1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/SourceMgr.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 
37 using namespace llvm;
38 
PerFunctionMIParsingState(MachineFunction & MF,SourceMgr & SM,const SlotMapping & IRSlots)39 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
40     SourceMgr &SM, const SlotMapping &IRSlots)
41   : MF(MF), SM(&SM), IRSlots(IRSlots) {
42 }
43 
44 namespace {
45 
46 /// A wrapper struct around the 'MachineOperand' struct that includes a source
47 /// range and other attributes.
48 struct ParsedMachineOperand {
49   MachineOperand Operand;
50   StringRef::iterator Begin;
51   StringRef::iterator End;
52   Optional<unsigned> TiedDefIdx;
53 
ParsedMachineOperand__anon9477babd0111::ParsedMachineOperand54   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
55                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
56       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
57     if (TiedDefIdx)
58       assert(Operand.isReg() && Operand.isUse() &&
59              "Only used register operands can be tied");
60   }
61 };
62 
63 class MIParser {
64   MachineFunction &MF;
65   SMDiagnostic &Error;
66   StringRef Source, CurrentSource;
67   MIToken Token;
68   const PerFunctionMIParsingState &PFS;
69   /// Maps from instruction names to op codes.
70   StringMap<unsigned> Names2InstrOpCodes;
71   /// Maps from register names to registers.
72   StringMap<unsigned> Names2Regs;
73   /// Maps from register mask names to register masks.
74   StringMap<const uint32_t *> Names2RegMasks;
75   /// Maps from subregister names to subregister indices.
76   StringMap<unsigned> Names2SubRegIndices;
77   /// Maps from slot numbers to function's unnamed basic blocks.
78   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
79   /// Maps from slot numbers to function's unnamed values.
80   DenseMap<unsigned, const Value *> Slots2Values;
81   /// Maps from target index names to target indices.
82   StringMap<int> Names2TargetIndices;
83   /// Maps from direct target flag names to the direct target flag values.
84   StringMap<unsigned> Names2DirectTargetFlags;
85   /// Maps from direct target flag names to the bitmask target flag values.
86   StringMap<unsigned> Names2BitmaskTargetFlags;
87 
88 public:
89   MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
90            StringRef Source);
91 
92   /// \p SkipChar gives the number of characters to skip before looking
93   /// for the next token.
94   void lex(unsigned SkipChar = 0);
95 
96   /// Report an error at the current location with the given message.
97   ///
98   /// This function always return true.
99   bool error(const Twine &Msg);
100 
101   /// Report an error at the given location with the given message.
102   ///
103   /// This function always return true.
104   bool error(StringRef::iterator Loc, const Twine &Msg);
105 
106   bool
107   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
108   bool parseBasicBlocks();
109   bool parse(MachineInstr *&MI);
110   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
111   bool parseStandaloneNamedRegister(unsigned &Reg);
112   bool parseStandaloneVirtualRegister(unsigned &Reg);
113   bool parseStandaloneStackObject(int &FI);
114   bool parseStandaloneMDNode(MDNode *&Node);
115 
116   bool
117   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
118   bool parseBasicBlock(MachineBasicBlock &MBB);
119   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
120   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
121 
122   bool parseRegister(unsigned &Reg);
123   bool parseRegisterFlag(unsigned &Flags);
124   bool parseSubRegisterIndex(unsigned &SubReg);
125   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
126   bool parseSize(unsigned &Size);
127   bool parseRegisterOperand(MachineOperand &Dest,
128                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
129   bool parseImmediateOperand(MachineOperand &Dest);
130   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
131                        const Constant *&C);
132   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
133   bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read,
134                    Type *&Ty);
135   // \p MustBeSized defines whether or not \p Ty must be sized.
