1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TargetMachine and LLVMTargetMachine classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETMACHINE_H
15 #define LLVM_TARGET_TARGETMACHINE_H
16 
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/CodeGen.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include <cassert>
24 #include <string>
25 
26 namespace llvm {
27 
28 class InstrItineraryData;
29 class GlobalValue;
30 class Mangler;
31 class MachineFunctionInitializer;
32 class MachineModuleInfo;
33 class MCAsmInfo;
34 class MCContext;
35 class MCInstrInfo;
36 class MCRegisterInfo;
37 class MCSubtargetInfo;
38 class MCSymbol;
39 class Target;
40 class TargetLibraryInfo;
41 class TargetFrameLowering;
42 class TargetIRAnalysis;
43 class TargetIntrinsicInfo;
44 class TargetLowering;
45 class TargetPassConfig;
46 class TargetRegisterInfo;
47 class TargetSubtargetInfo;
48 class TargetTransformInfo;
49 class formatted_raw_ostream;
50 class raw_ostream;
51 class raw_pwrite_stream;
52 class TargetLoweringObjectFile;
53 
54 // The old pass manager infrastructure is hidden in a legacy namespace now.
55 namespace legacy {
56 class PassManagerBase;
57 }
58 using legacy::PassManagerBase;
59 
60 //===----------------------------------------------------------------------===//
61 ///
62 /// Primary interface to the complete machine description for the target
63 /// machine.  All target-specific information should be accessible through this
64 /// interface.
65 ///
66 class TargetMachine {
67   TargetMachine(const TargetMachine &) = delete;
68   void operator=(const TargetMachine &) = delete;
69 protected: // Can only create subclasses.
70   TargetMachine(const Target &T, StringRef DataLayoutString,
71                 const Triple &TargetTriple, StringRef CPU, StringRef FS,
72                 const TargetOptions &Options);
73 
74   /// The Target that this machine was created for.
75   const Target &TheTarget;
76 
77   /// DataLayout for the target: keep ABI type size and alignment.
78   ///
79   /// The DataLayout is created based on the string representation provided
80   /// during construction. It is kept here only to avoid reparsing the string
81   /// but should not really be used during compilation, because it has an
82   /// internal cache that is context specific.
83   const DataLayout DL;
84 
85   /// Triple string, CPU name, and target feature strings the TargetMachine
86   /// instance is created with.
87   Triple TargetTriple;
88   std::string TargetCPU;
89   std::string TargetFS;
90 
91   Reloc::Model RM = Reloc::Static;
92   CodeModel::Model CMModel = CodeModel::Default;
93   CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
94 
95   /// Contains target specific asm information.
96   const MCAsmInfo *AsmInfo;
97 
98   const MCRegisterInfo *MRI;
99   const MCInstrInfo *MII;
100   const MCSubtargetInfo *STI;
101 
102   unsigned RequireStructuredCFG : 1;
103   unsigned O0WantsFastISel : 1;
104 
105 public:
106   mutable TargetOptions Options;
107 
108   virtual ~TargetMachine();
109 
getTarget()110   const Target &getTarget() const { return TheTarget; }
111 
getTargetTriple()112   const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()113   StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()114   StringRef getTargetFeatureString() const { return TargetFS; }
115 
116   /// Virtual method implemented by subclasses that returns a reference to that
117   /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)118   virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
119     return nullptr;
120   }
getObjFileLowering()121   virtual TargetLoweringObjectFile *getObjFileLowering() const {
122     return nullptr;
123   }
124 
125   /// This method returns a pointer to the specified type of
126   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
127   /// returned is of the correct type.
getSubtarget(const Function & F)128   template <typename STC> const STC &getSubtarget(const Function &F) const {
129     return *static_cast<const STC*>(getSubtargetImpl(F));
130   }
131 
132   /// Create a DataLayout.
createDataLayout()133   const DataLayout createDataLayout() const { return DL; }
134 
135   /// Test if a DataLayout if compatible with the CodeGen for this target.
