax, 1
55        cmp dl, 0xFF  ; need to stuff a zero byte?
56        jne %%.EMIT_BYTE_END
57        mov byte [eax], 0  ; *buffer++ = 0;
58        add eax, 1
59%%.EMIT_BYTE_END:
60%endmacro
61
62%macro PUT_BITS 1
63        add put_bits, ecx  ; put_bits += size;
64        shl put_buffer, cl  ; put_buffer = (put_buffer << size);
65        or  put_buffer, %1
66%endmacro
67
68%macro CHECKBUF15 0
69        cmp put_bits, 16  ; if (put_bits > 31) {
70        jl %%.CHECKBUF15_END
71        mov eax, POINTER [esp+buffer]
72        EMIT_BYTE
73        EMIT_BYTE
74        mov POINTER [esp+buffer], eax
75%%.CHECKBUF15_END:
76%endmacro
77
78%macro EMIT_BITS 1
79        PUT_BITS %1
80        CHECKBUF15
81%endmacro
82
83%macro kloop_prepare 37  ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
84    pxor xmm4, xmm4  ; __m128i neg = _mm_setzero_si128();
85    pxor xmm5, xmm5  ; __m128i neg = _mm_setzero_si128();
86    pxor xmm6, xmm6  ; __m128i neg = _mm_setzero_si128();
87    pxor xmm7, xmm7  ; __m128i neg = _mm_setzero_si128();
88    pinsrw %34, word [esi + %2  * SIZEOF_WORD], 0  ; xmm_shadow[0] = block[jno0];
89    pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0  ; xmm_shadow[8] = block[jno8];
90    pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0  ; xmm_shadow[16] = block[jno16];
91    pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0  ; xmm_shadow[24] = block[jno24];
92    pinsrw %34, word [esi + %3  * SIZEOF_WORD], 1  ; xmm_shadow[1] = block[jno1];
93    pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1  ; xmm_shadow[9] = block[jno9];
94    pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1  ; xmm_shadow[17] = block[jno17];
95    pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1  ; xmm_shadow[25] = block[jno25];
96    pinsrw %34, word [esi + %4  * SIZEOF_WORD], 2  ; xmm_shadow[2] = block[jno2];
97    pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2  ; xmm_shadow[10] = block[jno10];
98    pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2  ; xmm_shadow[18] = block[jno18];
99    pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2  ; xmm_shadow[26] = block[jno26];
100    pinsrw %34, word [esi + %5  * SIZEOF_WORD], 3  ; xmm_shadow[3] = block[jno3];
101    pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3  ; xmm_shadow[11] = block[jno11];
102    pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3  ; xmm_shadow[19] = block[jno19];
103    pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3  ; xmm_shadow[27] = block[jno27];
104    pinsrw %34, word [esi + %6  * SIZEOF_WORD], 4  ; xmm_shadow[4] = block[jno4];
105    pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4  ; xmm_shadow[12] = block[jno12];
106    pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4  ; xmm_shadow[20] = block[jno20];
107    pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4  ; xmm_shadow[28] = block[jno28];
108    pinsrw %34, word [esi + %7  * SIZEOF_WORD], 5  ; xmm_shadow[5] = block[jno5];
109    pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5  ; xmm_shadow[13] = block[jno13];
110    pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5  ; xmm_shadow[21] = block[jno21];
111    pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5  ; xmm_shadow[29] = block[jno29];
112    pinsrw %34, word [esi + %8  * SIZEOF_WORD], 6  ; xmm_shadow[6] = block[jno6];
113    pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6  ; xmm_shadow[14] = block[jno14];
114    pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6  ; xmm_shadow[22] = block[jno22];
115    pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6  ; xmm_shadow[30] = block[jno30];
116    pinsrw %34, word [esi + %9  * SIZEOF_WORD], 7  ; xmm_shadow[7] = block[jno7];
117    pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7  ; xmm_shadow[15] = block[jno15];
118    pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7  ; xmm_shadow[23] = block[jno23];
119%if %1 != 32
120    pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7  ; xmm_shadow[31] = block[jno31];
121%else
122    pinsrw %37, ecx, 7  ; xmm_shadow[31] = block[jno31];
123%endif
124    pcmpgtw xmm4, %34  ; neg = _mm_cmpgt_epi16(neg, x1);
125    pcmpgtw xmm5, %35  ; neg = _mm_cmpgt_epi16(neg, x1);
126    pcmpgtw xmm6, %36  ; neg = _mm_cmpgt_epi16(neg, x1);
127    pcmpgtw xmm7, %37  ; neg = _mm_cmpgt_epi16(neg, x1);
128    paddw %34, xmm4   ; x1 = _mm_add_epi16(x1, neg);
129    paddw %35, xmm5   ; x1 = _mm_add_epi16(x1, neg);
130    paddw %36, xmm6  ; x1 = _mm_add_epi16(x1, neg);
131    paddw %37, xmm7  ; x1 = _mm_add_epi16(x1, neg);
132    pxor %34, xmm4    ; x1 = _mm_xor_si128(x1, neg);
133    pxor %35, xmm5    ; x1 = _mm_xor_si128(x1, neg);
134    pxor %36, xmm6   ; x1 = _mm_xor_si128(x1, neg);
135    pxor %37, xmm7   ; x1 = _mm_xor_si128(x1, neg);
136    pxor xmm4, %34    ; neg = _mm_xor_si128(neg, x1);
137    pxor xmm5, %35    ; neg = _mm_xor_si128(neg, x1);
138    pxor xmm6, %36   ; neg = _mm_xor_si128(neg, x1);
139    pxor xmm7, %37   ; neg = _mm_xor_si128(neg, x1);
140    movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34  ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
141    movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35  ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
142    movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36  ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
143    movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37  ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
144    movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4  ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
145    movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5  ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
146    movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6  ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
147    movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7  ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
148%endmacro
149
150;
151; Encode a single block's worth of coefficients.
