1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/PHITransAddr.h"
25 #include "llvm/Analysis/OrderedBasicBlock.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PredIteratorCache.h"
35 #include "llvm/Support/Debug.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "memdep"
39 
40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
43 
44 STATISTIC(NumCacheNonLocalPtr,
45           "Number of fully cached non-local ptr responses");
46 STATISTIC(NumCacheDirtyNonLocalPtr,
47           "Number of cached, but dirty, non-local ptr responses");
48 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
49 STATISTIC(NumCacheCompleteNonLocalPtr,
50           "Number of block queries that were completely cached");
51 
52 // Limit for the number of instructions to scan in a block.
53 
54 static cl::opt<unsigned> BlockScanLimit(
55     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
56     cl::desc("The number of instructions to scan in a block in memory "
57              "dependency analysis (default = 100)"));
58 
59 static cl::opt<unsigned>
60     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
61                      cl::desc("The number of blocks to scan during memory "
62                               "dependency analysis (default = 1000)"));
63 
64 // Limit on the number of memdep results to process.
65 static const unsigned int NumResultsLimit = 100;
66 
67 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
68 ///
69 /// If the set becomes empty, remove Inst's entry.
70 template <typename KeyTy>
71 static void
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)72 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
73                      Instruction *Inst, KeyTy Val) {
74   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
75       ReverseMap.find(Inst);
76   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
77   bool Found = InstIt->second.erase(Val);
78   assert(Found && "Invalid reverse map!");
79   (void)Found;
80   if (InstIt->second.empty())
81     ReverseMap.erase(InstIt);
82 }
83 
84 /// If the given instruction references a specific memory location, fill in Loc
85 /// with the details, otherwise set Loc.Ptr to null.
86 ///
87 /// Returns a ModRefInfo value describing the general behavior of the
88 /// instruction.
GetLocation(const Instruction * Inst,MemoryLocation & Loc,const TargetLibraryInfo & TLI)89 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
90                               const TargetLibraryInfo &TLI) {
91   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
92     if (LI->isUnordered()) {
93       Loc = MemoryLocation::get(LI);
94       return MRI_Ref;
95     }
96     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
97       Loc = MemoryLocation::get(LI);
98       return MRI_ModRef;
99     }
100     Loc = MemoryLocation();
101     return MRI_ModRef;
102   }
103 
104   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
105     if (SI->isUnordered()) {
106       Loc = MemoryLocation::get(SI);
107       return MRI_Mod;
108     }
109     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
110       Loc = MemoryLocation::get(SI);
111       return MRI_ModRef;
112     }
113     Loc = MemoryLocation();
114     return MRI_ModRef;
115   }
116 
117   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
118     Loc = MemoryLocation::get(V);
119     return MRI_ModRef;
120   }
121 
122   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
123     // calls to free() deallocate the entire structure
124     Loc = MemoryLocation(CI->getArgOperand(0));
125     return MRI_Mod;
126   }
127 
128   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
129     AAMDNodes AAInfo;
130 
131     switch (II->getIntrinsicID()) {
132     case Intrinsic::lifetime_start:
133     case Intrinsic::lifetime_end:
134     case Intrinsic::invariant_start:
135       II->getAAMetadata(AAInfo);
136       Loc = MemoryLocation(
137           II->getArgOperand(1),
138           cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
139       // These intrinsics don't really modify the memory, but returning Mod
140       // will allow them to be handled conservatively.
141       return MRI_Mod;
142     case Intrinsic::invariant_end:
143       II->getAAMetadata(AAInfo);
144       Loc = MemoryLocation(
145           II->getArgOperand(2),
146           cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
147       // These intrinsics don't really modify the memory, but returning Mod
148       // will allow them to be handled conservatively.
149       return MRI_Mod;
150     default:
151       break;
152     }
153   }
154 
155   // Otherwise, just do the coarse-grained thing that always works.
156   if (Inst->mayWriteToMemory())
157     return MRI_ModRef;
158   if (Inst->mayReadFromMemory())
159     return MRI_Ref;
160   return MRI_NoModRef;
161 }
162 
163 /// Private helper for finding the local dependencies of a call site.
getCallSiteDependencyFrom(CallSite CS,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)164 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom(
165     CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
166     BasicBlock *BB) {
167   unsigned Limit = BlockScanLimit;
168 
169   // Walk backwards through the block, looking for dependencies
170   while (ScanIt != BB->begin()) {
171     // Limit the amount of scanning we do so we don't end up with quadratic
172     // running time on extreme testcases.
173     --Limit;
174     if (!Limit)
175       return MemDepResult::getUnknown();
176 
177     Instruction *Inst = &*--ScanIt;
178 
179     // If this inst is a memory op, get the pointer it accessed
180     MemoryLocation Loc;
181     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
182     if (Loc.Ptr) {
183       // A simple instruction.
184       if (AA.getModRefInfo(CS, Loc) != MRI_NoModRef)
185         return MemDepResult::getClobber(Inst);
186       continue;
187     }
188 
189     if (auto InstCS = CallSite(Inst)) {
190       // Debug intrinsics don't cause dependences.
191       if (isa<DbgInfoIntrinsic>(Inst))
192         continue;
193       // If these two calls do not interfere, look past it.
194       switch (AA.getModRefInfo(CS, InstCS)) {
195       case MRI_NoModRef:
196         // If the two calls are the same, return InstCS as a Def, so that
197         // CS can be found redundant and eliminated.
198         if (isReadOnlyCall && !(MR & MRI_Mod) &&
199             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
200           return MemDepResult::getDef(Inst);
201 
202         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
203         // keep scanning.
204         continue;
205       default:
206         return MemDepResult::getClobber(Inst);
207       }
208     }
209 
210     // If we could not obtain a pointer for the instruction and the instruction
211     // touches memory then assume that this is a dependency.
212     if (MR != MRI_NoModRef)
213       return MemDepResult::getClobber(Inst);
214   }
215 
216   // No dependence found.  If this is the entry block of the function, it is
217   // unknown, otherwise it is non-local.
218   if (BB != &BB->getParent()->getEntryBlock())
219     return MemDepResult::getNonLocal();
220   return MemDepResult::getNonFuncLocal();
221 }
222 
223 /// Return true if LI is a load that would fully overlap MemLoc if done as
224 /// a wider legal integer load.
225 ///
226 /// MemLocBase, MemLocOffset are lazily computed here the first time the
227 /// base/offs of memloc is needed.
isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation & MemLoc,const Value * & MemLocBase,int64_t & MemLocOffs,const LoadInst * LI)228 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc,
229                                                    const Value *&MemLocBase,
230                                                    int64_t &MemLocOffs,
231                                                    const LoadInst *LI) {
232   const DataLayout &DL = LI->getModule()->getDataLayout();
233 
234   // If we haven't already computed the base/offset of MemLoc, do so now.
235   if (!MemLocBase)
236     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
237 
238   unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
239       MemLocBase, MemLocOffs, MemLoc.Size, LI);
240   return Size != 0;
241 }
242 
getLoadLoadClobberFullWidthSize(const Value * MemLocBase,int64_t MemLocOffs,unsigned MemLocSize,const LoadInst * LI)243 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
244     const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
245     const LoadInst *LI) {
246   // We can only extend simple integer loads.
247   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
248     return 0;
249 
250   // Load widening is hostile to ThreadSanitizer: it may cause false positives
251   // or make the reports more cryptic (access sizes are wrong).
