1 /*
2  * Stress userfaultfd syscall.
3  *
4  *  Copyright (C) 2015  Red Hat, Inc.
5  *
6  *  This work is licensed under the terms of the GNU GPL, version 2. See
7  *  the COPYING file in the top-level directory.
8  *
9  * This test allocates two virtual areas and bounces the physical
10  * memory across the two virtual areas (from area_src to area_dst)
11  * using userfaultfd.
12  *
13  * There are three threads running per CPU:
14  *
15  * 1) one per-CPU thread takes a per-page pthread_mutex in a random
16  *    page of the area_dst (while the physical page may still be in
17  *    area_src), and increments a per-page counter in the same page,
18  *    and checks its value against a verification region.
19  *
20  * 2) another per-CPU thread handles the userfaults generated by
21  *    thread 1 above. userfaultfd blocking reads or poll() modes are
22  *    exercised interleaved.
23  *
24  * 3) one last per-CPU thread transfers the memory in the background
25  *    at maximum bandwidth (if not already transferred by thread
26  *    2). Each cpu thread takes cares of transferring a portion of the
27  *    area.
28  *
29  * When all threads of type 3 completed the transfer, one bounce is
30  * complete. area_src and area_dst are then swapped. All threads are
31  * respawned and so the bounce is immediately restarted in the
32  * opposite direction.
33  *
34  * per-CPU threads 1 by triggering userfaults inside
35  * pthread_mutex_lock will also verify the atomicity of the memory
36  * transfer (UFFDIO_COPY).
37  *
38  * The program takes two parameters: the amounts of physical memory in
39  * megabytes (MiB) of the area and the number of bounces to execute.
40  *
41  * # 100MiB 99999 bounces
42  * ./userfaultfd 100 99999
43  *
44  * # 1GiB 99 bounces
45  * ./userfaultfd 1000 99
46  *
47  * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers
48  * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done
49  */
50 
51 #define _GNU_SOURCE
52 #include <stdio.h>
53 #include <errno.h>
54 #include <unistd.h>
55 #include <stdlib.h>
56 #include <sys/types.h>
57 #include <sys/stat.h>
58 #include <fcntl.h>
59 #include <time.h>
60 #include <signal.h>
61 #include <poll.h>
62 #include <string.h>
63 #include <sys/mman.h>
64 #include <sys/syscall.h>
65 #include <sys/ioctl.h>
66 #include <pthread.h>
67 #include <linux/userfaultfd.h>
68 
69 #ifdef __NR_userfaultfd
70 
71 static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size;
72 
73 #define BOUNCE_RANDOM		(1<<0)
74 #define BOUNCE_RACINGFAULTS	(1<<1)
75 #define BOUNCE_VERIFY		(1<<2)
76 #define BOUNCE_POLL		(1<<3)
77 static int bounces;
78 
79 static unsigned long long *count_verify;
80 static int uffd, finished, *pipefd;
81 static char *area_src, *area_dst;
82 static char *zeropage;
83 pthread_attr_t attr;
84 
85 /* pthread_mutex_t starts at page offset 0 */
86 #define area_mutex(___area, ___nr)					\
87 	((pthread_mutex_t *) ((___area) + (___nr)*page_size))
88 /*
89  * count is placed in the page after pthread_mutex_t naturally aligned
90  * to avoid non alignment faults on non-x86 archs.