152;
153; GLOBAL(JOCTET*)
154; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
155;                                   JCOEFPTR block, int last_dc_val,
156;                                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
157;
158
159; eax + 8 = working_state *state
160; eax + 12 = JOCTET *buffer
161; eax + 16 = JCOEFPTR block
162; eax + 20 = int last_dc_val
163; eax + 24 = c_derived_tbl *dctbl
164; eax + 28 = c_derived_tbl *actbl
165
166%define pad             6*SIZEOF_DWORD  ; Align to 16 bytes
167%define t1              pad
168%define t2              t1+(DCTSIZE2*SIZEOF_WORD)
169%define block           t2+(DCTSIZE2*SIZEOF_WORD)
170%define actbl           block+SIZEOF_DWORD
171%define buffer          actbl+SIZEOF_DWORD
172%define temp            buffer+SIZEOF_DWORD
173%define temp2           temp+SIZEOF_DWORD
174%define temp3           temp2+SIZEOF_DWORD
175%define temp4           temp3+SIZEOF_DWORD
176%define temp5           temp4+SIZEOF_DWORD
177%define gotptr          temp5+SIZEOF_DWORD  ; void *gotptr
178%define put_buffer      ebx
179%define put_bits        edi
180
181        align   16
182        global  EXTN(jsimd_huff_encode_one_block_sse2)
183
184EXTN(jsimd_huff_encode_one_block_sse2):
185        push    ebp
186        mov     eax,esp                         ; eax = original ebp
187        sub     esp, byte 4
188        and     esp, byte (-SIZEOF_XMMWORD)     ; align to 128 bits
189        mov     [esp],eax
190        mov     ebp,esp                         ; ebp = aligned ebp
191        sub     esp, temp5+9*SIZEOF_DWORD-pad
192        push    ebx
193        push    ecx
194;       push    edx             ; need not be preserved
195        push    esi
196        push    edi
197        push    ebp
198
199        mov esi, POINTER [eax+8]        ; (working_state *state)
200        mov put_buffer,  DWORD [esi+8]  ; put_buffer = state->cur.put_buffer;
201        mov put_bits,    DWORD [esi+12]  ; put_bits = state->cur.put_bits;
202        push esi  ; esi is now scratch
203
204        get_GOT edx                       ; get GOT address
205        movpic POINTER [esp+gotptr], edx  ; save GOT address
206
207        mov ecx, POINTER [eax+28]
208        mov edx, POINTER [eax+16]
209        mov esi, POINTER [eax+12]
210        mov POINTER [esp+actbl],  ecx
211        mov POINTER [esp+block],  edx
212        mov POINTER [esp+buffer], esi
213
214        ; Encode the DC coefficient difference per section F.1.2.1
215        mov esi, POINTER [esp+block]        ; block
216        movsx ecx, word [esi]  ; temp = temp2 = block[0] - last_dc_val;
217        sub   ecx, DWORD [eax+20]
218        mov   esi, ecx
219
220        ; This is a well-known technique for obtaining the absolute value
221        ; without a branch.  It is derived from an assembly language technique
222        ; presented in "How to Optimize for the Pentium Processors",
223        ; Copyright (c) 1996, 1997 by Agner Fog.
