1 /*
2  *  Copyright (c) 2011 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 
13 #include "error_concealment.h"
14 #include "onyxd_int.h"
15 #include "decodemv.h"
16 #include "vpx_mem/vpx_mem.h"
17 #include "vp8/common/findnearmv.h"
18 #include "vp8/common/common.h"
19 #include "vpx_dsp/vpx_dsp_common.h"
20 
21 #define FLOOR(x, q) ((x) & -(1 << (q)))
22 
23 #define NUM_NEIGHBORS 20
24 
25 typedef struct ec_position {
26   int row;
27   int col;
28 } EC_POS;
29 
30 /*
31  * Regenerate the table in Matlab with:
32  * x = meshgrid((1:4), (1:4));
33  * y = meshgrid((1:4), (1:4))';
34  * W = round((1./(sqrt(x.^2 + y.^2))*2^7));
35  * W(1,1) = 0;
36  */
37 static const int weights_q7[5][5] = { { 0, 128, 64, 43, 32 },
38                                       { 128, 91, 57, 40, 31 },
39                                       { 64, 57, 45, 36, 29 },
40                                       { 43, 40, 36, 30, 26 },
41                                       { 32, 31, 29, 26, 23 } };
42 
vp8_alloc_overlap_lists(VP8D_COMP * pbi)43 int vp8_alloc_overlap_lists(VP8D_COMP *pbi) {
44   if (pbi->overlaps != NULL) {
45     vpx_free(pbi->overlaps);
46     pbi->overlaps = NULL;
47   }
48 
49   pbi->overlaps =
50       vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols, sizeof(MB_OVERLAP));
51 
52   if (pbi->overlaps == NULL) return -1;
53 
54   return 0;
55 }
56 
vp8_de_alloc_overlap_lists(VP8D_COMP * pbi)57 void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi) {
58   vpx_free(pbi->overlaps);
59   pbi->overlaps = NULL;
60 }
61 
62 /* Inserts a new overlap area value to the list of overlaps of a block */
assign_overlap(OVERLAP_NODE * overlaps,union b_mode_info * bmi,int overlap)63 static void assign_overlap(OVERLAP_NODE *overlaps, union b_mode_info *bmi,
64                            int overlap) {
65   int i;
66   if (overlap <= 0) return;
67   /* Find and assign to the next empty overlap node in the list of overlaps.
68    * Empty is defined as bmi == NULL */
69   for (i = 0; i < MAX_OVERLAPS; ++i) {
70     if (overlaps[i].bmi == NULL) {
71       overlaps[i].bmi = bmi;
72       overlaps[i].overlap = overlap;
73       break;
74     }
75   }
76 }
77 
78 /* Calculates the overlap area between two 4x4 squares, where the first
79  * square has its upper-left corner at (b1_row, b1_col) and the second
80  * square has its upper-left corner at (b2_row, b2_col). Doesn't
81  * properly handle squares which do not overlap.
82  */
block_overlap(int b1_row,int b1_col,int b2_row,int b2_col)83 static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col) {
84   const int int_top = VPXMAX(b1_row, b2_row);   // top
85   const int int_left = VPXMAX(b1_col, b2_col);  // left
86   /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge
87    * gives us the right/bottom edge.
88    */
89   const int int_right = VPXMIN(b1_col + (4 << 3), b2_col + (4 << 3));  // right
90   const int int_bottom =
91       VPXMIN(b1_row + (4 << 3), b2_row + (4 << 3));  // bottom
92   return (int_bottom - int_top) * (int_right - int_left);
93 }
94 
95 /* Calculates the overlap area for all blocks in a macroblock at position
96  * (mb_row, mb_col) in macroblocks, which are being overlapped by a given
97  * overlapping block at position (new_row, new_col) (in pixels, Q3). The
98  * first block being overlapped in the macroblock has position (first_blk_row,
99  * first_blk_col) in blocks relative the upper-left corner of the image.
100  */
calculate_overlaps_mb(B_OVERLAP * b_overlaps,union b_mode_info * bmi,int new_row,int new_col,int mb_row,int mb_col,int first_blk_row,int first_blk_col)101 static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi,
102                                   int new_row, int new_col, int mb_row,
103                                   int mb_col, int first_blk_row,
104                                   int first_blk_col) {
105   /* Find the blocks within this MB (defined by mb_row, mb_col) which are
106    * overlapped by bmi and calculate and assign overlap for each of those
107    * blocks. */
108 
109   /* Block coordinates relative the upper-left block */
110   const int rel_ol_blk_row = first_blk_row - mb_row * 4;
111   const int rel_ol_blk_col = first_blk_col - mb_col * 4;
112   /* If the block partly overlaps any previous MB, these coordinates
113    * can be < 0. We don't want to access blocks in previous MBs.