91  */
92 #define area_count(___area, ___nr)					\
93 	((volatile unsigned long long *) ((unsigned long)		\
94 				 ((___area) + (___nr)*page_size +	\
95 				  sizeof(pthread_mutex_t) +		\
96 				  sizeof(unsigned long long) - 1) &	\
97 				 ~(unsigned long)(sizeof(unsigned long long) \
98 						  -  1)))
99 
my_bcmp(char * str1,char * str2,size_t n)100 static int my_bcmp(char *str1, char *str2, size_t n)
101 {
102 	unsigned long i;
103 	for (i = 0; i < n; i++)
104 		if (str1[i] != str2[i])
105 			return 1;
106 	return 0;
107 }
108 
locking_thread(void * arg)109 static void *locking_thread(void *arg)
110 {
111 	unsigned long cpu = (unsigned long) arg;
112 	struct random_data rand;
113 	unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */
114 	int32_t rand_nr;
115 	unsigned long long count;
116 	char randstate[64];
117 	unsigned int seed;
118 	time_t start;
119 
120 	if (bounces & BOUNCE_RANDOM) {
121 		seed = (unsigned int) time(NULL) - bounces;
122 		if (!(bounces & BOUNCE_RACINGFAULTS))
123 			seed += cpu;
124 		bzero(&rand, sizeof(rand));
125 		bzero(&randstate, sizeof(randstate));
126 		if (initstate_r(seed, randstate, sizeof(randstate), &rand))
127 			fprintf(stderr, "srandom_r error\n"), exit(1);
128 	} else {
129 		page_nr = -bounces;
130 		if (!(bounces & BOUNCE_RACINGFAULTS))
131 			page_nr += cpu * nr_pages_per_cpu;
132 	}
133 
134 	while (!finished) {
135 		if (bounces & BOUNCE_RANDOM) {
136 			if (random_r(&rand, &rand_nr))
137 				fprintf(stderr, "random_r 1 error\n"), exit(1);
138 			page_nr = rand_nr;
139 			if (sizeof(page_nr) > sizeof(rand_nr)) {
140 				if (random_r(&rand, &rand_nr))
141 					fprintf(stderr, "random_r 2 error\n"), exit(1);
142 				page_nr |= (((unsigned long) rand_nr) << 16) <<
143 					   16;
144 			}
145 		} else
146 			page_nr += 1;
147 		page_nr %= nr_pages;
148 
149 		start = time(NULL);
150 		if (bounces & BOUNCE_VERIFY) {
151 			count = *area_count(area_dst, page_nr);
152 			if (!count)
153 				fprintf(stderr,
154 					"page_nr %lu wrong count %Lu %Lu\n",
155 					page_nr, count,
156 					count_verify[page_nr]), exit(1);
157 
158 
159 			/*
160 			 * We can't use bcmp (or memcmp) because that
161 			 * returns 0 erroneously if the memory is
162 			 * changing under it (even if the end of the
163 			 * page is never changing and always
164 			 * different).
165 			 */
166 #if 1
167 			if (!my_bcmp(area_dst + page_nr * page_size, zeropage,
168 				     page_size))
169 				fprintf(stderr,
170 					"my_bcmp page_nr %lu wrong count %Lu %Lu\n",
171 					page_nr, count,
172 					count_verify[page_nr]), exit(1);
173 #else
174 			unsigned long loops;
175 
176 			loops = 0;
177 			/* uncomment the below line to test with mutex */
178 			/* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */
179 			while (!bcmp(area_dst + page_nr * page_size, zeropage,
180 				     page_size)) {
181 				loops += 1;
182 				if (loops > 10)
183 					break;
184 			}
185 			/* uncomment below line to test with mutex */
186 			/* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */
187 			if (loops) {
188 				fprintf(stderr,
189 					"page_nr %lu all zero thread %lu %p %lu\n",