252   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
253     return 0;
254 
255   const DataLayout &DL = LI->getModule()->getDataLayout();
256 
257   // Get the base of this load.
258   int64_t LIOffs = 0;
259   const Value *LIBase =
260       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
261 
262   // If the two pointers are not based on the same pointer, we can't tell that
263   // they are related.
264   if (LIBase != MemLocBase)
265     return 0;
266 
267   // Okay, the two values are based on the same pointer, but returned as
268   // no-alias.  This happens when we have things like two byte loads at "P+1"
269   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
270   // alignment (or the largest native integer type) will allow us to load all
271   // the bits required by MemLoc.
272 
273   // If MemLoc is before LI, then no widening of LI will help us out.
274   if (MemLocOffs < LIOffs)
275     return 0;
276 
277   // Get the alignment of the load in bytes.  We assume that it is safe to load
278   // any legal integer up to this size without a problem.  For example, if we're
279   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
280   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
281   // to i16.
282   unsigned LoadAlign = LI->getAlignment();
283 
284   int64_t MemLocEnd = MemLocOffs + MemLocSize;
285 
286   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
287   if (LIOffs + LoadAlign < MemLocEnd)
288     return 0;
289 
290   // This is the size of the load to try.  Start with the next larger power of
291   // two.
292   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
293   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
294 
295   while (1) {
296     // If this load size is bigger than our known alignment or would not fit
297     // into a native integer register, then we fail.
298     if (NewLoadByteSize > LoadAlign ||
299         !DL.fitsInLegalInteger(NewLoadByteSize * 8))
300       return 0;
301 
302     if (LIOffs + NewLoadByteSize > MemLocEnd &&
303         LI->getParent()->getParent()->hasFnAttribute(
304             Attribute::SanitizeAddress))
305       // We will be reading past the location accessed by the original program.
306       // While this is safe in a regular build, Address Safety analysis tools
307       // may start reporting false warnings. So, don't do widening.
308       return 0;
309 
310     // If a load of this width would include all of MemLoc, then we succeed.
311     if (LIOffs + NewLoadByteSize >= MemLocEnd)
312       return NewLoadByteSize;
313 
314     NewLoadByteSize <<= 1;
315   }
316 }
317 
isVolatile(Instruction * Inst)318 static bool isVolatile(Instruction *Inst) {
319   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
320     return LI->isVolatile();
321   else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
322     return SI->isVolatile();
323   else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
324     return AI->isVolatile();
325   return false;
326 }
327 
getPointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst)328 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
329     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
330     BasicBlock *BB, Instruction *QueryInst) {
331 
332   if (QueryInst != nullptr) {
333     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
334       MemDepResult invariantGroupDependency =
335           getInvariantGroupPointerDependency(LI, BB);
336 
337       if (invariantGroupDependency.isDef())
338         return invariantGroupDependency;
339     }
340   }
341   return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst);
342 }
343 
344 MemDepResult
getInvariantGroupPointerDependency(LoadInst * LI,BasicBlock * BB)345 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
346                                                              BasicBlock *BB) {
347   Value *LoadOperand = LI->getPointerOperand();
348   // It's is not safe to walk the use list of global value, because function
349   // passes aren't allowed to look outside their functions.
350   if (isa<GlobalValue>(LoadOperand))
351     return MemDepResult::getUnknown();
352 
353   auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group);
354   if (!InvariantGroupMD)
355     return MemDepResult::getUnknown();
356 
357   MemDepResult Result = MemDepResult::getUnknown();
358   llvm::SmallSet<Value *, 14> Seen;
359   // Queue to process all pointers that are equivalent to load operand.
360   llvm::SmallVector<Value *, 8> LoadOperandsQueue;
361   LoadOperandsQueue.push_back(LoadOperand);
362   while (!LoadOperandsQueue.empty()) {
363     Value *Ptr = LoadOperandsQueue.pop_back_val();
364     if (isa<GlobalValue>(Ptr))
365       continue;
366 
367     if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) {
368       if (Seen.insert(BCI->getOperand(0)).second) {
369         LoadOperandsQueue.push_back(BCI->getOperand(0));
370       }
371     }
372 
373     for (Use &Us : Ptr->uses()) {
374       auto *U = dyn_cast<Instruction>(Us.getUser());
375       if (!U || U == LI || !DT.dominates(U, LI))
376         continue;
377 
378       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
379         if (Seen.insert(BCI).second) {
380           LoadOperandsQueue.push_back(BCI);
381         }
382         continue;
383       }
384       // If we hit load/store with the same invariant.group metadata (and the
385       // same pointer operand) we can assume that value pointed by pointer
386       // operand didn't change.
387       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB &&
388           U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD)
389         return MemDepResult::getDef(U);
390     }
391   }
392   return Result;
393 }
394 
getSimplePointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst)395 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
396     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
397     BasicBlock *BB, Instruction *QueryInst) {
398 
399   const Value *MemLocBase = nullptr;
400   int64_t MemLocOffset = 0;
401   unsigned Limit = BlockScanLimit;
402   bool isInvariantLoad = false;
403 
404   // We must be careful with atomic accesses, as they may allow another thread
405   //   to touch this location, clobbering it. We are conservative: if the
406   //   QueryInst is not a simple (non-atomic) memory access, we automatically
407   //   return getClobber.
408   // If it is simple, we know based on the results of
409   // "Compiler testing via a theory of sound optimisations in the C11/C++11
410   //   memory model" in PLDI 2013, that a non-atomic location can only be
411   //   clobbered between a pair of a release and an acquire action, with no
412   //   access to the location in between.
413   // Here is an example for giving the general intuition behind this rule.
414   // In the following code:
415   //   store x 0;
416   //   release action; [1]
417   //   acquire action; [4]
418   //   %val = load x;
419   // It is unsafe to replace %val by 0 because another thread may be running:
420   //   acquire action; [2]
421   //   store x 42;
422   //   release action; [3]
423   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
424   // being 42. A key property of this program however is that if either
425   // 1 or 4 were missing, there would be a race between the store of 42
426   // either the store of 0 or the load (making the whole program racy).
427   // The paper mentioned above shows that the same property is respected
428   // by every program that can detect any optimization of that kind: either
429   // it is racy (undefined) or there is a release followed by an acquire
430   // between the pair of accesses under consideration.
431 
432   // If the load is invariant, we "know" that it doesn't alias *any* write. We
433   // do want to respect mustalias results since defs are useful for value
434   // forwarding, but any mayalias write can be assumed to be noalias.
435   // Arguably, this logic should be pushed inside AliasAnalysis itself.
436   if (isLoad && QueryInst) {
437     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
438     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
439       isInvariantLoad = true;
440   }
441 
442   const DataLayout &DL = BB->getModule()->getDataLayout();
443 
444   // Create a numbered basic block to lazily compute and cache instruction
445   // positions inside a BB. This is used to provide fast queries for relative
446   // position between two instructions in a BB and can be used by
447   // AliasAnalysis::callCapturesBefore.
448   OrderedBasicBlock OBB(BB);
449 
450   // Return "true" if and only if the instruction I is either a non-simple
451   // load or a non-simple store.
452   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
453     if (auto *LI = dyn_cast<LoadInst>(I))
454       return !LI->isSimple();
455     if (auto *SI = dyn_cast<StoreInst>(I))
456       return !SI->isSimple();
457     return false;
458   };
459 
460   // Return "true" if I is not a load and not a store, but it does access
461   // memory.