114    */
115   const int blk_idx = VPXMAX(rel_ol_blk_row, 0) * 4 + VPXMAX(rel_ol_blk_col, 0);
116   /* Upper left overlapping block */
117   B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
118 
119   /* Calculate and assign overlaps for all blocks in this MB
120    * which the motion compensated block overlaps
121    */
122   /* Avoid calculating overlaps for blocks in later MBs */
123   int end_row = VPXMIN(4 + mb_row * 4 - first_blk_row, 2);
124   int end_col = VPXMIN(4 + mb_col * 4 - first_blk_col, 2);
125   int row, col;
126 
127   /* Check if new_row and new_col are evenly divisible by 4 (Q3),
128    * and if so we shouldn't check neighboring blocks
129    */
130   if (new_row >= 0 && (new_row & 0x1F) == 0) end_row = 1;
131   if (new_col >= 0 && (new_col & 0x1F) == 0) end_col = 1;
132 
133   /* Check if the overlapping block partly overlaps a previous MB
134    * and if so, we're overlapping fewer blocks in this MB.
135    */
136   if (new_row < (mb_row * 16) << 3) end_row = 1;
137   if (new_col < (mb_col * 16) << 3) end_col = 1;
138 
139   for (row = 0; row < end_row; ++row) {
140     for (col = 0; col < end_col; ++col) {
141       /* input in Q3, result in Q6 */
142       const int overlap =
143           block_overlap(new_row, new_col, (((first_blk_row + row) * 4) << 3),
144                         (((first_blk_col + col) * 4) << 3));
145       assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap);
146     }
147   }
148 }
149 
vp8_calculate_overlaps(MB_OVERLAP * overlap_ul,int mb_rows,int mb_cols,union b_mode_info * bmi,int b_row,int b_col)150 void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul, int mb_rows, int mb_cols,
151                             union b_mode_info *bmi, int b_row, int b_col) {
152   MB_OVERLAP *mb_overlap;
153   int row, col, rel_row, rel_col;
154   int new_row, new_col;
155   int end_row, end_col;
156   int overlap_b_row, overlap_b_col;
157   int overlap_mb_row, overlap_mb_col;
158 
159   /* mb subpixel position */
160   row = (4 * b_row) << 3; /* Q3 */
161   col = (4 * b_col) << 3; /* Q3 */
162 
163   /* reverse compensate for motion */
164   new_row = row - bmi->mv.as_mv.row;
165   new_col = col - bmi->mv.as_mv.col;
166 
167   if (new_row >= ((16 * mb_rows) << 3) || new_col >= ((16 * mb_cols) << 3)) {
168     /* the new block ended up outside the frame */
169     return;
170   }
171 
172   if (new_row <= -32 || new_col <= -32) {
173     /* outside the frame */
174     return;
175   }
176   /* overlapping block's position in blocks */
177   overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
178   overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
179 
180   /* overlapping block's MB position in MBs
181    * operations are done in Q3
182    */
183   overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
184   overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
185 
186   end_row = VPXMIN(mb_rows - overlap_mb_row, 2);
187   end_col = VPXMIN(mb_cols - overlap_mb_col, 2);
188 
189   /* Don't calculate overlap for MBs we don't overlap */
190   /* Check if the new block row starts at the last block row of the MB */
191   if (abs(new_row - ((16 * overlap_mb_row) << 3)) < ((3 * 4) << 3)) end_row = 1;
192   /* Check if the new block col starts at the last block col of the MB */
193   if (abs(new_col - ((16 * overlap_mb_col) << 3)) < ((3 * 4) << 3)) end_col = 1;
194 
195   /* find the MB(s) this block is overlapping */
196   for (rel_row = 0; rel_row < end_row; ++rel_row) {
197     for (rel_col = 0; rel_col < end_col; ++rel_col) {
198       if (overlap_mb_row + rel_row < 0 || overlap_mb_col + rel_col < 0)
199         continue;
200       mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
201                    overlap_mb_col + rel_col;
202 
203       calculate_overlaps_mb(mb_overlap->overlaps, bmi, new_row, new_col,
204                             overlap_mb_row + rel_row, overlap_mb_col + rel_col,
205                             overlap_b_row + rel_row, overlap_b_col + rel_col);
206     }
207   }
208 }
209 
210 /* Estimates a motion vector given the overlapping blocks' motion vectors.
211  * Filters out all overlapping blocks which do not refer to the correct
212  * reference frame type.