190 					page_nr, cpu, area_dst + page_nr * page_size,
191 					loops);
192 				if (loops > 10)
193 					exit(1);
194 			}
195 #endif
196 		}
197 
198 		pthread_mutex_lock(area_mutex(area_dst, page_nr));
199 		count = *area_count(area_dst, page_nr);
200 		if (count != count_verify[page_nr]) {
201 			fprintf(stderr,
202 				"page_nr %lu memory corruption %Lu %Lu\n",
203 				page_nr, count,
204 				count_verify[page_nr]), exit(1);
205 		}
206 		count++;
207 		*area_count(area_dst, page_nr) = count_verify[page_nr] = count;
208 		pthread_mutex_unlock(area_mutex(area_dst, page_nr));
209 
210 		if (time(NULL) - start > 1)
211 			fprintf(stderr,
212 				"userfault too slow %ld "
213 				"possible false positive with overcommit\n",
214 				time(NULL) - start);
215 	}
216 
217 	return NULL;
218 }
219 
copy_page(unsigned long offset)220 static int copy_page(unsigned long offset)
221 {
222 	struct uffdio_copy uffdio_copy;
223 
224 	if (offset >= nr_pages * page_size)
225 		fprintf(stderr, "unexpected offset %lu\n",
226 			offset), exit(1);
227 	uffdio_copy.dst = (unsigned long) area_dst + offset;
228 	uffdio_copy.src = (unsigned long) area_src + offset;
229 	uffdio_copy.len = page_size;
230 	uffdio_copy.mode = 0;
231 	uffdio_copy.copy = 0;
232 	if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) {
233 		/* real retval in ufdio_copy.copy */
234 		if (uffdio_copy.copy != -EEXIST)
235 			fprintf(stderr, "UFFDIO_COPY error %Ld\n",
236 				uffdio_copy.copy), exit(1);
237 	} else if (uffdio_copy.copy != page_size) {
238 		fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n",
239 			uffdio_copy.copy), exit(1);
240 	} else
241 		return 1;
242 	return 0;
243 }
244 
uffd_poll_thread(void * arg)245 static void *uffd_poll_thread(void *arg)
246 {
247 	unsigned long cpu = (unsigned long) arg;
248 	struct pollfd pollfd[2];
249 	struct uffd_msg msg;
250 	int ret;
251 	unsigned long offset;
252 	char tmp_chr;
253 	unsigned long userfaults = 0;
254 
255 	pollfd[0].fd = uffd;
256 	pollfd[0].events = POLLIN;
257 	pollfd[1].fd = pipefd[cpu*2];
258 	pollfd[1].events = POLLIN;
259 
260 	for (;;) {
261 		ret = poll(pollfd, 2, -1);
262 		if (!ret)
263 			fprintf(stderr, "poll error %d\n", ret), exit(1);
264 		if (ret < 0)
265 			perror("poll"), exit(1);
266 		if (pollfd[1].revents & POLLIN) {
267 			if (read(pollfd[1].fd, &tmp_chr, 1) != 1)
268 				fprintf(stderr, "read pipefd error\n"),
269 					exit(1);
270 			break;
271 		}
272 		if (!(pollfd[0].revents & POLLIN))
273 			fprintf(stderr, "pollfd[0].revents %d\n",
274 				pollfd[0].revents), exit(1);
275 		ret = read(uffd, &msg, sizeof(msg));
276 		if (ret < 0) {
277 			if (errno == EAGAIN)
278 				continue;
279 			perror("nonblocking read error"), exit(1);
280 		}
281 		if (msg.event != UFFD_EVENT_PAGEFAULT)
282 			fprintf(stderr, "unexpected msg event %u\n",
283 				msg.event), exit(1);
284 		if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
285 			fprintf(stderr, "unexpected write fault\n"), exit(1);
286 		offset = (char *)(unsigned long)msg.arg.pagefault.address -
287 			 area_dst;
288 		offset &= ~(page_size-1);