462   auto isOtherMemAccess = [](Instruction *I) -> bool {
463     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
464   };
465 
466   // Walk backwards through the basic block, looking for dependencies.
467   while (ScanIt != BB->begin()) {
468     Instruction *Inst = &*--ScanIt;
469 
470     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
471       // Debug intrinsics don't (and can't) cause dependencies.
472       if (isa<DbgInfoIntrinsic>(II))
473         continue;
474 
475     // Limit the amount of scanning we do so we don't end up with quadratic
476     // running time on extreme testcases.
477     --Limit;
478     if (!Limit)
479       return MemDepResult::getUnknown();
480 
481     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
482       // If we reach a lifetime begin or end marker, then the query ends here
483       // because the value is undefined.
484       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
485         // FIXME: This only considers queries directly on the invariant-tagged
486         // pointer, not on query pointers that are indexed off of them.  It'd
487         // be nice to handle that at some point (the right approach is to use
488         // GetPointerBaseWithConstantOffset).
489         if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
490           return MemDepResult::getDef(II);
491         continue;
492       }
493     }
494 
495     // Values depend on loads if the pointers are must aliased.  This means
496     // that a load depends on another must aliased load from the same value.
497     // One exception is atomic loads: a value can depend on an atomic load that
498     // it does not alias with when this atomic load indicates that another
499     // thread may be accessing the location.
500     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
501 
502       // While volatile access cannot be eliminated, they do not have to clobber
503       // non-aliasing locations, as normal accesses, for example, can be safely
504       // reordered with volatile accesses.
505       if (LI->isVolatile()) {
506         if (!QueryInst)
507           // Original QueryInst *may* be volatile
508           return MemDepResult::getClobber(LI);
509         if (isVolatile(QueryInst))
510           // Ordering required if QueryInst is itself volatile
511           return MemDepResult::getClobber(LI);
512         // Otherwise, volatile doesn't imply any special ordering
513       }
514 
515       // Atomic loads have complications involved.
516       // A Monotonic (or higher) load is OK if the query inst is itself not
517       // atomic.
518       // FIXME: This is overly conservative.
519       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
520         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
521             isOtherMemAccess(QueryInst))
522           return MemDepResult::getClobber(LI);
523         if (LI->getOrdering() != AtomicOrdering::Monotonic)
524           return MemDepResult::getClobber(LI);
525       }
526 
527       MemoryLocation LoadLoc = MemoryLocation::get(LI);
528 
529       // If we found a pointer, check if it could be the same as our pointer.
530       AliasResult R = AA.alias(LoadLoc, MemLoc);
531 
532       if (isLoad) {
533         if (R == NoAlias) {
534           // If this is an over-aligned integer load (for example,
535           // "load i8* %P, align 4") see if it would obviously overlap with the
536           // queried location if widened to a larger load (e.g. if the queried
537           // location is 1 byte at P+1).  If so, return it as a load/load
538           // clobber result, allowing the client to decide to widen the load if
539           // it wants to.
540           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
541             if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
542                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
543                                                        MemLocOffset, LI))
544               return MemDepResult::getClobber(Inst);
545           }
546           continue;
547         }
548 
549         // Must aliased loads are defs of each other.
550         if (R == MustAlias)
551           return MemDepResult::getDef(Inst);
552 
553 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
554       // in terms of clobbering loads, but since it does this by looking
555       // at the clobbering load directly, it doesn't know about any
556       // phi translation that may have happened along the way.
557 
558         // If we have a partial alias, then return this as a clobber for the
559         // client to handle.
560         if (R == PartialAlias)
561           return MemDepResult::getClobber(Inst);
562 #endif
563 
564         // Random may-alias loads don't depend on each other without a
565         // dependence.
566         continue;
567       }
568 
569       // Stores don't depend on other no-aliased accesses.
570       if (R == NoAlias)
571         continue;
572 
573       // Stores don't alias loads from read-only memory.
574       if (AA.pointsToConstantMemory(LoadLoc))
575         continue;
576 
577       // Stores depend on may/must aliased loads.
578       return MemDepResult::getDef(Inst);
579     }
580 
581     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
582       // Atomic stores have complications involved.
583       // A Monotonic store is OK if the query inst is itself not atomic.
584       // FIXME: This is overly conservative.
585       if (!SI->isUnordered() && SI->isAtomic()) {
586         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
587             isOtherMemAccess(QueryInst))
588           return MemDepResult::getClobber(SI);
589         if (SI->getOrdering() != AtomicOrdering::Monotonic)
590           return MemDepResult::getClobber(SI);
591       }
592 
593       // FIXME: this is overly conservative.
594       // While volatile access cannot be eliminated, they do not have to clobber
595       // non-aliasing locations, as normal accesses can for example be reordered
596       // with volatile accesses.
597       if (SI->isVolatile())
598         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
599             isOtherMemAccess(QueryInst))
600           return MemDepResult::getClobber(SI);
601 
602       // If alias analysis can tell that this store is guaranteed to not modify
603       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
604       // the query pointer points to constant memory etc.
605       if (AA.getModRefInfo(SI, MemLoc) == MRI_NoModRef)
606         continue;
607 
608       // Ok, this store might clobber the query pointer.  Check to see if it is
609       // a must alias: in this case, we want to return this as a def.
610       MemoryLocation StoreLoc = MemoryLocation::get(SI);
611 
612       // If we found a pointer, check if it could be the same as our pointer.
613       AliasResult R = AA.alias(StoreLoc, MemLoc);
614 
615       if (R == NoAlias)
616         continue;
617       if (R == MustAlias)
618         return MemDepResult::getDef(Inst);
619       if (isInvariantLoad)
620         continue;
621       return MemDepResult::getClobber(Inst);
622     }
623 
624     // If this is an allocation, and if we know that the accessed pointer is to
625     // the allocation, return Def.  This means that there is no dependence and
626     // the access can be optimized based on that.  For example, a load could
627     // turn into undef.  Note that we can bypass the allocation itself when
628     // looking for a clobber in many cases; that's an alias property and is
629     // handled by BasicAA.
630     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
631       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
632       if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
633         return MemDepResult::getDef(Inst);
634     }
635 
636     if (isInvariantLoad)
637       continue;
638 
639     // A release fence requires that all stores complete before it, but does
640     // not prevent the reordering of following loads or stores 'before' the
641     // fence.  As a result, we look past it when finding a dependency for
642     // loads.  DSE uses this to find preceeding stores to delete and thus we
643     // can't bypass the fence if the query instruction is a store.
644     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
645       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
646         continue;
647 
648     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
649     ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
650     // If necessary, perform additional analysis.
651     if (MR == MRI_ModRef)
652       MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB);
653     switch (MR) {
654     case MRI_NoModRef:
655       // If the call has no effect on the queried pointer, just ignore it.
656       continue;
657     case MRI_Mod:
658       return MemDepResult::getClobber(Inst);
659     case MRI_Ref:
660       // If the call is known to never store to the pointer, and if this is a
661       // load query, we can safely ignore it (scan past it).
662       if (isLoad)
663         continue;
664     default:
665       // Otherwise, there is a potential dependence.  Return a clobber.
666       return MemDepResult::getClobber(Inst);
667     }
668   }
669 
670   // No dependence found.  If this is the entry block of the function, it is
671   // unknown, otherwise it is non-local.