213  */
estimate_mv(const OVERLAP_NODE * overlaps,union b_mode_info * bmi)214 static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi) {
215   int i;
216   int overlap_sum = 0;
217   int row_acc = 0;
218   int col_acc = 0;
219 
220   bmi->mv.as_int = 0;
221   for (i = 0; i < MAX_OVERLAPS; ++i) {
222     if (overlaps[i].bmi == NULL) break;
223     col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
224     row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
225     overlap_sum += overlaps[i].overlap;
226   }
227   if (overlap_sum > 0) {
228     /* Q9 / Q6 = Q3 */
229     bmi->mv.as_mv.col = col_acc / overlap_sum;
230     bmi->mv.as_mv.row = row_acc / overlap_sum;
231   } else {
232     bmi->mv.as_mv.col = 0;
233     bmi->mv.as_mv.row = 0;
234   }
235 }
236 
237 /* Estimates all motion vectors for a macroblock given the lists of
238  * overlaps for each block. Decides whether or not the MVs must be clamped.
239  */
estimate_mb_mvs(const B_OVERLAP * block_overlaps,MODE_INFO * mi,int mb_to_left_edge,int mb_to_right_edge,int mb_to_top_edge,int mb_to_bottom_edge)240 static void estimate_mb_mvs(const B_OVERLAP *block_overlaps, MODE_INFO *mi,
241                             int mb_to_left_edge, int mb_to_right_edge,
242                             int mb_to_top_edge, int mb_to_bottom_edge) {
243   int row, col;
244   int non_zero_count = 0;
245   MV *const filtered_mv = &(mi->mbmi.mv.as_mv);
246   union b_mode_info *const bmi = mi->bmi;
247   filtered_mv->col = 0;
248   filtered_mv->row = 0;
249   mi->mbmi.need_to_clamp_mvs = 0;
250   for (row = 0; row < 4; ++row) {
251     int this_b_to_top_edge = mb_to_top_edge + ((row * 4) << 3);
252     int this_b_to_bottom_edge = mb_to_bottom_edge - ((row * 4) << 3);
253     for (col = 0; col < 4; ++col) {
254       int i = row * 4 + col;
255       int this_b_to_left_edge = mb_to_left_edge + ((col * 4) << 3);
256       int this_b_to_right_edge = mb_to_right_edge - ((col * 4) << 3);
257       /* Estimate vectors for all blocks which are overlapped by this */
258       /* type. Interpolate/extrapolate the rest of the block's MVs */
259       estimate_mv(block_overlaps[i].overlaps, &(bmi[i]));
260       mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
261           &bmi[i].mv, this_b_to_left_edge, this_b_to_right_edge,
262           this_b_to_top_edge, this_b_to_bottom_edge);
263       if (bmi[i].mv.as_int != 0) {
264         ++non_zero_count;
265         filtered_mv->col += bmi[i].mv.as_mv.col;
266         filtered_mv->row += bmi[i].mv.as_mv.row;
267       }
268     }
269   }
270   if (non_zero_count > 0) {
271     filtered_mv->col /= non_zero_count;
272     filtered_mv->row /= non_zero_count;
273   }
274 }
275 
calc_prev_mb_overlaps(MB_OVERLAP * overlaps,MODE_INFO * prev_mi,int mb_row,int mb_col,int mb_rows,int mb_cols)276 static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi,
277                                   int mb_row, int mb_col, int mb_rows,
278                                   int mb_cols) {
279   int sub_row;
280   int sub_col;
281   for (sub_row = 0; sub_row < 4; ++sub_row) {
282     for (sub_col = 0; sub_col < 4; ++sub_col) {
283       vp8_calculate_overlaps(overlaps, mb_rows, mb_cols,
284                              &(prev_mi->bmi[sub_row * 4 + sub_col]),
285                              4 * mb_row + sub_row, 4 * mb_col + sub_col);
286     }
287   }
288 }
289 
290 /* Estimate all missing motion vectors. This function does the same as the one
291  * above, but has different input arguments. */
estimate_missing_mvs(MB_OVERLAP * overlaps,MODE_INFO * mi,MODE_INFO * prev_mi,int mb_rows,int mb_cols,unsigned int first_corrupt)292 static void estimate_missing_mvs(MB_OVERLAP *overlaps, MODE_INFO *mi,
293                                  MODE_INFO *prev_mi, int mb_rows, int mb_cols,
294                                  unsigned int first_corrupt) {
295   int mb_row, mb_col;
296   memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
297   /* First calculate the overlaps for all blocks */
298   for (mb_row = 0; mb_row < mb_rows; ++mb_row) {
299     for (mb_col = 0; mb_col < mb_cols; ++mb_col) {
300       /* We're only able to use blocks referring to the last frame
301        * when extrapolating new vectors.