289 		if (copy_page(offset))
290 			userfaults++;
291 	}
292 	return (void *)userfaults;
293 }
294 
295 pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;
296 
uffd_read_thread(void * arg)297 static void *uffd_read_thread(void *arg)
298 {
299 	unsigned long *this_cpu_userfaults;
300 	struct uffd_msg msg;
301 	unsigned long offset;
302 	int ret;
303 
304 	this_cpu_userfaults = (unsigned long *) arg;
305 	*this_cpu_userfaults = 0;
306 
307 	pthread_mutex_unlock(&uffd_read_mutex);
308 	/* from here cancellation is ok */
309 
310 	for (;;) {
311 		ret = read(uffd, &msg, sizeof(msg));
312 		if (ret != sizeof(msg)) {
313 			if (ret < 0)
314 				perror("blocking read error"), exit(1);
315 			else
316 				fprintf(stderr, "short read\n"), exit(1);
317 		}
318 		if (msg.event != UFFD_EVENT_PAGEFAULT)
319 			fprintf(stderr, "unexpected msg event %u\n",
320 				msg.event), exit(1);
321 		if (bounces & BOUNCE_VERIFY &&
322 		    msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
323 			fprintf(stderr, "unexpected write fault\n"), exit(1);
324 		offset = (char *)(unsigned long)msg.arg.pagefault.address -
325 			 area_dst;
326 		offset &= ~(page_size-1);
327 		if (copy_page(offset))
328 			(*this_cpu_userfaults)++;
329 	}
330 	return (void *)NULL;
331 }
332 
background_thread(void * arg)333 static void *background_thread(void *arg)
334 {
335 	unsigned long cpu = (unsigned long) arg;
336 	unsigned long page_nr;
337 
338 	for (page_nr = cpu * nr_pages_per_cpu;
339 	     page_nr < (cpu+1) * nr_pages_per_cpu;
340 	     page_nr++)
341 		copy_page(page_nr * page_size);
342 
343 	return NULL;
344 }
345 
stress(unsigned long * userfaults)346 static int stress(unsigned long *userfaults)
347 {
348 	unsigned long cpu;
349 	pthread_t locking_threads[nr_cpus];
350 	pthread_t uffd_threads[nr_cpus];
351 	pthread_t background_threads[nr_cpus];
352 	void **_userfaults = (void **) userfaults;
353 
354 	finished = 0;
355 	for (cpu = 0; cpu < nr_cpus; cpu++) {
356 		if (pthread_create(&locking_threads[cpu], &attr,
357 				   locking_thread, (void *)cpu))
358 			return 1;
359 		if (bounces & BOUNCE_POLL) {
360 			if (pthread_create(&uffd_threads[cpu], &attr,
361 					   uffd_poll_thread, (void *)cpu))
362 				return 1;
363 		} else {
364 			if (pthread_create(&uffd_threads[cpu], &attr,
365 					   uffd_read_thread,
366 					   &_userfaults[cpu]))
367 				return 1;
368 			pthread_mutex_lock(&uffd_read_mutex);
369 		}
370 		if (pthread_create(&background_threads[cpu], &attr,
371 				   background_thread, (void *)cpu))
372 			return 1;
373 	}
374 	for (cpu = 0; cpu < nr_cpus; cpu++)
375 		if (pthread_join(background_threads[cpu], NULL))
376 			return 1;
377 
378 	/*
379 	 * Be strict and immediately zap area_src, the whole area has
380 	 * been transferred already by the background treads. The
381 	 * area_src could then be faulted in in a racy way by still
382 	 * running uffdio_threads reading zeropages after we zapped
383 	 * area_src (but they're guaranteed to get -EEXIST from
384 	 * UFFDIO_COPY without writing zero pages into area_dst
385 	 * because the background threads already completed).
