1 /*
2  * This code was taken from http://ccodearchive.net/info/hash.html
3  * The original file was modified to remove unwanted code
4  * and some changes to fit the current build environment
5  */
6 /*
7 -------------------------------------------------------------------------------
8 lookup3.c, by Bob Jenkins, May 2006, Public Domain.
9 
10 These are functions for producing 32-bit hashes for hash table lookup.
11 hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
12 are externally useful functions.  Routines to test the hash are included
13 if SELF_TEST is defined.  You can use this free for any purpose.  It's in
14 the public domain.  It has no warranty.
15 
16 You probably want to use hashlittle().  hashlittle() and hashbig()
17 hash byte arrays.  hashlittle() is is faster than hashbig() on
18 little-endian machines.  Intel and AMD are little-endian machines.
19 On second thought, you probably want hashlittle2(), which is identical to
20 hashlittle() except it returns two 32-bit hashes for the price of one.
21 You could implement hashbig2() if you wanted but I haven't bothered here.
22 
23 If you want to find a hash of, say, exactly 7 integers, do
24   a = i1;  b = i2;  c = i3;
25   mix(a,b,c);
26   a += i4; b += i5; c += i6;
27   mix(a,b,c);
28   a += i7;
29   final(a,b,c);
30 then use c as the hash value.  If you have a variable length array of
31 4-byte integers to hash, use hash_word().  If you have a byte array (like
32 a character string), use hashlittle().  If you have several byte arrays, or
33 a mix of things, see the comments above hashlittle().
34 
35 Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
36 then mix those integers.  This is fast (you can do a lot more thorough
37 mixing with 12*3 instructions on 3 integers than you can with 3 instructions
38 on 1 byte), but shoehorning those bytes into integers efficiently is messy.
39 -------------------------------------------------------------------------------
40 */
41 #include <netlink/hash.h>
42 
43 #if HAVE_LITTLE_ENDIAN
44 #define HASH_LITTLE_ENDIAN 1
45 #define HASH_BIG_ENDIAN 0
46 #elif HAVE_BIG_ENDIAN
47 #define HASH_LITTLE_ENDIAN 0
48 #define HASH_BIG_ENDIAN 1
49 #else
50 #error Unknown endian
51 #endif
52 
53 #define hashsize(n) ((uint32_t)1<<(n))
54 #define hashmask(n) (hashsize(n)-1)
55 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
56 
57 /*
58 -------------------------------------------------------------------------------
59 mix -- mix 3 32-bit values reversibly.
60 
61 This is reversible, so any information in (a,b,c) before mix() is
62 still in (a,b,c) after mix().
63 
64 If four pairs of (a,b,c) inputs are run through mix(), or through
65 mix() in reverse, there are at least 32 bits of the output that
66 are sometimes the same for one pair and different for another pair.
67 This was tested for:
68 * pairs that differed by one bit, by two bits, in any combination
69   of top bits of (a,b,c), or in any combination of bottom bits of
70   (a,b,c).
71 * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
72   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
73   is commonly produced by subtraction) look like a single 1-bit
74   difference.
75 * the base values were pseudorandom, all zero but one bit set, or
76   all zero plus a counter that starts at zero.
77 
78 Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
79 satisfy this are
80     4  6  8 16 19  4
81     9 15  3 18 27 15
82    14  9  3  7 17  3
83 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
84 for "differ" defined as + with a one-bit base and a two-bit delta.  I
85 used http://burtleburtle.net/bob/hash/avalanche.html to choose
86 the operations, constants, and arrangements of the variables.
87 
88 This does not achieve avalanche.  There are input bits of (a,b,c)
89 that fail to affect some output bits of (a,b,c), especially of a.  The
90 most thoroughly mixed value is c, but it doesn't really even achieve
91 avalanche in c.
92 
93 This allows some parallelism.  Read-after-writes are good at doubling
94 the number of bits affected, so the goal of mixing pulls in the opposite
95 direction as the goal of parallelism.  I did what I could.  Rotates
96 seem to cost as much as shifts on every machine I could lay my hands
97 on, and rotates are much kinder to the top and bottom bits, so I used
98 rotates.