672   if (BB != &BB->getParent()->getEntryBlock())
673     return MemDepResult::getNonLocal();
674   return MemDepResult::getNonFuncLocal();
675 }
676 
getDependency(Instruction * QueryInst)677 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
678   Instruction *ScanPos = QueryInst;
679 
680   // Check for a cached result
681   MemDepResult &LocalCache = LocalDeps[QueryInst];
682 
683   // If the cached entry is non-dirty, just return it.  Note that this depends
684   // on MemDepResult's default constructing to 'dirty'.
685   if (!LocalCache.isDirty())
686     return LocalCache;
687 
688   // Otherwise, if we have a dirty entry, we know we can start the scan at that
689   // instruction, which may save us some work.
690   if (Instruction *Inst = LocalCache.getInst()) {
691     ScanPos = Inst;
692 
693     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
694   }
695 
696   BasicBlock *QueryParent = QueryInst->getParent();
697 
698   // Do the scan.
699   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
700     // No dependence found.  If this is the entry block of the function, it is
701     // unknown, otherwise it is non-local.
702     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
703       LocalCache = MemDepResult::getNonLocal();
704     else
705       LocalCache = MemDepResult::getNonFuncLocal();
706   } else {
707     MemoryLocation MemLoc;
708     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
709     if (MemLoc.Ptr) {
710       // If we can do a pointer scan, make it happen.
711       bool isLoad = !(MR & MRI_Mod);
712       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
713         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
714 
715       LocalCache = getPointerDependencyFrom(
716           MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
717     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
718       CallSite QueryCS(QueryInst);
719       bool isReadOnly = AA.onlyReadsMemory(QueryCS);
720       LocalCache = getCallSiteDependencyFrom(
721           QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
722     } else
723       // Non-memory instruction.
724       LocalCache = MemDepResult::getUnknown();
725   }
726 
727   // Remember the result!
728   if (Instruction *I = LocalCache.getInst())
729     ReverseLocalDeps[I].insert(QueryInst);
730 
731   return LocalCache;
732 }
733 
734 #ifndef NDEBUG
735 /// This method is used when -debug is specified to verify that cache arrays
736 /// are properly kept sorted.
AssertSorted(MemoryDependenceResults::NonLocalDepInfo & Cache,int Count=-1)737 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
738                          int Count = -1) {
739   if (Count == -1)
740     Count = Cache.size();
741   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
742          "Cache isn't sorted!");
743 }
744 #endif
745 
746 const MemoryDependenceResults::NonLocalDepInfo &
getNonLocalCallDependency(CallSite QueryCS)747 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) {
748   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
749          "getNonLocalCallDependency should only be used on calls with "
750          "non-local deps!");
751   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
752   NonLocalDepInfo &Cache = CacheP.first;
753 
754   // This is the set of blocks that need to be recomputed.  In the cached case,
755   // this can happen due to instructions being deleted etc. In the uncached
756   // case, this starts out as the set of predecessors we care about.
757   SmallVector<BasicBlock *, 32> DirtyBlocks;
758 
759   if (!Cache.empty()) {
760     // Okay, we have a cache entry.  If we know it is not dirty, just return it
761     // with no computation.
762     if (!CacheP.second) {
763       ++NumCacheNonLocal;
764       return Cache;
765     }
766 
767     // If we already have a partially computed set of results, scan them to
768     // determine what is dirty, seeding our initial DirtyBlocks worklist.
769     for (auto &Entry : Cache)
770       if (Entry.getResult().isDirty())
771         DirtyBlocks.push_back(Entry.getBB());
772 
773     // Sort the cache so that we can do fast binary search lookups below.
774     std::sort(Cache.begin(), Cache.end());
775 
776     ++NumCacheDirtyNonLocal;
777     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
778     //     << Cache.size() << " cached: " << *QueryInst;
779   } else {
780     // Seed DirtyBlocks with each of the preds of QueryInst's block.
781     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
782     for (BasicBlock *Pred : PredCache.get(QueryBB))
783       DirtyBlocks.push_back(Pred);
784     ++NumUncacheNonLocal;
785   }
786 
787   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
788   bool isReadonlyCall = AA.onlyReadsMemory(QueryCS);
789 
790   SmallPtrSet<BasicBlock *, 32> Visited;
791 
792   unsigned NumSortedEntries = Cache.size();
793   DEBUG(AssertSorted(Cache));
794 
795   // Iterate while we still have blocks to update.
796   while (!DirtyBlocks.empty()) {
797     BasicBlock *DirtyBB = DirtyBlocks.back();
798     DirtyBlocks.pop_back();
799 
800     // Already processed this block?
801     if (!Visited.insert(DirtyBB).second)
802       continue;
803 
804     // Do a binary search to see if we already have an entry for this block in
805     // the cache set.  If so, find it.
806     DEBUG(AssertSorted(Cache, NumSortedEntries));
807     NonLocalDepInfo::iterator Entry =
808         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
809                          NonLocalDepEntry(DirtyBB));
810     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
811       --Entry;
812 
813     NonLocalDepEntry *ExistingResult = nullptr;
814     if (Entry != Cache.begin() + NumSortedEntries &&
815         Entry->getBB() == DirtyBB) {
816       // If we already have an entry, and if it isn't already dirty, the block
817       // is done.
818       if (!Entry->getResult().isDirty())
819         continue;
820 
821       // Otherwise, remember this slot so we can update the value.
822       ExistingResult = &*Entry;
823     }
824 
825     // If the dirty entry has a pointer, start scanning from it so we don't have
826     // to rescan the entire block.
827     BasicBlock::iterator ScanPos = DirtyBB->end();
828     if (ExistingResult) {
829       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
830         ScanPos = Inst->getIterator();
831         // We're removing QueryInst's use of Inst.
832         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
833                              QueryCS.getInstruction());
834       }
835     }
836 
837     // Find out if this block has a local dependency for QueryInst.
838     MemDepResult Dep;
839 
840     if (ScanPos != DirtyBB->begin()) {
841       Dep =
842           getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB);
843     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
844       // No dependence found.  If this is the entry block of the function, it is
845       // a clobber, otherwise it is unknown.
846       Dep = MemDepResult::getNonLocal();
847     } else {
848       Dep = MemDepResult::getNonFuncLocal();
849     }
850 
851     // If we had a dirty entry for the block, update it.  Otherwise, just add
852     // a new entry.
853     if (ExistingResult)
854       ExistingResult->setResult(Dep);
855     else
856       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
857 
858     // If the block has a dependency (i.e. it isn't completely transparent to
859     // the value), remember the association!
860     if (!Dep.isNonLocal()) {
861       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
862       // update this when we remove instructions.
863       if (Instruction *Inst = Dep.getInst())
864         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
865     } else {
866 
867       // If the block *is* completely transparent to the load, we need to check
868       // the predecessors of this block.  Add them to our worklist.
869       for (BasicBlock *Pred : PredCache.get(DirtyBB))
870         DirtyBlocks.push_back(Pred);
871     }
872   }
873 
874   return Cache;
875 }
876 
getNonLocalPointerDependency(Instruction * QueryInst,SmallVectorImpl<NonLocalDepResult> & Result)877 void MemoryDependenceResults::getNonLocalPointerDependency(
878     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
879   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
880   bool isLoad = isa<LoadInst>(QueryInst);
881   BasicBlock *FromBB = QueryInst->getParent();
882   assert(FromBB);
883 
884   assert(Loc.Ptr->getType()->isPointerTy() &&
885          "Can't get pointer deps of a non-pointer!");
886   Result.clear();
887 
888   // This routine does not expect to deal with volatile instructions.