386 	 */
387 	if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) {
388 		perror("madvise");
389 		return 1;
390 	}
391 
392 	for (cpu = 0; cpu < nr_cpus; cpu++) {
393 		char c;
394 		if (bounces & BOUNCE_POLL) {
395 			if (write(pipefd[cpu*2+1], &c, 1) != 1) {
396 				fprintf(stderr, "pipefd write error\n");
397 				return 1;
398 			}
399 			if (pthread_join(uffd_threads[cpu], &_userfaults[cpu]))
400 				return 1;
401 		} else {
402 			if (pthread_cancel(uffd_threads[cpu]))
403 				return 1;
404 			if (pthread_join(uffd_threads[cpu], NULL))
405 				return 1;
406 		}
407 	}
408 
409 	finished = 1;
410 	for (cpu = 0; cpu < nr_cpus; cpu++)
411 		if (pthread_join(locking_threads[cpu], NULL))
412 			return 1;
413 
414 	return 0;
415 }
416 
userfaultfd_stress(void)417 static int userfaultfd_stress(void)
418 {
419 	void *area;
420 	char *tmp_area;
421 	unsigned long nr;
422 	struct uffdio_register uffdio_register;
423 	struct uffdio_api uffdio_api;
424 	unsigned long cpu;
425 	int uffd_flags, err;
426 	unsigned long userfaults[nr_cpus];
427 
428 	if (posix_memalign(&area, page_size, nr_pages * page_size)) {
429 		fprintf(stderr, "out of memory\n");
430 		return 1;
431 	}
432 	area_src = area;
433 	if (posix_memalign(&area, page_size, nr_pages * page_size)) {
434 		fprintf(stderr, "out of memory\n");
435 		return 1;
436 	}
437 	area_dst = area;
438 
439 	uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
440 	if (uffd < 0) {
441 		fprintf(stderr,
442 			"userfaultfd syscall not available in this kernel\n");
443 		return 1;
444 	}
445 	uffd_flags = fcntl(uffd, F_GETFD, NULL);
446 
447 	uffdio_api.api = UFFD_API;
448 	uffdio_api.features = 0;
449 	if (ioctl(uffd, UFFDIO_API, &uffdio_api)) {
450 		fprintf(stderr, "UFFDIO_API\n");
451 		return 1;
452 	}
453 	if (uffdio_api.api != UFFD_API) {
454 		fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api);
455 		return 1;
456 	}
457 
458 	count_verify = malloc(nr_pages * sizeof(unsigned long long));
459 	if (!count_verify) {
460 		perror("count_verify");
461 		return 1;
462 	}
463 
464 	for (nr = 0; nr < nr_pages; nr++) {
465 		*area_mutex(area_src, nr) = (pthread_mutex_t)
466 			PTHREAD_MUTEX_INITIALIZER;
467 		count_verify[nr] = *area_count(area_src, nr) = 1;
468 		/*
469 		 * In the transition between 255 to 256, powerpc will
470 		 * read out of order in my_bcmp and see both bytes as
471 		 * zero, so leave a placeholder below always non-zero
472 		 * after the count, to avoid my_bcmp to trigger false
473 		 * positives.
474 		 */
475 		*(area_count(area_src, nr) + 1) = 1;
476 	}
477 
478 	pipefd = malloc(sizeof(int) * nr_cpus * 2);
479 	if (!pipefd) {
480 		perror("pipefd");
481 		return 1;
482 	}
483 	for (cpu = 0; cpu < nr_cpus; cpu++) {
484 		if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) {
485 			perror("pipe");
486 			return 1;
487 		}
488 	}
489 
490 	if (posix_memalign(&area, page_size, page_size)) {
491 		fprintf(stderr, "out of memory\n");
492 		return 1;
493 	}
494 	zeropage = area;
495 	bzero(zeropage, page_size);
496 
497 	pthread_mutex_lock(&uffd_read_mutex);
498 
499 	pthread_attr_init(&attr);
500 	pthread_attr_setstacksize(&attr, 16*1024*1024);
501 
502 	err = 0;
503 	while (bounces--) {
504 		unsigned long expected_ioctls;
505 
506 		printf("bounces: %d, mode:", bounces);
507 		if (bounces & BOUNCE_RANDOM)
508 			printf(" rnd");
509 		if (bounces & BOUNCE_RACINGFAULTS)
510 			printf(" racing");
511 		if (bounces & BOUNCE_VERIFY)
512 			printf(" ver");
513 		if (bounces & BOUNCE_POLL)
514 			printf(" poll");
515 		printf(", ");
516 		fflush(stdout);
517 
518 		if (bounces & BOUNCE_POLL)
519 			fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
520 		else
521 			fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);
522 
523 		/* register */
524 		uffdio_register.range.start = (unsigned long) area_dst;
525 		uffdio_register.range.len = nr_pages * page_size;