99 -------------------------------------------------------------------------------
100 */
101 #define mix(a,b,c) \
102 { \
103   a -= c;  a ^= rot(c, 4);  c += b; \
104   b -= a;  b ^= rot(a, 6);  a += c; \
105   c -= b;  c ^= rot(b, 8);  b += a; \
106   a -= c;  a ^= rot(c,16);  c += b; \
107   b -= a;  b ^= rot(a,19);  a += c; \
108   c -= b;  c ^= rot(b, 4);  b += a; \
109 }
110 
111 /*
112 -------------------------------------------------------------------------------
113 final -- final mixing of 3 32-bit values (a,b,c) into c
114 
115 Pairs of (a,b,c) values differing in only a few bits will usually
116 produce values of c that look totally different.  This was tested for
117 * pairs that differed by one bit, by two bits, in any combination
118   of top bits of (a,b,c), or in any combination of bottom bits of
119   (a,b,c).
120 * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
121   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
122   is commonly produced by subtraction) look like a single 1-bit
123   difference.
124 * the base values were pseudorandom, all zero but one bit set, or
125   all zero plus a counter that starts at zero.
126 
127 These constants passed:
128  14 11 25 16 4 14 24
129  12 14 25 16 4 14 24
130 and these came close:
131   4  8 15 26 3 22 24
132  10  8 15 26 3 22 24
133  11  8 15 26 3 22 24
134 -------------------------------------------------------------------------------
135 */
136 #define final(a,b,c) \
137 { \
138   c ^= b; c -= rot(b,14); \
139   a ^= c; a -= rot(c,11); \
140   b ^= a; b -= rot(a,25); \
141   c ^= b; c -= rot(b,16); \
142   a ^= c; a -= rot(c,4);  \
143   b ^= a; b -= rot(a,14); \
144   c ^= b; c -= rot(b,24); \
145 }
146 
147 /*
148 -------------------------------------------------------------------------------
149 hashlittle() -- hash a variable-length key into a 32-bit value
150   k       : the key (the unaligned variable-length array of bytes)
151   length  : the length of the key, counting by bytes
152   val2    : IN: can be any 4-byte value OUT: second 32 bit hash.
153 Returns a 32-bit value.  Every bit of the key affects every bit of
154 the return value.  Two keys differing by one or two bits will have
155 totally different hash values.  Note that the return value is better
156 mixed than val2, so use that first.
157 
158 The best hash table sizes are powers of 2.  There is no need to do
159 mod a prime (mod is sooo slow!).  If you need less than 32 bits,
160 use a bitmask.  For example, if you need only 10 bits, do
161   h = (h & hashmask(10));
162 In which case, the hash table should have hashsize(10) elements.
163 
164 If you are hashing n strings (uint8_t **)k, do it like this:
165   for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
166 
167 By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
168 code any way you wish, private, educational, or commercial.  It's free.
169 
170 Use for hash table lookup, or anything where one collision in 2^^32 is
171 acceptable.  Do NOT use for cryptographic purposes.
172 -------------------------------------------------------------------------------
173 */
174 
hashlittle(const void * key,size_t length,uint32_t * val2)175 static uint32_t hashlittle( const void *key, size_t length, uint32_t *val2 )
176 {
177   uint32_t a,b,c;                                          /* internal state */
178   union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */
179 
180   /* Set up the internal state */
181   a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
182 
183   u.ptr = key;
184   if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
185     const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
186     const uint8_t  *k8;
187 
188     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
189     while (length > 12)
190     {
191       a += k[0];
192       b += k[1];
193       c += k[2];
194       mix(a,b,c);
195       length -= 12;
196       k += 3;
197     }
198 
199     /*----------------------------- handle the last (probably partial) block */
200     /*
201      * "k[2]&0xffffff" actually reads beyond the end of the string, but
202      * then masks off the part it's not allowed to read.  Because the
203      * string is aligned, the masked-off tail is in the same word as the
204      * rest of the string.  Every machine with memory protection I've seen
205      * does it on word boundaries, so is OK with this.  But VALGRIND will
206      * still catch it and complain.  The masking trick does make the hash
207      * noticably faster for short strings (like English words).