889   // Doing so would require piping through the QueryInst all the way through.
890   // TODO: volatiles can't be elided, but they can be reordered with other
891   // non-volatile accesses.
892 
893   // We currently give up on any instruction which is ordered, but we do handle
894   // atomic instructions which are unordered.
895   // TODO: Handle ordered instructions
896   auto isOrdered = [](Instruction *Inst) {
897     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
898       return !LI->isUnordered();
899     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
900       return !SI->isUnordered();
901     }
902     return false;
903   };
904   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
905     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
906                                        const_cast<Value *>(Loc.Ptr)));
907     return;
908   }
909   const DataLayout &DL = FromBB->getModule()->getDataLayout();
910   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
911 
912   // This is the set of blocks we've inspected, and the pointer we consider in
913   // each block.  Because of critical edges, we currently bail out if querying
914   // a block with multiple different pointers.  This can happen during PHI
915   // translation.
916   DenseMap<BasicBlock *, Value *> Visited;
917   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
918                                    Result, Visited, true))
919     return;
920   Result.clear();
921   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
922                                      const_cast<Value *>(Loc.Ptr)));
923 }
924 
925 /// Compute the memdep value for BB with Pointer/PointeeSize using either
926 /// cached information in Cache or by doing a lookup (which may use dirty cache
927 /// info if available).
928 ///
929 /// If we do a lookup, add the result to the cache.
GetNonLocalInfoForBlock(Instruction * QueryInst,const MemoryLocation & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries)930 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
931     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
932     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
933 
934   // Do a binary search to see if we already have an entry for this block in
935   // the cache set.  If so, find it.
936   NonLocalDepInfo::iterator Entry = std::upper_bound(
937       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
938   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
939     --Entry;
940 
941   NonLocalDepEntry *ExistingResult = nullptr;
942   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
943     ExistingResult = &*Entry;
944 
945   // If we have a cached entry, and it is non-dirty, use it as the value for
946   // this dependency.
947   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
948     ++NumCacheNonLocalPtr;
949     return ExistingResult->getResult();
950   }
951 
952   // Otherwise, we have to scan for the value.  If we have a dirty cache
953   // entry, start scanning from its position, otherwise we scan from the end
954   // of the block.
955   BasicBlock::iterator ScanPos = BB->end();
956   if (ExistingResult && ExistingResult->getResult().getInst()) {
957     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
958            "Instruction invalidated?");
959     ++NumCacheDirtyNonLocalPtr;
960     ScanPos = ExistingResult->getResult().getInst()->getIterator();
961 
962     // Eliminating the dirty entry from 'Cache', so update the reverse info.
963     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
964     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
965   } else {
966     ++NumUncacheNonLocalPtr;
967   }
968 
969   // Scan the block for the dependency.
970   MemDepResult Dep =
971       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
972 
973   // If we had a dirty entry for the block, update it.  Otherwise, just add
974   // a new entry.
975   if (ExistingResult)
976     ExistingResult->setResult(Dep);
977   else
978     Cache->push_back(NonLocalDepEntry(BB, Dep));
979 
980   // If the block has a dependency (i.e. it isn't completely transparent to
981   // the value), remember the reverse association because we just added it
982   // to Cache!
983   if (!Dep.isDef() && !Dep.isClobber())
984     return Dep;
985 
986   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
987   // update MemDep when we remove instructions.
988   Instruction *Inst = Dep.getInst();
989   assert(Inst && "Didn't depend on anything?");
990   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
991   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
992   return Dep;
993 }
994 
995 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
996 /// array that are already properly ordered.
997 ///
998 /// This is optimized for the case when only a few entries are added.
999 static void
SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo & Cache,unsigned NumSortedEntries)1000 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1001                          unsigned NumSortedEntries) {
1002   switch (Cache.size() - NumSortedEntries) {
1003   case 0:
1004     // done, no new entries.
1005     break;
1006   case 2: {
1007     // Two new entries, insert the last one into place.
1008     NonLocalDepEntry Val = Cache.back();
1009     Cache.pop_back();
1010     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1011         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1012     Cache.insert(Entry, Val);
1013     // FALL THROUGH.
1014   }
1015   case 1:
1016     // One new entry, Just insert the new value at the appropriate position.
1017     if (Cache.size() != 1) {
1018       NonLocalDepEntry Val = Cache.back();
1019       Cache.pop_back();
1020       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1021           std::upper_bound(Cache.begin(), Cache.end(), Val);
1022       Cache.insert(Entry, Val);
1023     }
1024     break;
1025   default:
1026     // Added many values, do a full scale sort.
1027     std::sort(Cache.begin(), Cache.end());
1028     break;
1029   }
1030 }
1031 
1032 /// Perform a dependency query based on pointer/pointeesize starting at the end
1033 /// of StartBB.
1034 ///
1035 /// Add any clobber/def results to the results vector and keep track of which
1036 /// blocks are visited in 'Visited'.
1037 ///
1038 /// This has special behavior for the first block queries (when SkipFirstBlock
1039 /// is true).  In this special case, it ignores the contents of the specified
1040 /// block and starts returning dependence info for its predecessors.
1041 ///
1042 /// This function returns true on success, or false to indicate that it could
1043 /// not compute dependence information for some reason.  This should be treated
1044 /// as a clobber dependence on the first instruction in the predecessor block.
getNonLocalPointerDepFromBB(Instruction * QueryInst,const PHITransAddr & Pointer,const MemoryLocation & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock)1045 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1046     Instruction *QueryInst, const PHITransAddr &Pointer,
1047     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1048     SmallVectorImpl<NonLocalDepResult> &Result,
1049     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1050   // Look up the cached info for Pointer.
1051   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1052 
1053   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1054   // CacheKey, this value will be inserted as the associated value. Otherwise,
1055   // it'll be ignored, and we'll have to check to see if the cached size and
1056   // aa tags are consistent with the current query.
1057   NonLocalPointerInfo InitialNLPI;
1058   InitialNLPI.Size = Loc.Size;
1059   InitialNLPI.AATags = Loc.AATags;
1060 
1061   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1062   // already have one.
1063   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1064       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1065   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1066 
1067   // If we already have a cache entry for this CacheKey, we may need to do some
1068   // work to reconcile the cache entry and the current query.
1069   if (!Pair.second) {
1070     if (CacheInfo->Size < Loc.Size) {
1071       // The query's Size is greater than the cached one. Throw out the
1072       // cached data and proceed with the query at the greater size.
1073       CacheInfo->Pair = BBSkipFirstBlockPair();
1074       CacheInfo->Size = Loc.Size;
1075       for (auto &Entry : CacheInfo->NonLocalDeps)
1076         if (Instruction *Inst = Entry.getResult().getInst())
1077           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1078       CacheInfo->NonLocalDeps.clear();
1079     } else if (CacheInfo->Size > Loc.Size) {
1080       // This query's Size is less than the cached one. Conservatively restart
1081       // the query using the greater size.