136   bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true);
137   bool parseTypedImmediateOperand(MachineOperand &Dest);
138   bool parseFPImmediateOperand(MachineOperand &Dest);
139   bool parseMBBReference(MachineBasicBlock *&MBB);
140   bool parseMBBOperand(MachineOperand &Dest);
141   bool parseStackFrameIndex(int &FI);
142   bool parseStackObjectOperand(MachineOperand &Dest);
143   bool parseFixedStackFrameIndex(int &FI);
144   bool parseFixedStackObjectOperand(MachineOperand &Dest);
145   bool parseGlobalValue(GlobalValue *&GV);
146   bool parseGlobalAddressOperand(MachineOperand &Dest);
147   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
148   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
149   bool parseJumpTableIndexOperand(MachineOperand &Dest);
150   bool parseExternalSymbolOperand(MachineOperand &Dest);
151   bool parseMDNode(MDNode *&Node);
152   bool parseMetadataOperand(MachineOperand &Dest);
153   bool parseCFIOffset(int &Offset);
154   bool parseCFIRegister(unsigned &Reg);
155   bool parseCFIOperand(MachineOperand &Dest);
156   bool parseIRBlock(BasicBlock *&BB, const Function &F);
157   bool parseBlockAddressOperand(MachineOperand &Dest);
158   bool parseTargetIndexOperand(MachineOperand &Dest);
159   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
160   bool parseMachineOperand(MachineOperand &Dest,
161                            Optional<unsigned> &TiedDefIdx);
162   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
163                                          Optional<unsigned> &TiedDefIdx);
164   bool parseOffset(int64_t &Offset);
165   bool parseAlignment(unsigned &Alignment);
166   bool parseOperandsOffset(MachineOperand &Op);
167   bool parseIRValue(const Value *&V);
168   bool parseMemoryOperandFlag(unsigned &Flags);
169   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
170   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
171   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
172 
173 private:
174   /// Convert the integer literal in the current token into an unsigned integer.
175   ///
176   /// Return true if an error occurred.
177   bool getUnsigned(unsigned &Result);
178 
179   /// Convert the integer literal in the current token into an uint64.
180   ///
181   /// Return true if an error occurred.
182   bool getUint64(uint64_t &Result);
183 
184   /// If the current token is of the given kind, consume it and return false.
185   /// Otherwise report an error and return true.
186   bool expectAndConsume(MIToken::TokenKind TokenKind);
187 
188   /// If the current token is of the given kind, consume it and return true.
189   /// Otherwise return false.
190   bool consumeIfPresent(MIToken::TokenKind TokenKind);
191 
192   void initNames2InstrOpCodes();
193 
194   /// Try to convert an instruction name to an opcode. Return true if the
195   /// instruction name is invalid.
196   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
197 
198   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
199 
200   bool assignRegisterTies(MachineInstr &MI,
201                           ArrayRef<ParsedMachineOperand> Operands);
202 
203   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
204                               const MCInstrDesc &MCID);
205 
206   void initNames2Regs();
207 
208   /// Try to convert a register name to a register number. Return true if the
209   /// register name is invalid.
210   bool getRegisterByName(StringRef RegName, unsigned &Reg);
211 
212   void initNames2RegMasks();
213 
214   /// Check if the given identifier is a name of a register mask.
215   ///
216   /// Return null if the identifier isn't a register mask.
217   const uint32_t *getRegMask(StringRef Identifier);
218 
219   void initNames2SubRegIndices();
220 
221   /// Check if the given identifier is a name of a subregister index.
222   ///
223   /// Return 0 if the name isn't a subregister index class.
224   unsigned getSubRegIndex(StringRef Name);
225 
226   const BasicBlock *getIRBlock(unsigned Slot);
227   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
228 
229   const Value *getIRValue(unsigned Slot);
230 
231   void initNames2TargetIndices();
232 
233   /// Try to convert a name of target index to the corresponding target index.
234   ///
235   /// Return true if the name isn't a name of a target index.
236   bool getTargetIndex(StringRef Name, int &Index);
237 
238   void initNames2DirectTargetFlags();
239 
240   /// Try to convert a name of a direct target flag to the corresponding
241   /// target flag.
242   ///
243   /// Return true if the name isn't a name of a direct flag.
244   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
245 
246   void initNames2BitmaskTargetFlags();
247 
248   /// Try to convert a name of a bitmask target flag to the corresponding
249   /// target flag.
250   ///
251   /// Return true if the name isn't a name of a bitmask target flag.
252   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
253 };
254 
255 } // end anonymous namespace
256 
MIParser(const PerFunctionMIParsingState & PFS,SMDiagnostic & Error,StringRef Source)257 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
258                    StringRef Source)
259     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
260 {}
261 
lex(unsigned SkipChar)262 void MIParser::lex(unsigned SkipChar) {
263   CurrentSource = lexMIToken(
264       CurrentSource.data() + SkipChar, Token,
265       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
266 }
267 
error(const Twine & Msg)268 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
269 
error(StringRef::iterator Loc,const Twine & Msg)270 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
271   const SourceMgr &SM = *PFS.SM;
272   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
273   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
274   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
275     // Create an ordinary diagnostic when the source manager's buffer is the
276     // source string.
277     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
278     return true;
279   }
280   // Create a diagnostic for a YAML string literal.
