1 //===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Contains a simple JIT definition for use in the kaleidoscope tutorials.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
15 #define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
16 
17 #include "RemoteJITUtils.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ExecutionEngine/ExecutionEngine.h"
20 #include "llvm/ExecutionEngine/RuntimeDyld.h"
21 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
22 #include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
23 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
24 #include "llvm/ExecutionEngine/Orc/JITSymbol.h"
25 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
26 #include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
27 #include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
28 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
29 #include "llvm/ExecutionEngine/Orc/OrcRemoteTargetClient.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Mangler.h"
32 #include "llvm/Support/DynamicLibrary.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <algorithm>
36 #include <memory>
37 #include <string>
38 #include <vector>
39 
40 class PrototypeAST;
41 class ExprAST;
42 
43 /// FunctionAST - This class represents a function definition itself.
44 class FunctionAST {
45   std::unique_ptr<PrototypeAST> Proto;
46   std::unique_ptr<ExprAST> Body;
47 
48 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)49   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
50               std::unique_ptr<ExprAST> Body)
51       : Proto(std::move(Proto)), Body(std::move(Body)) {}
52   const PrototypeAST& getProto() const;
53   const std::string& getName() const;
54   llvm::Function *codegen();
55 };
56 
57 /// This will compile FnAST to IR, rename the function to add the given
58 /// suffix (needed to prevent a name-clash with the function's stub),
59 /// and then take ownership of the module that the function was compiled
60 /// into.
61 std::unique_ptr<llvm::Module>
62 irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);
63 
64 namespace llvm {
65 namespace orc {
66 
67 // Typedef the remote-client API.
68 typedef remote::OrcRemoteTargetClient<FDRPCChannel> MyRemote;
69 
70 class KaleidoscopeJIT {
71 private:
72   MyRemote &Remote;
73   std::unique_ptr<TargetMachine> TM;
74   const DataLayout DL;
75   JITCompileCallbackManager *CompileCallbackMgr;
76   std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
77   ObjectLinkingLayer<> ObjectLayer;
78   IRCompileLayer<decltype(ObjectLayer)> CompileLayer;
79 
80   typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
81     OptimizeFunction;
82 
83   IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
84 
85 public:
86   typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;
87 
KaleidoscopeJIT(MyRemote & Remote)88   KaleidoscopeJIT(MyRemote &Remote)
89       : Remote(Remote),
90         TM(EngineBuilder().selectTarget()),
91         DL(TM->createDataLayout()),
92         CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
93         OptimizeLayer(CompileLayer,
94                       [this](std::unique_ptr<Module> M) {
95                         return optimizeModule(std::move(M));
96                       }) {
97     auto CCMgrOrErr = Remote.enableCompileCallbacks(0);
98     if (!CCMgrOrErr) {
99       logAllUnhandledErrors(CCMgrOrErr.takeError(), errs(),
100                             "Error enabling remote compile callbacks:");
101       exit(1);
102     }
103     CompileCallbackMgr = &*CCMgrOrErr;
104     std::unique_ptr<MyRemote::RCIndirectStubsManager> ISM;
105     if (auto Err = Remote.createIndirectStubsManager(ISM)) {
106       logAllUnhandledErrors(std::move(Err), errs(),
107                             "Error creating indirect stubs manager:");
108       exit(1);
109     }
110     IndirectStubsMgr = std::move(ISM);
111     llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
112   }
113 
getTargetMachine()114   TargetMachine &getTargetMachine() { return *TM; }
115 
addModule(std::unique_ptr<Module> M)116   ModuleHandle addModule(std::unique_ptr<Module> M) {
117 
118     // Build our symbol resolver:
119     // Lambda 1: Look back into the JIT itself to find symbols that are part of
120     //           the same "logical dylib".
121     // Lambda 2: Search for external symbols in the host process.
122     auto Resolver = createLambdaResolver(
123         [&](const std::string &Name) {
124           if (auto Sym = IndirectStubsMgr->findStub(Name, false))
125             return Sym.toRuntimeDyldSymbol();
126           if (auto Sym = OptimizeLayer.findSymbol(Name, false))
127             return Sym.toRuntimeDyldSymbol();
128           return RuntimeDyld::SymbolInfo(nullptr);
129         },
130         [&](const std::string &Name) {
131           if (auto AddrOrErr = Remote.getSymbolAddress(Name))
132             return RuntimeDyld::SymbolInfo(*AddrOrErr,
133                                            JITSymbolFlags::Exported);
134           else {
135             logAllUnhandledErrors(AddrOrErr.takeError(), errs(),
136                                   "Error resolving remote symbol:");
137             exit(1);
138           }
139           return RuntimeDyld::SymbolInfo(nullptr);
140         });
141 
142     std::unique_ptr<MyRemote::RCMemoryManager> MemMgr;
143     if (auto Err = Remote.createRemoteMemoryManager(MemMgr)) {
144       logAllUnhandledErrors(std::move(Err), errs(),
145                             "Error creating remote memory manager:");
146       exit(1);
147     }
148 
149     // Build a singlton module set to hold our module.