224        mov edx, ecx
225        sar edx, 31   ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
226        xor ecx, edx ; temp ^= temp3;
227        sub ecx, edx ; temp -= temp3;
228
229        ; For a negative input, want temp2 = bitwise complement of abs(input)
230        ; This code assumes we are on a two's complement machine
231        add esi, edx  ; temp2 += temp3;
232        mov DWORD [esp+temp], esi  ; backup temp2 in temp
233
234        ; Find the number of bits needed for the magnitude of the coefficient
235        movpic ebp, POINTER [esp+gotptr]   ; load GOT address (ebp)
236        movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)]  ; nbits = JPEG_NBITS(temp);
237        mov DWORD [esp+temp2], edx  ; backup nbits in temp2
238
239        ; Emit the Huffman-coded symbol for the number of bits
240        mov    ebp, POINTER [eax+24]  ; After this point, arguments are not accessible anymore
241        mov    eax,  INT [ebp + edx * 4]  ; code = dctbl->ehufco[nbits];
242        movzx  ecx, byte [ebp + edx + 1024]  ; size = dctbl->ehufsi[nbits];
243        EMIT_BITS eax  ; EMIT_BITS(code, size)
244
245        mov ecx, DWORD [esp+temp2]  ; restore nbits
246
247        ; Mask off any extra bits in code
248        mov eax, 1
249        shl eax, cl
250        dec eax
251        and eax, DWORD [esp+temp]  ; temp2 &= (((JLONG) 1)<<nbits) - 1;
252
253        ; Emit that number of bits of the value, if positive,
254        ; or the complement of its magnitude, if negative.
255        EMIT_BITS eax  ; EMIT_BITS(temp2, nbits)
256
257        ; Prepare data
258        xor ecx, ecx
259        mov esi, POINTER [esp+block]
260        kloop_prepare  0,  1,  8,  16, 9,  2,  3,  10, 17, 24, 32, 25, \
261                       18, 11, 4,  5,  12, 19, 26, 33, 40, 48, 41, 34, \
262                       27, 20, 13, 6,  7,  14, 21, 28, 35, \
263                       xmm0, xmm1, xmm2, xmm3
264        kloop_prepare  32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
265                       30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
266                       53, 60, 61, 54, 47, 55, 62, 63, 63, \
267                       xmm0, xmm1, xmm2, xmm3
268
269        pxor xmm7, xmm7
270        movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD]   ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
271        movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD]   ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
272        movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
273        movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
274        pcmpeqw xmm0, xmm7  ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
275        pcmpeqw xmm1, xmm7  ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
276        pcmpeqw xmm2, xmm7  ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
277        pcmpeqw xmm3, xmm7  ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
278        packsswb xmm0, xmm1  ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
279        packsswb xmm2, xmm3  ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
280        pmovmskb edx, xmm0  ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
281        pmovmskb ecx, xmm2  ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
282        shl ecx, 16
283        or  edx, ecx
284        not edx  ; index = ~index;
285
286        lea esi, [esp+t1]
287        mov ebp, POINTER [esp+actbl]  ; ebp = actbl
288
289.BLOOP:
290        bsf ecx, edx  ; r = __builtin_ctzl(index);
291        jz .ELOOP
292        lea esi, [esi+ecx*2]  ; k += r;
293        shr edx, cl  ; index >>= r;
294        mov DWORD [esp+temp3], edx
295.BRLOOP:
296        cmp ecx, 16  ; while (r > 15) {
297        jl .ERLOOP
298        sub ecx, 16 ; r -= 16;
299        mov DWORD [esp+temp], ecx
300        mov   eax, INT [ebp + 240 * 4]  ; code_0xf0 = actbl->ehufco[0xf0];
301        movzx ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
302        EMIT_BITS eax  ; EMIT_BITS(code_0xf0, size_0xf0)
303        mov ecx, DWORD [esp+temp]
304        jmp .BRLOOP
305.ERLOOP:
306        movsx eax, word [esi]  ; temp = t1[k];
307        movpic edx, POINTER [esp+gotptr]   ; load GOT address (edx)
308        movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)]  ; nbits = JPEG_NBITS(temp);
309        mov DWORD [esp+temp2], eax
310        ; Emit Huffman symbol for run length / number of bits
311        shl ecx, 4  ; temp3 = (r << 4) + nbits;
312        add ecx, eax
313        mov   eax,  INT [ebp + ecx * 4]  ; code = actbl->ehufco[temp3];
314        movzx ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