302        */
303       if (prev_mi->mbmi.ref_frame == LAST_FRAME) {
304         calc_prev_mb_overlaps(overlaps, prev_mi, mb_row, mb_col, mb_rows,
305                               mb_cols);
306       }
307       ++prev_mi;
308     }
309     ++prev_mi;
310   }
311 
312   mb_row = first_corrupt / mb_cols;
313   mb_col = first_corrupt - mb_row * mb_cols;
314   mi += mb_row * (mb_cols + 1) + mb_col;
315   /* Go through all macroblocks in the current image with missing MVs
316    * and calculate new MVs using the overlaps.
317    */
318   for (; mb_row < mb_rows; ++mb_row) {
319     int mb_to_top_edge = -((mb_row * 16)) << 3;
320     int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
321     for (; mb_col < mb_cols; ++mb_col) {
322       int mb_to_left_edge = -((mb_col * 16) << 3);
323       int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
324       const B_OVERLAP *block_overlaps =
325           overlaps[mb_row * mb_cols + mb_col].overlaps;
326       mi->mbmi.ref_frame = LAST_FRAME;
327       mi->mbmi.mode = SPLITMV;
328       mi->mbmi.uv_mode = DC_PRED;
329       mi->mbmi.partitioning = 3;
330       mi->mbmi.segment_id = 0;
331       estimate_mb_mvs(block_overlaps, mi, mb_to_left_edge, mb_to_right_edge,
332                       mb_to_top_edge, mb_to_bottom_edge);
333       ++mi;
334     }
335     mb_col = 0;
336     ++mi;
337   }
338 }
339 
vp8_estimate_missing_mvs(VP8D_COMP * pbi)340 void vp8_estimate_missing_mvs(VP8D_COMP *pbi) {
341   VP8_COMMON *const pc = &pbi->common;
342   estimate_missing_mvs(pbi->overlaps, pc->mi, pc->prev_mi, pc->mb_rows,
343                        pc->mb_cols, pbi->mvs_corrupt_from_mb);
344 }
345 
assign_neighbor(EC_BLOCK * neighbor,MODE_INFO * mi,int block_idx)346 static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx) {
347   assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
348   neighbor->ref_frame = mi->mbmi.ref_frame;
349   neighbor->mv = mi->bmi[block_idx].mv.as_mv;
350 }
351 
352 /* Finds the neighboring blocks of a macroblocks. In the general case
353  * 20 blocks are found. If a fewer number of blocks are found due to
354  * image boundaries, those positions in the EC_BLOCK array are left "empty".
355  * The neighbors are enumerated with the upper-left neighbor as the first
356  * element, the second element refers to the neighbor to right of the previous
357  * neighbor, and so on. The last element refers to the neighbor below the first
358  * neighbor.
359  */
find_neighboring_blocks(MODE_INFO * mi,EC_BLOCK * neighbors,int mb_row,int mb_col,int mb_rows,int mb_cols,int mi_stride)360 static void find_neighboring_blocks(MODE_INFO *mi, EC_BLOCK *neighbors,
361                                     int mb_row, int mb_col, int mb_rows,
362                                     int mb_cols, int mi_stride) {
363   int i = 0;
364   int j;
365   if (mb_row > 0) {
366     /* upper left */
367     if (mb_col > 0) assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
368     ++i;
369     /* above */
370     for (j = 12; j < 16; ++j, ++i)
371       assign_neighbor(&neighbors[i], mi - mi_stride, j);
372   } else
373     i += 5;
374   if (mb_col < mb_cols - 1) {
375     /* upper right */
376     if (mb_row > 0) assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
377     ++i;
378     /* right */
379     for (j = 0; j <= 12; j += 4, ++i) assign_neighbor(&neighbors[i], mi + 1, j);
380   } else
381     i += 5;
382   if (mb_row < mb_rows - 1) {
383     /* lower right */
384     if (mb_col < mb_cols - 1)
385       assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
386     ++i;
387     /* below */
388     for (j = 0; j < 4; ++j, ++i)
389       assign_neighbor(&neighbors[i], mi + mi_stride, j);
390   } else
391     i += 5;
392   if (mb_col > 0) {
393     /* lower left */
394     if (mb_row < mb_rows - 1)
395       assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
396     ++i;
397     /* left */
398     for (j = 3; j < 16; j += 4, ++i) {
399       assign_neighbor(&neighbors[i], mi - 1, j);
400     }
401   } else
402     i += 5;
403   assert(i == 20);
404 }
405 
406 /* Interpolates all motion vectors for a macroblock from the neighboring blocks'
407  * motion vectors.