526 		uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
527 		if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) {
528 			fprintf(stderr, "register failure\n");
529 			return 1;
530 		}
531 		expected_ioctls = (1 << _UFFDIO_WAKE) |
532 				  (1 << _UFFDIO_COPY) |
533 				  (1 << _UFFDIO_ZEROPAGE);
534 		if ((uffdio_register.ioctls & expected_ioctls) !=
535 		    expected_ioctls) {
536 			fprintf(stderr,
537 				"unexpected missing ioctl for anon memory\n");
538 			return 1;
539 		}
540 
541 		/*
542 		 * The madvise done previously isn't enough: some
543 		 * uffd_thread could have read userfaults (one of
544 		 * those already resolved by the background thread)
545 		 * and it may be in the process of calling
546 		 * UFFDIO_COPY. UFFDIO_COPY will read the zapped
547 		 * area_src and it would map a zero page in it (of
548 		 * course such a UFFDIO_COPY is perfectly safe as it'd
549 		 * return -EEXIST). The problem comes at the next
550 		 * bounce though: that racing UFFDIO_COPY would
551 		 * generate zeropages in the area_src, so invalidating
552 		 * the previous MADV_DONTNEED. Without this additional
553 		 * MADV_DONTNEED those zeropages leftovers in the
554 		 * area_src would lead to -EEXIST failure during the
555 		 * next bounce, effectively leaving a zeropage in the
556 		 * area_dst.
557 		 *
558 		 * Try to comment this out madvise to see the memory
559 		 * corruption being caught pretty quick.
560 		 *
561 		 * khugepaged is also inhibited to collapse THP after
562 		 * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
563 		 * required to MADV_DONTNEED here.
564 		 */
565 		if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) {
566 			perror("madvise 2");
567 			return 1;
568 		}
569 
570 		/* bounce pass */
571 		if (stress(userfaults))
572 			return 1;
573 
574 		/* unregister */
575 		if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) {
576 			fprintf(stderr, "register failure\n");
577 			return 1;
578 		}
579 
580 		/* verification */
581 		if (bounces & BOUNCE_VERIFY) {
582 			for (nr = 0; nr < nr_pages; nr++) {
583 				if (*area_count(area_dst, nr) != count_verify[nr]) {
584 					fprintf(stderr,
585 						"error area_count %Lu %Lu %lu\n",
586 						*area_count(area_src, nr),
587 						count_verify[nr],
588 						nr);
589 					err = 1;
590 					bounces = 0;
591 				}
592 			}
593 		}
594 
595 		/* prepare next bounce */
596 		tmp_area = area_src;
597 		area_src = area_dst;
598 		area_dst = tmp_area;
599 
600 		printf("userfaults:");
601 		for (cpu = 0; cpu < nr_cpus; cpu++)
602 			printf(" %lu", userfaults[cpu]);
603 		printf("\n");
604 	}
605 
606 	return err;
607 }
608 
main(int argc,char ** argv)609 int main(int argc, char **argv)
610 {
611 	if (argc < 3)
612 		fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
613 	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
614 	page_size = sysconf(_SC_PAGE_SIZE);
615 	if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2
616 	    > page_size)
617 		fprintf(stderr, "Impossible to run this test\n"), exit(2);
618 	nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size /
619 		nr_cpus;
620 	if (!nr_pages_per_cpu) {
621 		fprintf(stderr, "invalid MiB\n");
622 		fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
623 	}
624 	bounces = atoi(argv[2]);
625 	if (bounces <= 0) {
626 		fprintf(stderr, "invalid bounces\n");
627 		fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
628 	}
629 	nr_pages = nr_pages_per_cpu * nr_cpus;
630 	printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
631 	       nr_pages, nr_pages_per_cpu);
632 	return userfaultfd_stress();
633 }
634 
635 #else /* __NR_userfaultfd */
636 
637 #warning "missing __NR_userfaultfd definition"
638 
main(void)639 int main(void)
640 {
641 	printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n");
642 	return 0;
643 }
644 
645 #endif /* __NR_userfaultfd */
646