315        EMIT_BITS eax
316
317        movsx edx, word [esi+DCTSIZE2*2]  ; temp2 = t2[k];
318        ; Mask off any extra bits in code
319        mov ecx, DWORD [esp+temp2]
320        mov eax, 1
321        shl eax, cl
322        dec eax
323        and eax, edx  ; temp2 &= (((JLONG) 1)<<nbits) - 1;
324        EMIT_BITS eax  ; PUT_BITS(temp2, nbits)
325        mov edx, DWORD [esp+temp3]
326        add esi, 2  ; ++k;
327        shr edx, 1  ; index >>= 1;
328
329        jmp .BLOOP
330.ELOOP:
331        movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD]  ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
332        movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD]  ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
333        movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
334        movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
335        pcmpeqw xmm0, xmm7  ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
336        pcmpeqw xmm1, xmm7  ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
337        pcmpeqw xmm2, xmm7  ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
338        pcmpeqw xmm3, xmm7  ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
339        packsswb xmm0, xmm1  ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
340        packsswb xmm2, xmm3  ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
341        pmovmskb edx, xmm0  ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
342        pmovmskb ecx, xmm2  ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
343        shl ecx, 16
344        or  edx, ecx
345        not edx  ; index = ~index;
346
347        lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
348        sub eax, esi
349        shr eax, 1
350        bsf ecx, edx  ; r = __builtin_ctzl(index);
351        jz .ELOOP2
352        shr edx, cl  ; index >>= r;
353        add ecx, eax
354        lea esi, [esi+ecx*2]  ; k += r;
355        mov DWORD [esp+temp3], edx
356        jmp .BRLOOP2
357.BLOOP2:
358        bsf ecx, edx  ; r = __builtin_ctzl(index);
359        jz .ELOOP2
360        lea esi, [esi+ecx*2]  ; k += r;
361        shr edx, cl  ; index >>= r;
362        mov DWORD [esp+temp3], edx
363.BRLOOP2:
364        cmp ecx, 16  ; while (r > 15) {
365        jl .ERLOOP2
366        sub ecx, 16  ; r -= 16;
367        mov DWORD [esp+temp], ecx
368        mov   eax, INT [ebp + 240 * 4]  ; code_0xf0 = actbl->ehufco[0xf0];
369        movzx ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
370        EMIT_BITS eax  ; EMIT_BITS(code_0xf0, size_0xf0)
371        mov ecx, DWORD [esp+temp]
372        jmp .BRLOOP2
373.ERLOOP2:
374        movsx eax, word [esi]  ; temp = t1[k];
375        bsr eax, eax  ; nbits = 32 - __builtin_clz(temp);
376        inc eax
377        mov DWORD [esp+temp2], eax
378        ; Emit Huffman symbol for run length / number of bits
379        shl ecx, 4  ; temp3 = (r << 4) + nbits;
380        add ecx, eax
381        mov   eax,  INT [ebp + ecx * 4]  ; code = actbl->ehufco[temp3];
382        movzx ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
383        EMIT_BITS eax
384
385        movsx edx, word [esi+DCTSIZE2*2]  ; temp2 = t2[k];
386        ; Mask off any extra bits in code
387        mov ecx, DWORD [esp+temp2]
388        mov eax, 1
389        shl eax, cl
390        dec eax
391        and eax, edx  ; temp2 &= (((JLONG) 1)<<nbits) - 1;
392        EMIT_BITS eax  ; PUT_BITS(temp2, nbits)
393        mov edx, DWORD [esp+temp3]
394        add esi, 2  ; ++k;
395        shr edx, 1  ; index >>= 1;
396
397        jmp .BLOOP2
398.ELOOP2:
399        ; If the last coef(s) were zero, emit an end-of-block code
400        lea edx, [esp + t1 + (DCTSIZE2-1) * 2]  ; r = DCTSIZE2-1-k;
401        cmp edx, esi  ; if (r > 0) {
402        je .EFN
403        mov   eax,  INT [ebp]  ; code = actbl->ehufco[0];
404        movzx ecx, byte [ebp + 1024]  ; size = actbl->ehufsi[0];
405        EMIT_BITS eax
406.EFN:
407        mov eax, [esp+buffer]
408        pop esi
409        ; Save put_buffer & put_bits
410        mov DWORD [esi+8], put_buffer  ; state->cur.put_buffer = put_buffer;
411        mov DWORD [esi+12], put_bits  ; state->cur.put_bits = put_bits;
412
413        pop     ebp
414        pop     edi
415        pop     esi
416;       pop     edx             ; need not be preserved
417        pop     ecx
418        pop     ebx
419        mov     esp,ebp         ; esp <- aligned ebp
420        pop     esp             ; esp <- original ebp
421        pop     ebp
422        ret
423
424; For some reason, the OS X linker does not honor the request to align the
425; segment unless we do this.
426        align   16
427