1082       return getNonLocalPointerDepFromBB(
1083           QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1084           StartBB, Result, Visited, SkipFirstBlock);
1085     }
1086 
1087     // If the query's AATags are inconsistent with the cached one,
1088     // conservatively throw out the cached data and restart the query with
1089     // no tag if needed.
1090     if (CacheInfo->AATags != Loc.AATags) {
1091       if (CacheInfo->AATags) {
1092         CacheInfo->Pair = BBSkipFirstBlockPair();
1093         CacheInfo->AATags = AAMDNodes();
1094         for (auto &Entry : CacheInfo->NonLocalDeps)
1095           if (Instruction *Inst = Entry.getResult().getInst())
1096             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1097         CacheInfo->NonLocalDeps.clear();
1098       }
1099       if (Loc.AATags)
1100         return getNonLocalPointerDepFromBB(
1101             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1102             Visited, SkipFirstBlock);
1103     }
1104   }
1105 
1106   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1107 
1108   // If we have valid cached information for exactly the block we are
1109   // investigating, just return it with no recomputation.
1110   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1111     // We have a fully cached result for this query then we can just return the
1112     // cached results and populate the visited set.  However, we have to verify
1113     // that we don't already have conflicting results for these blocks.  Check
1114     // to ensure that if a block in the results set is in the visited set that
1115     // it was for the same pointer query.
1116     if (!Visited.empty()) {
1117       for (auto &Entry : *Cache) {
1118         DenseMap<BasicBlock *, Value *>::iterator VI =
1119             Visited.find(Entry.getBB());
1120         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1121           continue;
1122 
1123         // We have a pointer mismatch in a block.  Just return false, saying
1124         // that something was clobbered in this result.  We could also do a
1125         // non-fully cached query, but there is little point in doing this.
1126         return false;
1127       }
1128     }
1129 
1130     Value *Addr = Pointer.getAddr();
1131     for (auto &Entry : *Cache) {
1132       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1133       if (Entry.getResult().isNonLocal()) {
1134         continue;
1135       }
1136 
1137       if (DT.isReachableFromEntry(Entry.getBB())) {
1138         Result.push_back(
1139             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1140       }
1141     }
1142     ++NumCacheCompleteNonLocalPtr;
1143     return true;
1144   }
1145 
1146   // Otherwise, either this is a new block, a block with an invalid cache
1147   // pointer or one that we're about to invalidate by putting more info into it
1148   // than its valid cache info.  If empty, the result will be valid cache info,
1149   // otherwise it isn't.
1150   if (Cache->empty())
1151     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1152   else
1153     CacheInfo->Pair = BBSkipFirstBlockPair();
1154 
1155   SmallVector<BasicBlock *, 32> Worklist;
1156   Worklist.push_back(StartBB);
1157 
1158   // PredList used inside loop.
1159   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1160 
1161   // Keep track of the entries that we know are sorted.  Previously cached
1162   // entries will all be sorted.  The entries we add we only sort on demand (we
1163   // don't insert every element into its sorted position).  We know that we
1164   // won't get any reuse from currently inserted values, because we don't
1165   // revisit blocks after we insert info for them.
1166   unsigned NumSortedEntries = Cache->size();
1167   unsigned WorklistEntries = BlockNumberLimit;
1168   bool GotWorklistLimit = false;
1169   DEBUG(AssertSorted(*Cache));
1170 
1171   while (!Worklist.empty()) {
1172     BasicBlock *BB = Worklist.pop_back_val();
1173 
1174     // If we do process a large number of blocks it becomes very expensive and
1175     // likely it isn't worth worrying about
1176     if (Result.size() > NumResultsLimit) {
1177       Worklist.clear();
1178       // Sort it now (if needed) so that recursive invocations of
1179       // getNonLocalPointerDepFromBB and other routines that could reuse the
1180       // cache value will only see properly sorted cache arrays.
1181       if (Cache && NumSortedEntries != Cache->size()) {
1182         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1183       }
1184       // Since we bail out, the "Cache" set won't contain all of the
1185       // results for the query.  This is ok (we can still use it to accelerate
1186       // specific block queries) but we can't do the fastpath "return all
1187       // results from the set".  Clear out the indicator for this.
1188       CacheInfo->Pair = BBSkipFirstBlockPair();
1189       return false;
1190     }
1191 
1192     // Skip the first block if we have it.
1193     if (!SkipFirstBlock) {
1194       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1195       // been here.
1196       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1197 
1198       // Get the dependency info for Pointer in BB.  If we have cached
1199       // information, we will use it, otherwise we compute it.
1200       DEBUG(AssertSorted(*Cache, NumSortedEntries));
1201       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1202                                                  Cache, NumSortedEntries);
1203 
1204       // If we got a Def or Clobber, add this to the list of results.
1205       if (!Dep.isNonLocal()) {
1206         if (DT.isReachableFromEntry(BB)) {
1207           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1208           continue;
1209         }
1210       }
1211     }
1212 
1213     // If 'Pointer' is an instruction defined in this block, then we need to do
1214     // phi translation to change it into a value live in the predecessor block.
1215     // If not, we just add the predecessors to the worklist and scan them with
1216     // the same Pointer.
1217     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1218       SkipFirstBlock = false;
1219       SmallVector<BasicBlock *, 16> NewBlocks;
1220       for (BasicBlock *Pred : PredCache.get(BB)) {
1221         // Verify that we haven't looked at this block yet.
1222         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1223             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1224         if (InsertRes.second) {
1225           // First time we've looked at *PI.
1226           NewBlocks.push_back(Pred);
1227           continue;
1228         }
1229 
1230         // If we have seen this block before, but it was with a different
1231         // pointer then we have a phi translation failure and we have to treat
1232         // this as a clobber.
1233         if (InsertRes.first->second != Pointer.getAddr()) {
1234           // Make sure to clean up the Visited map before continuing on to
1235           // PredTranslationFailure.
1236           for (unsigned i = 0; i < NewBlocks.size(); i++)
1237             Visited.erase(NewBlocks[i]);
1238           goto PredTranslationFailure;
1239         }
1240       }
1241       if (NewBlocks.size() > WorklistEntries) {
1242         // Make sure to clean up the Visited map before continuing on to
1243         // PredTranslationFailure.
1244         for (unsigned i = 0; i < NewBlocks.size(); i++)
1245           Visited.erase(NewBlocks[i]);
1246         GotWorklistLimit = true;
1247         goto PredTranslationFailure;
1248       }
1249       WorklistEntries -= NewBlocks.size();
1250       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1251       continue;
1252     }
1253 
1254     // We do need to do phi translation, if we know ahead of time we can't phi
1255     // translate this value, don't even try.
1256     if (!Pointer.IsPotentiallyPHITranslatable())
1257       goto PredTranslationFailure;
1258 
1259     // We may have added values to the cache list before this PHI translation.
1260     // If so, we haven't done anything to ensure that the cache remains sorted.
1261     // Sort it now (if needed) so that recursive invocations of
1262     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1263     // value will only see properly sorted cache arrays.
1264     if (Cache && NumSortedEntries != Cache->size()) {
1265       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1266       NumSortedEntries = Cache->size();
1267     }
1268     Cache = nullptr;
1269 
1270     PredList.clear();
1271     for (BasicBlock *Pred : PredCache.get(BB)) {
1272       PredList.push_back(std::make_pair(Pred, Pointer));
1273 
1274       // Get the PHI translated pointer in this predecessor.  This can fail if
1275       // not translatable, in which case the getAddr() returns null.