208      *
209      * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
210      */
211 #if 0
212     switch(length)
213     {
214     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
215     case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
216     case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
217     case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
218     case 8 : b+=k[1]; a+=k[0]; break;
219     case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
220     case 6 : b+=k[1]&0xffff; a+=k[0]; break;
221     case 5 : b+=k[1]&0xff; a+=k[0]; break;
222     case 4 : a+=k[0]; break;
223     case 3 : a+=k[0]&0xffffff; break;
224     case 2 : a+=k[0]&0xffff; break;
225     case 1 : a+=k[0]&0xff; break;
226     case 0 : return c;              /* zero length strings require no mixing */
227     }
228 
229 #else /* make valgrind happy */
230 
231     k8 = (const uint8_t *)k;
232     switch(length)
233     {
234     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
235     case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
236     case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
237     case 9 : c+=k8[8];                   /* fall through */
238     case 8 : b+=k[1]; a+=k[0]; break;
239     case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
240     case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
241     case 5 : b+=k8[4];                   /* fall through */
242     case 4 : a+=k[0]; break;
243     case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
244     case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
245     case 1 : a+=k8[0]; break;
246     case 0 : return c;
247     }
248 
249 #endif /* !valgrind */
250 
251   } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
252     const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */
253     const uint8_t  *k8;
254 
255     /*--------------- all but last block: aligned reads and different mixing */
256     while (length > 12)
257     {
258       a += k[0] + (((uint32_t)k[1])<<16);
259       b += k[2] + (((uint32_t)k[3])<<16);
260       c += k[4] + (((uint32_t)k[5])<<16);
261       mix(a,b,c);
262       length -= 12;
263       k += 6;
264     }
265 
266     /*----------------------------- handle the last (probably partial) block */
267     k8 = (const uint8_t *)k;
268     switch(length)
269     {
270     case 12: c+=k[4]+(((uint32_t)k[5])<<16);
271              b+=k[2]+(((uint32_t)k[3])<<16);
272              a+=k[0]+(((uint32_t)k[1])<<16);
273              break;
274     case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
275     case 10: c+=k[4];
276              b+=k[2]+(((uint32_t)k[3])<<16);
277              a+=k[0]+(((uint32_t)k[1])<<16);
278              break;
279     case 9 : c+=k8[8];                      /* fall through */
280     case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
281              a+=k[0]+(((uint32_t)k[1])<<16);
282              break;
283     case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
284     case 6 : b+=k[2];
285              a+=k[0]+(((uint32_t)k[1])<<16);
286              break;
287     case 5 : b+=k8[4];                      /* fall through */
288     case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
289              break;
290     case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
291     case 2 : a+=k[0];
292              break;
293     case 1 : a+=k8[0];
294              break;
295     case 0 : return c;                     /* zero length requires no mixing */
296     }
297 
298   } else {                        /* need to read the key one byte at a time */
299     const uint8_t *k = (const uint8_t *)key;
300 
301     /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
302     while (length > 12)
303     {
304       a += k[0];
305       a += ((uint32_t)k[1])<<8;
306       a += ((uint32_t)k[2])<<16;
307       a += ((uint32_t)k[3])<<24;
308       b += k[4];
309       b += ((uint32_t)k[5])<<8;
310       b += ((uint32_t)k[6])<<16;
311       b += ((uint32_t)k[7])<<24;
312       c += k[8];
313       c += ((uint32_t)k[9])<<8;
314       c += ((uint32_t)k[10])<<16;
315       c += ((uint32_t)k[11])<<24;
316       mix(a,b,c);
317       length -= 12;
318       k += 12;
319     }
320 
321     /*-------------------------------- last block: affect all 32 bits of (c) */
322     switch(length)                   /* all the case statements fall through */
323     {
324     case 12: c+=((uint32_t)k[11])<<24;
325     case 11: c+=((uint32_t)k[10])<<16;
326     case 10: c+=((uint32_t)k[9])<<8;
327     case 9 : c+=k[8];
328     case 8 : b+=((uint32_t)k[7])<<24;
329     case 7 : b+=((uint32_t)k[6])<<16;
330     case 6 : b+=((uint32_t)k[5])<<8;
331     case 5 : b+=k[4];
332     case 4 : a+=((uint32_t)k[3])<<24;
333     case 3 : a+=((uint32_t)k[2])<<16;
334     case 2 : a+=((uint32_t)k[1])<<8;
335     case 1 : a+=k[0];
336              break;
337     case 0 : return c;
338     }
339   }
340 
341   final(a,b,c);
342   *val2 = b;
343   return c;
344 }
345 
346 /*
347  * hashbig():
348  * This is the same as hash_word() on big-endian machines.  It is different
349  * from hashlittle() on all machines.  hashbig() takes advantage of
350  * big-endian byte ordering.