136   ///
137   /// The LLVM Module owns a DataLayout that is used for the target independent
138   /// optimizations and code generation. This hook provides a target specific
139   /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)140   bool isCompatibleDataLayout(const DataLayout &Candidate) const {
141     return DL == Candidate;
142   }
143 
144   /// Get the pointer size for this target.
145   ///
146   /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize()147   unsigned getPointerSize() const { return DL.getPointerSize(); }
148 
149   /// \brief Reset the target options based on the function's attributes.
150   // FIXME: Remove TargetOptions that affect per-function code generation
151   // from TargetMachine.
152   void resetTargetOptions(const Function &F) const;
153 
154   /// Return target specific asm information.
getMCAsmInfo()155   const MCAsmInfo *getMCAsmInfo() const { return AsmInfo; }
156 
getMCRegisterInfo()157   const MCRegisterInfo *getMCRegisterInfo() const { return MRI; }
getMCInstrInfo()158   const MCInstrInfo *getMCInstrInfo() const { return MII; }
getMCSubtargetInfo()159   const MCSubtargetInfo *getMCSubtargetInfo() const { return STI; }
160 
161   /// If intrinsic information is available, return it.  If not, return null.
getIntrinsicInfo()162   virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
163     return nullptr;
164   }
165 
requiresStructuredCFG()166   bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)167   void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
168 
169   /// Returns the code generation relocation model. The choices are static, PIC,
170   /// and dynamic-no-pic, and target default.
171   Reloc::Model getRelocationModel() const;
172 
173   /// Returns the code model. The choices are small, kernel, medium, large, and
174   /// target default.
175   CodeModel::Model getCodeModel() const;
176 
177   bool isPositionIndependent() const;
178 
179   bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
180 
181   /// Returns the TLS model which should be used for the given global variable.
182   TLSModel::Model getTLSModel(const GlobalValue *GV) const;
183 
184   /// Returns the optimization level: None, Less, Default, or Aggressive.
185   CodeGenOpt::Level getOptLevel() const;
186 
187   /// \brief Overrides the optimization level.
188   void setOptLevel(CodeGenOpt::Level Level);
189 
setFastISel(bool Enable)190   void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()191   bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)192   void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
193 
shouldPrintMachineCode()194   bool shouldPrintMachineCode() const { return Options.PrintMachineCode; }
195 
196   /// Returns the default value of asm verbosity.
197   ///
getAsmVerbosityDefault()198   bool getAsmVerbosityDefault() const {
199     return Options.MCOptions.AsmVerbose;
200   }
201 
getUniqueSectionNames()202   bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
203 
204   /// Return true if data objects should be emitted into their own section,
205   /// corresponds to -fdata-sections.
getDataSections()206   bool getDataSections() const {
207     return Options.DataSections;
208   }
209 
210   /// Return true if functions should be emitted into their own section,
211   /// corresponding to -ffunction-sections.
getFunctionSections()212   bool getFunctionSections() const {
213     return Options.FunctionSections;
214   }
215 
216   /// \brief Get a \c TargetIRAnalysis appropriate for the target.
217   ///
218   /// This is used to construct the new pass manager's target IR analysis pass,
219   /// set up appropriately for this target machine. Even the old pass manager
220   /// uses this to answer queries about the IR.
221   virtual TargetIRAnalysis getTargetIRAnalysis();
222 
223   /// Add target-specific function passes that should be run as early as
224   /// possible in the optimization pipeline.  Most TargetMachines have no such
225   /// passes.
addEarlyAsPossiblePasses(PassManagerBase &)226   virtual void addEarlyAsPossiblePasses(PassManagerBase &) {}
227 
228   /// These enums are meant to be passed into addPassesToEmitFile to indicate
229   /// what type of file to emit, and returned by it to indicate what type of
230   /// file could actually be made.
231   enum CodeGenFileType {
232     CGFT_AssemblyFile,
233     CGFT_ObjectFile,
234     CGFT_Null         // Do not emit any output.
235   };
236 
237   /// Add passes to the specified pass manager to get the specified file
238   /// emitted.  Typically this will involve several steps of code generation.