1276       PHITransAddr &PredPointer = PredList.back().second;
1277       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1278       Value *PredPtrVal = PredPointer.getAddr();
1279 
1280       // Check to see if we have already visited this pred block with another
1281       // pointer.  If so, we can't do this lookup.  This failure can occur
1282       // with PHI translation when a critical edge exists and the PHI node in
1283       // the successor translates to a pointer value different than the
1284       // pointer the block was first analyzed with.
1285       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1286           Visited.insert(std::make_pair(Pred, PredPtrVal));
1287 
1288       if (!InsertRes.second) {
1289         // We found the pred; take it off the list of preds to visit.
1290         PredList.pop_back();
1291 
1292         // If the predecessor was visited with PredPtr, then we already did
1293         // the analysis and can ignore it.
1294         if (InsertRes.first->second == PredPtrVal)
1295           continue;
1296 
1297         // Otherwise, the block was previously analyzed with a different
1298         // pointer.  We can't represent the result of this case, so we just
1299         // treat this as a phi translation failure.
1300 
1301         // Make sure to clean up the Visited map before continuing on to
1302         // PredTranslationFailure.
1303         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1304           Visited.erase(PredList[i].first);
1305 
1306         goto PredTranslationFailure;
1307       }
1308     }
1309 
1310     // Actually process results here; this need to be a separate loop to avoid
1311     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1312     // any results for.  (getNonLocalPointerDepFromBB will modify our
1313     // datastructures in ways the code after the PredTranslationFailure label
1314     // doesn't expect.)
1315     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1316       BasicBlock *Pred = PredList[i].first;
1317       PHITransAddr &PredPointer = PredList[i].second;
1318       Value *PredPtrVal = PredPointer.getAddr();
1319 
1320       bool CanTranslate = true;
1321       // If PHI translation was unable to find an available pointer in this
1322       // predecessor, then we have to assume that the pointer is clobbered in
1323       // that predecessor.  We can still do PRE of the load, which would insert
1324       // a computation of the pointer in this predecessor.
1325       if (!PredPtrVal)
1326         CanTranslate = false;
1327 
1328       // FIXME: it is entirely possible that PHI translating will end up with
1329       // the same value.  Consider PHI translating something like:
1330       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1331       // to recurse here, pedantically speaking.
1332 
1333       // If getNonLocalPointerDepFromBB fails here, that means the cached
1334       // result conflicted with the Visited list; we have to conservatively
1335       // assume it is unknown, but this also does not block PRE of the load.
1336       if (!CanTranslate ||
1337           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1338                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1339                                       Pred, Result, Visited)) {
1340         // Add the entry to the Result list.
1341         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1342         Result.push_back(Entry);
1343 
1344         // Since we had a phi translation failure, the cache for CacheKey won't
1345         // include all of the entries that we need to immediately satisfy future
1346         // queries.  Mark this in NonLocalPointerDeps by setting the
1347         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1348         // cached value to do more work but not miss the phi trans failure.
1349         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1350         NLPI.Pair = BBSkipFirstBlockPair();
1351         continue;
1352       }
1353     }
1354 
1355     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1356     CacheInfo = &NonLocalPointerDeps[CacheKey];
1357     Cache = &CacheInfo->NonLocalDeps;
1358     NumSortedEntries = Cache->size();
1359 
1360     // Since we did phi translation, the "Cache" set won't contain all of the
1361     // results for the query.  This is ok (we can still use it to accelerate
1362     // specific block queries) but we can't do the fastpath "return all
1363     // results from the set"  Clear out the indicator for this.
1364     CacheInfo->Pair = BBSkipFirstBlockPair();
1365     SkipFirstBlock = false;
1366     continue;
1367 
1368   PredTranslationFailure:
1369     // The following code is "failure"; we can't produce a sane translation
1370     // for the given block.  It assumes that we haven't modified any of
1371     // our datastructures while processing the current block.
1372 
1373     if (!Cache) {
1374       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1375       CacheInfo = &NonLocalPointerDeps[CacheKey];
1376       Cache = &CacheInfo->NonLocalDeps;
1377       NumSortedEntries = Cache->size();
1378     }
1379 
1380     // Since we failed phi translation, the "Cache" set won't contain all of the
1381     // results for the query.  This is ok (we can still use it to accelerate
1382     // specific block queries) but we can't do the fastpath "return all
1383     // results from the set".  Clear out the indicator for this.
1384     CacheInfo->Pair = BBSkipFirstBlockPair();
1385 
1386     // If *nothing* works, mark the pointer as unknown.
1387     //
1388     // If this is the magic first block, return this as a clobber of the whole
1389     // incoming value.  Since we can't phi translate to one of the predecessors,
1390     // we have to bail out.
1391     if (SkipFirstBlock)
1392       return false;
1393 
1394     bool foundBlock = false;
1395     for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1396       if (I.getBB() != BB)
1397         continue;
1398 
1399       assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1400               !DT.isReachableFromEntry(BB)) &&
1401              "Should only be here with transparent block");
1402       foundBlock = true;
1403       I.setResult(MemDepResult::getUnknown());
1404       Result.push_back(
1405           NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1406       break;
1407     }
1408     (void)foundBlock; (void)GotWorklistLimit;
1409     assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1410   }
1411 
1412   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1413   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1414   DEBUG(AssertSorted(*Cache));
1415   return true;
1416 }
1417 
1418 /// If P exists in CachedNonLocalPointerInfo, remove it.
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P)1419 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1420     ValueIsLoadPair P) {
1421   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1422   if (It == NonLocalPointerDeps.end())
1423     return;
1424 
1425   // Remove all of the entries in the BB->val map.  This involves removing
1426   // instructions from the reverse map.
1427   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1428 
1429   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1430     Instruction *Target = PInfo[i].getResult().getInst();
1431     if (!Target)
1432       continue; // Ignore non-local dep results.
1433     assert(Target->getParent() == PInfo[i].getBB());
1434 
1435     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1436     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1437   }
1438 
1439   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1440   NonLocalPointerDeps.erase(It);
1441 }
1442 
invalidateCachedPointerInfo(Value * Ptr)1443 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1444   // If Ptr isn't really a pointer, just ignore it.
1445   if (!Ptr->getType()->isPointerTy())
1446     return;
1447   // Flush store info for the pointer.
1448   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1449   // Flush load info for the pointer.
1450   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1451 }
1452 
invalidateCachedPredecessors()1453 void MemoryDependenceResults::invalidateCachedPredecessors() {
1454   PredCache.clear();
1455 }
1456 
removeInstruction(Instruction * RemInst)1457 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1458   // Walk through the Non-local dependencies, removing this one as the value
1459   // for any cached queries.
1460   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1461   if (NLDI != NonLocalDeps.end()) {
1462     NonLocalDepInfo &BlockMap = NLDI->second.first;
1463     for (auto &Entry : BlockMap)
1464       if (Instruction *Inst = Entry.getResult().getInst())
1465         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1466     NonLocalDeps.erase(NLDI);
1467   }
1468 
1469   // If we have a cached local dependence query for this instruction, remove it.
1470   //
1471   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1472   if (LocalDepEntry != LocalDeps.end()) {
1473     // Remove us from DepInst's reverse set now that the local dep info is gone.
1474     if (Instruction *Inst = LocalDepEntry->second.getInst())
1475       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1476 
1477     // Remove this local dependency info.
