1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "lang_id/lang-id.h"
18
19 #include <stdio.h>
20
21 #include <algorithm>
22 #include <limits>
23 #include <memory>
24 #include <string>
25 #include <vector>
26
27 #include "common/algorithm.h"
28 #include "common/embedding-network-params-from-proto.h"
29 #include "common/embedding-network.pb.h"
30 #include "common/embedding-network.h"
31 #include "common/feature-extractor.h"
32 #include "common/file-utils.h"
33 #include "common/list-of-strings.pb.h"
34 #include "common/memory_image/in-memory-model-data.h"
35 #include "common/mmap.h"
36 #include "common/softmax.h"
37 #include "common/task-context.h"
38 #include "lang_id/custom-tokenizer.h"
39 #include "lang_id/lang-id-brain-interface.h"
40 #include "lang_id/language-identifier-features.h"
41 #include "lang_id/light-sentence-features.h"
42 #include "lang_id/light-sentence.h"
43 #include "lang_id/relevant-script-feature.h"
44 #include "util/base/logging.h"
45 #include "util/base/macros.h"
46
47 using ::libtextclassifier::nlp_core::file_utils::ParseProtoFromMemory;
48
49 namespace libtextclassifier {
50 namespace nlp_core {
51 namespace lang_id {
52
53 namespace {
54 // Default value for the probability threshold; see comments for
55 // LangId::SetProbabilityThreshold().
56 static const float kDefaultProbabilityThreshold = 0.50;
57
58 // Default value for min text size below which our model can't provide a
59 // meaningful prediction.
60 static const int kDefaultMinTextSizeInBytes = 20;
61
62 // Initial value for the default language for LangId::FindLanguage(). The
63 // default language can be changed (for an individual LangId object) using
64 // LangId::SetDefaultLanguage().
65 static const char kInitialDefaultLanguage[] = "";
66
67 // Returns total number of bytes of the words from sentence, without the ^
68 // (start-of-word) and $ (end-of-word) markers. Note: "real text" means that
69 // this ignores whitespace and punctuation characters from the original text.
GetRealTextSize(const LightSentence & sentence)70 int GetRealTextSize(const LightSentence &sentence) {
71 int total = 0;
72 for (int i = 0; i < sentence.num_words(); ++i) {
73 TC_DCHECK(!sentence.word(i).empty());
74 TC_DCHECK_EQ('^', sentence.word(i).front());
75 TC_DCHECK_EQ('$', sentence.word(i).back());
76 total += sentence.word(i).size() - 2;
77 }
78 return total;
79 }
80
81 } // namespace
82
83 // Class that performs all work behind LangId.
84 class LangIdImpl {
85 public:
LangIdImpl(const std::string & filename)86 explicit LangIdImpl(const std::string &filename) {
87 // Using mmap as a fast way to read the model bytes.
88 ScopedMmap scoped_mmap(filename);
89 MmapHandle mmap_handle = scoped_mmap.handle();
90 if (!mmap_handle.ok()) {
91 TC_LOG(ERROR) << "Unable to read model bytes.";
92 return;
93 }
94
95 Initialize(mmap_handle.to_stringpiece());
96 }
97
LangIdImpl(int fd)98 explicit LangIdImpl(int fd) {
99 // Using mmap as a fast way to read the model bytes.
100 ScopedMmap scoped_mmap(fd);
101 MmapHandle mmap_handle = scoped_mmap.handle();
102 if (!mmap_handle.ok()) {
103 TC_LOG(ERROR) << "Unable to read model bytes.";
104 return;
105 }
106
107 Initialize(mmap_handle.to_stringpiece());
108 }
109
LangIdImpl(const char * ptr,size_t length)110 LangIdImpl(const char *ptr, size_t length) {
111 Initialize(StringPiece(ptr, length));
112 }
113
Initialize(StringPiece model_bytes)114 void Initialize(StringPiece model_bytes) {
115 // Will set valid_ to true only on successful initialization.