351  */
hashbig(const void * key,size_t length,uint32_t * val2)352 static uint32_t hashbig( const void *key, size_t length, uint32_t *val2)
353 {
354   uint32_t a,b,c;
355   union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
356 
357   /* Set up the internal state */
358   a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
359 
360   u.ptr = key;
361   if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
362     const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
363     const uint8_t  *k8;
364 
365     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
366     while (length > 12)
367     {
368       a += k[0];
369       b += k[1];
370       c += k[2];
371       mix(a,b,c);
372       length -= 12;
373       k += 3;
374     }
375 
376     /*----------------------------- handle the last (probably partial) block */
377     /*
378      * "k[2]<<8" actually reads beyond the end of the string, but
379      * then shifts out the part it's not allowed to read.  Because the
380      * string is aligned, the illegal read is in the same word as the
381      * rest of the string.  Every machine with memory protection I've seen
382      * does it on word boundaries, so is OK with this.  But VALGRIND will
383      * still catch it and complain.  The masking trick does make the hash
384      * noticably faster for short strings (like English words).
385      *
386      * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
387      */
388 #if 0
389     switch(length)
390     {
391     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
392     case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
393     case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
394     case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
395     case 8 : b+=k[1]; a+=k[0]; break;
396     case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
397     case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
398     case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
399     case 4 : a+=k[0]; break;
400     case 3 : a+=k[0]&0xffffff00; break;
401     case 2 : a+=k[0]&0xffff0000; break;
402     case 1 : a+=k[0]&0xff000000; break;
403     case 0 : return c;              /* zero length strings require no mixing */
404     }
405 
406 #else  /* make valgrind happy */
407 
408     k8 = (const uint8_t *)k;
409     switch(length)                   /* all the case statements fall through */
410     {
411     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
412     case 11: c+=((uint32_t)k8[10])<<8;  /* fall through */
413     case 10: c+=((uint32_t)k8[9])<<16;  /* fall through */
414     case 9 : c+=((uint32_t)k8[8])<<24;  /* fall through */
415     case 8 : b+=k[1]; a+=k[0]; break;
416     case 7 : b+=((uint32_t)k8[6])<<8;   /* fall through */
417     case 6 : b+=((uint32_t)k8[5])<<16;  /* fall through */
418     case 5 : b+=((uint32_t)k8[4])<<24;  /* fall through */
419     case 4 : a+=k[0]; break;
420     case 3 : a+=((uint32_t)k8[2])<<8;   /* fall through */
421     case 2 : a+=((uint32_t)k8[1])<<16;  /* fall through */
422     case 1 : a+=((uint32_t)k8[0])<<24; break;
423     case 0 : return c;
424     }
425 
426 #endif /* !VALGRIND */
427 
428   } else {                        /* need to read the key one byte at a time */
429     const uint8_t *k = (const uint8_t *)key;
430 
431     /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
432     while (length > 12)
433     {
434       a += ((uint32_t)k[0])<<24;
435       a += ((uint32_t)k[1])<<16;
436       a += ((uint32_t)k[2])<<8;
437       a += ((uint32_t)k[3]);
438       b += ((uint32_t)k[4])<<24;
439       b += ((uint32_t)k[5])<<16;
440       b += ((uint32_t)k[6])<<8;
441       b += ((uint32_t)k[7]);
442       c += ((uint32_t)k[8])<<24;
443       c += ((uint32_t)k[9])<<16;
444       c += ((uint32_t)k[10])<<8;
445       c += ((uint32_t)k[11]);
446       mix(a,b,c);
447       length -= 12;
448       k += 12;
449     }
450 
451     /*-------------------------------- last block: affect all 32 bits of (c) */
452     switch(length)                   /* all the case statements fall through */
453     {
454     case 12: c+=k[11];
455     case 11: c+=((uint32_t)k[10])<<8;
456     case 10: c+=((uint32_t)k[9])<<16;
457     case 9 : c+=((uint32_t)k[8])<<24;
458     case 8 : b+=k[7];
459     case 7 : b+=((uint32_t)k[6])<<8;
460     case 6 : b+=((uint32_t)k[5])<<16;
461     case 5 : b+=((uint32_t)k[4])<<24;
462     case 4 : a+=k[3];
463     case 3 : a+=((uint32_t)k[2])<<8;
464     case 2 : a+=((uint32_t)k[1])<<16;
465     case 1 : a+=((uint32_t)k[0])<<24;
466              break;
467     case 0 : return c;
468     }
469   }
470 
471   final(a,b,c);
472   *val2 = b;
473   return c;
474 }
475 
nl_hash_any(const void * key,size_t length,uint32_t base)476 uint32_t nl_hash_any(const void *key, size_t length, uint32_t base)
477 {
478 	if (HASH_BIG_ENDIAN)
479 		return hashbig(key, length, &base);
480 	else
481 		return hashlittle(key, length, &base);
482 }
483