1478     LocalDeps.erase(LocalDepEntry);
1479   }
1480 
1481   // If we have any cached pointer dependencies on this instruction, remove
1482   // them.  If the instruction has non-pointer type, then it can't be a pointer
1483   // base.
1484 
1485   // Remove it from both the load info and the store info.  The instruction
1486   // can't be in either of these maps if it is non-pointer.
1487   if (RemInst->getType()->isPointerTy()) {
1488     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1489     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1490   }
1491 
1492   // Loop over all of the things that depend on the instruction we're removing.
1493   //
1494   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1495 
1496   // If we find RemInst as a clobber or Def in any of the maps for other values,
1497   // we need to replace its entry with a dirty version of the instruction after
1498   // it.  If RemInst is a terminator, we use a null dirty value.
1499   //
1500   // Using a dirty version of the instruction after RemInst saves having to scan
1501   // the entire block to get to this point.
1502   MemDepResult NewDirtyVal;
1503   if (!RemInst->isTerminator())
1504     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1505 
1506   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1507   if (ReverseDepIt != ReverseLocalDeps.end()) {
1508     // RemInst can't be the terminator if it has local stuff depending on it.
1509     assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1510            "Nothing can locally depend on a terminator");
1511 
1512     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1513       assert(InstDependingOnRemInst != RemInst &&
1514              "Already removed our local dep info");
1515 
1516       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1517 
1518       // Make sure to remember that new things depend on NewDepInst.
1519       assert(NewDirtyVal.getInst() &&
1520              "There is no way something else can have "
1521              "a local dep on this if it is a terminator!");
1522       ReverseDepsToAdd.push_back(
1523           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1524     }
1525 
1526     ReverseLocalDeps.erase(ReverseDepIt);
1527 
1528     // Add new reverse deps after scanning the set, to avoid invalidating the
1529     // 'ReverseDeps' reference.
1530     while (!ReverseDepsToAdd.empty()) {
1531       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1532           ReverseDepsToAdd.back().second);
1533       ReverseDepsToAdd.pop_back();
1534     }
1535   }
1536 
1537   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1538   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1539     for (Instruction *I : ReverseDepIt->second) {
1540       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1541 
1542       PerInstNLInfo &INLD = NonLocalDeps[I];
1543       // The information is now dirty!
1544       INLD.second = true;
1545 
1546       for (auto &Entry : INLD.first) {
1547         if (Entry.getResult().getInst() != RemInst)
1548           continue;
1549 
1550         // Convert to a dirty entry for the subsequent instruction.
1551         Entry.setResult(NewDirtyVal);
1552 
1553         if (Instruction *NextI = NewDirtyVal.getInst())
1554           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1555       }
1556     }
1557 
1558     ReverseNonLocalDeps.erase(ReverseDepIt);
1559 
1560     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1561     while (!ReverseDepsToAdd.empty()) {
1562       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1563           ReverseDepsToAdd.back().second);
1564       ReverseDepsToAdd.pop_back();
1565     }
1566   }
1567 
1568   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1569   // value in the NonLocalPointerDeps info.
1570   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1571       ReverseNonLocalPtrDeps.find(RemInst);
1572   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1573     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1574         ReversePtrDepsToAdd;
1575 
1576     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1577       assert(P.getPointer() != RemInst &&
1578              "Already removed NonLocalPointerDeps info for RemInst");
1579 
1580       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1581 
1582       // The cache is not valid for any specific block anymore.
1583       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1584 
1585       // Update any entries for RemInst to use the instruction after it.
1586       for (auto &Entry : NLPDI) {
1587         if (Entry.getResult().getInst() != RemInst)
1588           continue;
1589 
1590         // Convert to a dirty entry for the subsequent instruction.
1591         Entry.setResult(NewDirtyVal);
1592 
1593         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1594           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1595       }
1596 
1597       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1598       // subsequent value may invalidate the sortedness.
1599       std::sort(NLPDI.begin(), NLPDI.end());
1600     }
1601 
1602     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1603 
1604     while (!ReversePtrDepsToAdd.empty()) {
1605       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1606           ReversePtrDepsToAdd.back().second);
1607       ReversePtrDepsToAdd.pop_back();
1608     }
1609   }
1610 
1611   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1612   DEBUG(verifyRemoved(RemInst));
1613 }
1614 
1615 /// Verify that the specified instruction does not occur in our internal data
1616 /// structures.
1617 ///
1618 /// This function verifies by asserting in debug builds.
verifyRemoved(Instruction * D) const1619 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1620 #ifndef NDEBUG
1621   for (const auto &DepKV : LocalDeps) {
1622     assert(DepKV.first != D && "Inst occurs in data structures");
1623     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1624   }
1625 
1626   for (const auto &DepKV : NonLocalPointerDeps) {
1627     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1628     for (const auto &Entry : DepKV.second.NonLocalDeps)
1629       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1630   }
1631 
1632   for (const auto &DepKV : NonLocalDeps) {
1633     assert(DepKV.first != D && "Inst occurs in data structures");
1634     const PerInstNLInfo &INLD = DepKV.second;
1635     for (const auto &Entry : INLD.first)
1636       assert(Entry.getResult().getInst() != D &&
1637              "Inst occurs in data structures");
1638   }
1639 
1640   for (const auto &DepKV : ReverseLocalDeps) {
1641     assert(DepKV.first != D && "Inst occurs in data structures");
1642     for (Instruction *Inst : DepKV.second)
1643       assert(Inst != D && "Inst occurs in data structures");
1644   }
1645 
1646   for (const auto &DepKV : ReverseNonLocalDeps) {
1647     assert(DepKV.first != D && "Inst occurs in data structures");
1648     for (Instruction *Inst : DepKV.second)
1649       assert(Inst != D && "Inst occurs in data structures");
1650   }
1651 
1652   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1653     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1654 
1655     for (ValueIsLoadPair P : DepKV.second)
1656       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1657              "Inst occurs in ReverseNonLocalPtrDeps map");
1658   }
1659 #endif
1660 }
1661 
1662 char MemoryDependenceAnalysis::PassID;
1663 
1664 MemoryDependenceResults
run(Function & F,AnalysisManager<Function> & AM)1665 MemoryDependenceAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
1666   auto &AA = AM.getResult<AAManager>(F);
1667   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1668   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1669   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1670   return MemoryDependenceResults(AA, AC, TLI, DT);
1671 }
1672 
1673 char MemoryDependenceWrapperPass::ID = 0;
1674 
1675 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1676                       "Memory Dependence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1677 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1678 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1679 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1680 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1681 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1682                     "Memory Dependence Analysis", false, true)
1683 
1684 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1685   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1686 }
~MemoryDependenceWrapperPass()1687 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() {}
1688 
releaseMemory()1689 void MemoryDependenceWrapperPass::releaseMemory() {
1690   MemDep.reset();
1691 }
1692 
getAnalysisUsage(AnalysisUsage & AU) const1693 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1694   AU.setPreservesAll();
1695   AU.addRequired<AssumptionCacheTracker>();
1696   AU.addRequired<DominatorTreeWrapperPass>();
1697   AU.addRequiredTransitive<AAResultsWrapperPass>();
1698   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1699 }
1700 
runOnFunction(Function & F)1701 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1702   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1703   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1704   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1705   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1706   MemDep.emplace(AA, AC, TLI, DT);
1707   return false;
1708 }
1709