116 valid_ = false;
117
118 // Make sure all relevant features are registered:
119 ContinuousBagOfNgramsFunction::RegisterClass();
120 RelevantScriptFeature::RegisterClass();
121
122 // NOTE(salcianu): code below relies on the fact that the current features
123 // do not rely on data from a TaskInput. Otherwise, one would have to use
124 // the more complex model registration mechanism, which requires more code.
125 InMemoryModelData model_data(model_bytes);
126 TaskContext context;
127 if (!model_data.GetTaskSpec(context.mutable_spec())) {
128 TC_LOG(ERROR) << "Unable to get model TaskSpec";
129 return;
130 }
131
132 if (!ParseNetworkParams(model_data, &context)) {
133 return;
134 }
135 if (!ParseListOfKnownLanguages(model_data, &context)) {
136 return;
137 }
138
139 network_.reset(new EmbeddingNetwork(network_params_.get()));
140 if (!network_->is_valid()) {
141 return;
142 }
143
144 probability_threshold_ =
145 context.Get("reliability_thresh", kDefaultProbabilityThreshold);
146 min_text_size_in_bytes_ =
147 context.Get("min_text_size_in_bytes", kDefaultMinTextSizeInBytes);
148 version_ = context.Get("version", 0);
149
150 if (!lang_id_brain_interface_.Init(&context)) {
151 return;
152 }
153 valid_ = true;
154 }
155
SetProbabilityThreshold(float threshold)156 void SetProbabilityThreshold(float threshold) {
157 probability_threshold_ = threshold;
158 }
159
SetDefaultLanguage(const std::string & lang)160 void SetDefaultLanguage(const std::string &lang) { default_language_ = lang; }
161
FindLanguage(const std::string & text) const162 std::string FindLanguage(const std::string &text) const {
163 std::vector<float> scores = ScoreLanguages(text);
164 if (scores.empty()) {
165 return default_language_;
166 }
167
168 // Softmax label with max score.
169 int label = GetArgMax(scores);
170 float probability = scores[label];
171 if (probability < probability_threshold_) {
172 return default_language_;
173 }
174 return GetLanguageForSoftmaxLabel(label);
175 }
176
FindLanguages(const std::string & text) const177 std::vector<std::pair<std::string, float>> FindLanguages(
178 const std::string &text) const {
179 std::vector<float> scores = ScoreLanguages(text);
180
181 std::vector<std::pair<std::string, float>> result;
182 for (int i = 0; i < scores.size(); i++) {
183 result.push_back({GetLanguageForSoftmaxLabel(i), scores[i]});
184 }
185
186 // To avoid crashing clients that always expect at least one predicted
187 // language, we promised (see doc for this method) that the result always
188 // contains at least one element.
189 if (result.empty()) {
190 // We use a tiny probability, such that any client that uses a meaningful
191 // probability threshold ignores this prediction. We don't use 0.0f, to
192 // avoid crashing clients that normalize the probabilities we return here.
193 result.push_back({default_language_, 0.001f});
194 }
195 return result;
196 }
197
ScoreLanguages(const std::string & text) const198 std::vector<float> ScoreLanguages(const std::string &text) const {
199 if (!is_valid()) {
200 return {};
201 }
202
203 // Create a Sentence storing the input text.
204 LightSentence sentence;
205 TokenizeTextForLangId(text, &sentence);
206
207 if (GetRealTextSize(sentence) < min_text_size_in_bytes_) {
208 return {};
209 }
210
211 // TODO(salcianu): reuse vector<FeatureVector>.
212 std::vector<FeatureVector> features(
213 lang_id_brain_interface_.NumEmbeddings());
214 lang_id_brain_interface_.GetFeatures(&sentence, &features);
215
216 // Predict language.