408  */
interpolate_mvs(MACROBLOCKD * mb,EC_BLOCK * neighbors,MV_REFERENCE_FRAME dom_ref_frame)409 static void interpolate_mvs(MACROBLOCKD *mb, EC_BLOCK *neighbors,
410                             MV_REFERENCE_FRAME dom_ref_frame) {
411   int row, col, i;
412   MODE_INFO *const mi = mb->mode_info_context;
413   /* Table with the position of the neighboring blocks relative the position
414    * of the upper left block of the current MB. Starting with the upper left
415    * neighbor and going to the right.
416    */
417   const EC_POS neigh_pos[NUM_NEIGHBORS] = {
418     { -1, -1 }, { -1, 0 }, { -1, 1 }, { -1, 2 }, { -1, 3 }, { -1, 4 }, { 0, 4 },
419     { 1, 4 },   { 2, 4 },  { 3, 4 },  { 4, 4 },  { 4, 3 },  { 4, 2 },  { 4, 1 },
420     { 4, 0 },   { 4, -1 }, { 3, -1 }, { 2, -1 }, { 1, -1 }, { 0, -1 }
421   };
422   mi->mbmi.need_to_clamp_mvs = 0;
423   for (row = 0; row < 4; ++row) {
424     int mb_to_top_edge = mb->mb_to_top_edge + ((row * 4) << 3);
425     int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row * 4) << 3);
426     for (col = 0; col < 4; ++col) {
427       int mb_to_left_edge = mb->mb_to_left_edge + ((col * 4) << 3);
428       int mb_to_right_edge = mb->mb_to_right_edge - ((col * 4) << 3);
429       int w_sum = 0;
430       int mv_row_sum = 0;
431       int mv_col_sum = 0;
432       int_mv *const mv = &(mi->bmi[row * 4 + col].mv);
433       mv->as_int = 0;
434       for (i = 0; i < NUM_NEIGHBORS; ++i) {
435         /* Calculate the weighted sum of neighboring MVs referring
436          * to the dominant frame type.
437          */
438         const int w = weights_q7[abs(row - neigh_pos[i].row)]
439                                 [abs(col - neigh_pos[i].col)];
440         if (neighbors[i].ref_frame != dom_ref_frame) continue;
441         w_sum += w;
442         /* Q7 * Q3 = Q10 */
443         mv_row_sum += w * neighbors[i].mv.row;
444         mv_col_sum += w * neighbors[i].mv.col;
445       }
446       if (w_sum > 0) {
447         /* Avoid division by zero.
448          * Normalize with the sum of the coefficients
449          * Q3 = Q10 / Q7
450          */
451         mv->as_mv.row = mv_row_sum / w_sum;
452         mv->as_mv.col = mv_col_sum / w_sum;
453         mi->mbmi.need_to_clamp_mvs |=
454             vp8_check_mv_bounds(mv, mb_to_left_edge, mb_to_right_edge,
455                                 mb_to_top_edge, mb_to_bottom_edge);
456       }
457     }
458   }
459 }
460 
vp8_interpolate_motion(MACROBLOCKD * mb,int mb_row,int mb_col,int mb_rows,int mb_cols)461 void vp8_interpolate_motion(MACROBLOCKD *mb, int mb_row, int mb_col,
462                             int mb_rows, int mb_cols) {
463   /* Find relevant neighboring blocks */
464   EC_BLOCK neighbors[NUM_NEIGHBORS];
465   int i;
466   /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
467   for (i = 0; i < NUM_NEIGHBORS; ++i) {
468     neighbors[i].ref_frame = MAX_REF_FRAMES;
469     neighbors[i].mv.row = neighbors[i].mv.col = 0;
470   }
471   find_neighboring_blocks(mb->mode_info_context, neighbors, mb_row, mb_col,
472                           mb_rows, mb_cols, mb->mode_info_stride);
473   /* Interpolate MVs for the missing blocks from the surrounding
474    * blocks which refer to the last frame. */
475   interpolate_mvs(mb, neighbors, LAST_FRAME);
476 
477   mb->mode_info_context->mbmi.ref_frame = LAST_FRAME;
478   mb->mode_info_context->mbmi.mode = SPLITMV;
479   mb->mode_info_context->mbmi.uv_mode = DC_PRED;
480   mb->mode_info_context->mbmi.partitioning = 3;
481   mb->mode_info_context->mbmi.segment_id = 0;
482 }
483