239   /// This method should return true if emission of this file type is not
240   /// supported, or false on success.
241   virtual bool addPassesToEmitFile(
242       PassManagerBase &, raw_pwrite_stream &, CodeGenFileType,
243       bool /*DisableVerify*/ = true, AnalysisID /*StartBefore*/ = nullptr,
244       AnalysisID /*StartAfter*/ = nullptr, AnalysisID /*StopAfter*/ = nullptr,
245       MachineFunctionInitializer * /*MFInitializer*/ = nullptr) {
246     return true;
247   }
248 
249   /// Add passes to the specified pass manager to get machine code emitted with
250   /// the MCJIT. This method returns true if machine code is not supported. It
251   /// fills the MCContext Ctx pointer which can be used to build custom
252   /// MCStreamer.
253   ///
254   virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
255                                  raw_pwrite_stream &,
256                                  bool /*DisableVerify*/ = true) {
257     return true;
258   }
259 
260   /// True if subtarget inserts the final scheduling pass on its own.
261   ///
262   /// Branch relaxation, which must happen after block placement, can
263   /// on some targets (e.g. SystemZ) expose additional post-RA
264   /// scheduling opportunities.
targetSchedulesPostRAScheduling()265   virtual bool targetSchedulesPostRAScheduling() const { return false; };
266 
267   void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
268                          Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
269   MCSymbol *getSymbol(const GlobalValue *GV, Mangler &Mang) const;
270 
271   /// True if the target uses physical regs at Prolog/Epilog insertion
272   /// time. If true (most machines), all vregs must be allocated before
273   /// PEI. If false (virtual-register machines), then callee-save register
274   /// spilling and scavenging are not needed or used.
usesPhysRegsForPEI()275   virtual bool usesPhysRegsForPEI() const { return true; }
276 };
277 
278 /// This class describes a target machine that is implemented with the LLVM
279 /// target-independent code generator.
280 ///
281 class LLVMTargetMachine : public TargetMachine {
282 protected: // Can only create subclasses.
283   LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
284                     const Triple &TargetTriple, StringRef CPU, StringRef FS,
285                     TargetOptions Options, Reloc::Model RM, CodeModel::Model CM,
286                     CodeGenOpt::Level OL);
287 
288   void initAsmInfo();
289 public:
290   /// \brief Get a TargetIRAnalysis implementation for the target.
291   ///
292   /// This analysis will produce a TTI result which uses the common code
293   /// generator to answer queries about the IR.
294   TargetIRAnalysis getTargetIRAnalysis() override;
295 
296   /// Create a pass configuration object to be used by addPassToEmitX methods
297   /// for generating a pipeline of CodeGen passes.
298   virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
299 
300   /// Add passes to the specified pass manager to get the specified file
301   /// emitted.  Typically this will involve several steps of code generation.
302   bool addPassesToEmitFile(
303       PassManagerBase &PM, raw_pwrite_stream &Out, CodeGenFileType FileType,
304       bool DisableVerify = true, AnalysisID StartBefore = nullptr,
305       AnalysisID StartAfter = nullptr, AnalysisID StopAfter = nullptr,
306       MachineFunctionInitializer *MFInitializer = nullptr) override;
307 
308   /// Add passes to the specified pass manager to get machine code emitted with
309   /// the MCJIT. This method returns true if machine code is not supported. It
310   /// fills the MCContext Ctx pointer which can be used to build custom
311   /// MCStreamer.
312   bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
313                          raw_pwrite_stream &OS,
314                          bool DisableVerify = true) override;
315 
316   /// Add MachineModuleInfo pass to pass manager.
317   MachineModuleInfo &addMachineModuleInfo(PassManagerBase &PM) const;
318 
319   /// Add MachineFunctionAnalysis pass to pass manager.
320   void addMachineFunctionAnalysis(PassManagerBase &PM,
321       MachineFunctionInitializer *MFInitializer) const;
322 };
323 
324 } // End llvm namespace
325 
326 #endif
327