217 EmbeddingNetwork::Vector scores;
218 network_->ComputeFinalScores(features, &scores);
219
220 return ComputeSoftmax(scores);
221 }
222
is_valid() const223 bool is_valid() const { return valid_; }
224
version() const225 int version() const { return version_; }
226
227 private:
228 // Returns name of the (in-memory) file for the indicated TaskInput from
229 // context.
GetInMemoryFileNameForTaskInput(const std::string & input_name,TaskContext * context)230 static std::string GetInMemoryFileNameForTaskInput(
231 const std::string &input_name, TaskContext *context) {
232 TaskInput *task_input = context->GetInput(input_name);
233 if (task_input->part_size() != 1) {
234 TC_LOG(ERROR) << "TaskInput " << input_name << " has "
235 << task_input->part_size() << " parts";
236 return "";
237 }
238 return task_input->part(0).file_pattern();
239 }
240
ParseNetworkParams(const InMemoryModelData & model_data,TaskContext * context)241 bool ParseNetworkParams(const InMemoryModelData &model_data,
242 TaskContext *context) {
243 const std::string input_name = "language-identifier-network";
244 const std::string input_file_name =
245 GetInMemoryFileNameForTaskInput(input_name, context);
246 if (input_file_name.empty()) {
247 TC_LOG(ERROR) << "No input file name for TaskInput " << input_name;
248 return false;
249 }
250 StringPiece bytes = model_data.GetBytesForInputFile(input_file_name);
251 if (bytes.data() == nullptr) {
252 TC_LOG(ERROR) << "Unable to get bytes for TaskInput " << input_name;
253 return false;
254 }
255 std::unique_ptr<EmbeddingNetworkProto> proto(new EmbeddingNetworkProto());
256 if (!ParseProtoFromMemory(bytes, proto.get())) {
257 TC_LOG(ERROR) << "Unable to parse EmbeddingNetworkProto";
258 return false;
259 }
260 network_params_.reset(
261 new EmbeddingNetworkParamsFromProto(std::move(proto)));
262 if (!network_params_->is_valid()) {
263 TC_LOG(ERROR) << "EmbeddingNetworkParamsFromProto not valid";
264 return false;
265 }
266 return true;
267 }
268
269 // Parses dictionary with known languages (i.e., field languages_) from a
270 // TaskInput of context. Note: that TaskInput should be a ListOfStrings proto
271 // with a single element, the serialized form of a ListOfStrings.
272 //
ParseListOfKnownLanguages(const InMemoryModelData & model_data,TaskContext * context)273 bool ParseListOfKnownLanguages(const InMemoryModelData &model_data,
274 TaskContext *context) {
275 const std::string input_name = "language-name-id-map";
276 const std::string input_file_name =
277 GetInMemoryFileNameForTaskInput(input_name, context);
278 if (input_file_name.empty()) {
279 TC_LOG(ERROR) << "No input file name for TaskInput " << input_name;
280 return false;
281 }
282 StringPiece bytes = model_data.GetBytesForInputFile(input_file_name);
283 if (bytes.data() == nullptr) {
284 TC_LOG(ERROR) << "Unable to get bytes for TaskInput " << input_name;
285 return false;
286 }
287 ListOfStrings records;
288 if (!ParseProtoFromMemory(bytes, &records)) {
289 TC_LOG(ERROR) << "Unable to parse ListOfStrings from TaskInput "
290 << input_name;
291 return false;
292 }
293 if (records.element_size() != 1) {
294 TC_LOG(ERROR) << "Wrong number of records in TaskInput " << input_name
295 << " : " << records.element_size();
296 return false;
297 }
298 if (!ParseProtoFromMemory(std::string(records.element(0)), &languages_)) {
299 TC_LOG(ERROR) << "Unable to parse dictionary with known languages";
300 return false;
301 }
302 return true;
303 }
304
305 // Returns language code for a softmax label. See comments for languages_
306 // field. If label is out of range, returns default_language_.