150     std::vector<std::unique_ptr<Module>> Ms;
151     Ms.push_back(std::move(M));
152 
153     // Add the set to the JIT with the resolver we created above and a newly
154     // created SectionMemoryManager.
155     return OptimizeLayer.addModuleSet(std::move(Ms),
156                                       std::move(MemMgr),
157                                       std::move(Resolver));
158   }
159 
addFunctionAST(std::unique_ptr<FunctionAST> FnAST)160   Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
161     // Create a CompileCallback - this is the re-entry point into the compiler
162     // for functions that haven't been compiled yet.
163     auto CCInfo = CompileCallbackMgr->getCompileCallback();
164 
165     // Create an indirect stub. This serves as the functions "canonical
166     // definition" - an unchanging (constant address) entry point to the
167     // function implementation.
168     // Initially we point the stub's function-pointer at the compile callback
169     // that we just created. In the compile action for the callback (see below)
170     // we will update the stub's function pointer to point at the function
171     // implementation that we just implemented.
172     if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),
173                                                 CCInfo.getAddress(),
174                                                 JITSymbolFlags::Exported))
175       return Err;
176 
177     // Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
178     // capture-by-move, which is be required for unique_ptr.
179     auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));
180 
181     // Set the action to compile our AST. This lambda will be run if/when
182     // execution hits the compile callback (via the stub).
183     //
184     // The steps to compile are:
185     // (1) IRGen the function.
186     // (2) Add the IR module to the JIT to make it executable like any other
187     //     module.
188     // (3) Use findSymbol to get the address of the compiled function.
189     // (4) Update the stub pointer to point at the implementation so that
190     ///    subsequent calls go directly to it and bypass the compiler.
191     // (5) Return the address of the implementation: this lambda will actually
192     //     be run inside an attempted call to the function, and we need to
193     //     continue on to the implementation to complete the attempted call.
194     //     The JIT runtime (the resolver block) will use the return address of
195     //     this function as the address to continue at once it has reset the
196     //     CPU state to what it was immediately before the call.
197     CCInfo.setCompileAction(
198       [this, SharedFnAST]() {
199         auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
200         addModule(std::move(M));
201         auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
202         assert(Sym && "Couldn't find compiled function?");
203         TargetAddress SymAddr = Sym.getAddress();
204         if (auto Err =
205               IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
206                                               SymAddr)) {
207           logAllUnhandledErrors(std::move(Err), errs(),
208                                 "Error updating function pointer: ");
209           exit(1);
210         }
211 
212         return SymAddr;
213       });
214 
215     return Error::success();
216   }
217 
executeRemoteExpr(TargetAddress ExprAddr)218   Error executeRemoteExpr(TargetAddress ExprAddr) {
219     return Remote.callVoidVoid(ExprAddr);
220   }
221 
findSymbol(const std::string Name)222   JITSymbol findSymbol(const std::string Name) {
223     return OptimizeLayer.findSymbol(mangle(Name), true);
224   }
225 
removeModule(ModuleHandle H)226   void removeModule(ModuleHandle H) {
227     OptimizeLayer.removeModuleSet(H);
228   }
229 
230 private:
231 
mangle(const std::string & Name)232   std::string mangle(const std::string &Name) {
233     std::string MangledName;
234     raw_string_ostream MangledNameStream(MangledName);
235     Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
236     return MangledNameStream.str();
237   }
238 
optimizeModule(std::unique_ptr<Module> M)239   std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
240     // Create a function pass manager.
241     auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());
242 
243     // Add some optimizations.
244     FPM->add(createInstructionCombiningPass());
245     FPM->add(createReassociatePass());
246     FPM->add(createGVNPass());
247     FPM->add(createCFGSimplificationPass());
248     FPM->doInitialization();
249 
250     // Run the optimizations over all functions in the module being added to
251     // the JIT.
252     for (auto &F : *M)
253       FPM->run(F);
254 
255     return M;
256   }
257 
258 };
259 
260 } // end namespace orc
261 } // end namespace llvm
262 
263 #endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
264