GetLanguageForSoftmaxLabel(int label) const307 std::string GetLanguageForSoftmaxLabel(int label) const {
308 if ((label >= 0) && (label < languages_.element_size())) {
309 return languages_.element(label);
310 } else {
311 TC_LOG(ERROR) << "Softmax label " << label << " outside range [0, "
312 << languages_.element_size() << ")";
313 return default_language_;
314 }
315 }
316
317 LangIdBrainInterface lang_id_brain_interface_;
318
319 // Parameters for the neural network network_ (see below).
320 std::unique_ptr<EmbeddingNetworkParamsFromProto> network_params_;
321
322 // Neural network to use for scoring.
323 std::unique_ptr<EmbeddingNetwork> network_;
324
325 // True if this object is ready to perform language predictions.
326 bool valid_;
327
328 // Only predictions with a probability (confidence) above this threshold are
329 // reported. Otherwise, we report default_language_.
330 float probability_threshold_ = kDefaultProbabilityThreshold;
331
332 // Min size of the input text for our predictions to be meaningful. Below
333 // this threshold, the underlying model may report a wrong language and a high
334 // confidence score.
335 int min_text_size_in_bytes_ = kDefaultMinTextSizeInBytes;
336
337 // Version of the model.
338 int version_ = -1;
339
340 // Known languages: softmax label i (an integer) means languages_.element(i)
341 // (something like "en", "fr", "ru", etc).
342 ListOfStrings languages_;
343
344 // Language code to return in case of errors.
345 std::string default_language_ = kInitialDefaultLanguage;
346
347 TC_DISALLOW_COPY_AND_ASSIGN(LangIdImpl);
348 };
349
LangId(const std::string & filename)350 LangId::LangId(const std::string &filename) : pimpl_(new LangIdImpl(filename)) {
351 if (!pimpl_->is_valid()) {
352 TC_LOG(ERROR) << "Unable to construct a valid LangId based "
353 << "on the data from " << filename
354 << "; nothing should crash, but "
355 << "accuracy will be bad.";
356 }
357 }
358
LangId(int fd)359 LangId::LangId(int fd) : pimpl_(new LangIdImpl(fd)) {
360 if (!pimpl_->is_valid()) {
361 TC_LOG(ERROR) << "Unable to construct a valid LangId based "
362 << "on the data from descriptor " << fd
363 << "; nothing should crash, "
364 << "but accuracy will be bad.";
365 }
366 }
367
LangId(const char * ptr,size_t length)368 LangId::LangId(const char *ptr, size_t length)
369 : pimpl_(new LangIdImpl(ptr, length)) {
370 if (!pimpl_->is_valid()) {
371 TC_LOG(ERROR) << "Unable to construct a valid LangId based "
372 << "on the memory region; nothing should crash, "
373 << "but accuracy will be bad.";
374 }
375 }
376
377 LangId::~LangId() = default;
378
SetProbabilityThreshold(float threshold)379 void LangId::SetProbabilityThreshold(float threshold) {
380 pimpl_->SetProbabilityThreshold(threshold);
381 }
382
SetDefaultLanguage(const std::string & lang)383 void LangId::SetDefaultLanguage(const std::string &lang) {
384 pimpl_->SetDefaultLanguage(lang);
385 }
386
FindLanguage(const std::string & text) const387 std::string LangId::FindLanguage(const std::string &text) const {
388 return pimpl_->FindLanguage(text);
389 }
390
FindLanguages(const std::string & text) const391 std::vector<std::pair<std::string, float>> LangId::FindLanguages(
392 const std::string &text) const {
393 return pimpl_->FindLanguages(text);
394 }
395
is_valid() const396 bool LangId::is_valid() const { return pimpl_->is_valid(); }
397
version() const398 int LangId::version() const { return pimpl_->version(); }
399
400 } // namespace lang_id
401 } // namespace nlp_core
402 } // namespace libtextclassifier
403