281   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
282                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
283                        Source, None, None);
284   return true;
285 }
286 
toString(MIToken::TokenKind TokenKind)287 static const char *toString(MIToken::TokenKind TokenKind) {
288   switch (TokenKind) {
289   case MIToken::comma:
290     return "','";
291   case MIToken::equal:
292     return "'='";
293   case MIToken::colon:
294     return "':'";
295   case MIToken::lparen:
296     return "'('";
297   case MIToken::rparen:
298     return "')'";
299   default:
300     return "<unknown token>";
301   }
302 }
303 
expectAndConsume(MIToken::TokenKind TokenKind)304 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
305   if (Token.isNot(TokenKind))
306     return error(Twine("expected ") + toString(TokenKind));
307   lex();
308   return false;
309 }
310 
consumeIfPresent(MIToken::TokenKind TokenKind)311 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
312   if (Token.isNot(TokenKind))
313     return false;
314   lex();
315   return true;
316 }
317 
parseBasicBlockDefinition(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)318 bool MIParser::parseBasicBlockDefinition(
319     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
320   assert(Token.is(MIToken::MachineBasicBlockLabel));
321   unsigned ID = 0;
322   if (getUnsigned(ID))
323     return true;
324   auto Loc = Token.location();
325   auto Name = Token.stringValue();
326   lex();
327   bool HasAddressTaken = false;
328   bool IsLandingPad = false;
329   unsigned Alignment = 0;
330   BasicBlock *BB = nullptr;
331   if (consumeIfPresent(MIToken::lparen)) {
332     do {
333       // TODO: Report an error when multiple same attributes are specified.
334       switch (Token.kind()) {
335       case MIToken::kw_address_taken:
336         HasAddressTaken = true;
337         lex();
338         break;
339       case MIToken::kw_landing_pad:
340         IsLandingPad = true;
341         lex();
342         break;
343       case MIToken::kw_align:
344         if (parseAlignment(Alignment))
345           return true;
346         break;
347       case MIToken::IRBlock:
348         // TODO: Report an error when both name and ir block are specified.
349         if (parseIRBlock(BB, *MF.getFunction()))
350           return true;
351         lex();
352         break;
353       default:
354         break;
355       }
356     } while (consumeIfPresent(MIToken::comma));
357     if (expectAndConsume(MIToken::rparen))
358       return true;
359   }
360   if (expectAndConsume(MIToken::colon))
361     return true;
362 
363   if (!Name.empty()) {
364     BB = dyn_cast_or_null<BasicBlock>(
365         MF.getFunction()->getValueSymbolTable().lookup(Name));
366     if (!BB)
367       return error(Loc, Twine("basic block '") + Name +
368                             "' is not defined in the function '" +
369                             MF.getName() + "'");
370   }
371   auto *MBB = MF.CreateMachineBasicBlock(BB);
372   MF.insert(MF.end(), MBB);
373   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
374   if (!WasInserted)
375     return error(Loc, Twine("redefinition of machine basic block with id #") +
376                           Twine(ID));
377   if (Alignment)
378     MBB->setAlignment(Alignment);
379   if (HasAddressTaken)
380     MBB->setHasAddressTaken();
381   MBB->setIsEHPad(IsLandingPad);
382   return false;
383 }
384 
parseBasicBlockDefinitions(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)385 bool MIParser::parseBasicBlockDefinitions(
386     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
387   lex();
388   // Skip until the first machine basic block.
389   while (Token.is(MIToken::Newline))
390     lex();
391   if (Token.isErrorOrEOF())
392     return Token.isError();
393   if (Token.isNot(MIToken::MachineBasicBlockLabel))
394     return error("expected a basic block definition before instructions");
395   unsigned BraceDepth = 0;
396   do {
397     if (parseBasicBlockDefinition(MBBSlots))
398       return true;
399     bool IsAfterNewline = false;
400     // Skip until the next machine basic block.
401     while (true) {
402       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
403           Token.isErrorOrEOF())
404         break;
405       else if (Token.is(MIToken::MachineBasicBlockLabel))
406         return error("basic block definition should be located at the start of "
407                      "the line");
408       else if (consumeIfPresent(MIToken::Newline)) {
409         IsAfterNewline = true;
410         continue;
411       }
412       IsAfterNewline = false;
413       if (Token.is(MIToken::lbrace))
414         ++BraceDepth;
415       if (Token.is(MIToken::rbrace)) {
416         if (!BraceDepth)
417           return error("extraneous closing brace ('}')");
418         --BraceDepth;
419       }
420       lex();
421     }
422     // Verify that we closed all of the '{' at the end of a file or a block.
423     if (!Token.isError() && BraceDepth)
424       return error("expected '}'"); // FIXME: Report a note that shows '{'.
425   } while (!Token.isErrorOrEOF());
426   return Token.isError();
427 }
428 
parseBasicBlockLiveins(MachineBasicBlock & MBB)429 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
430   assert(Token.is(MIToken::kw_liveins));
431   lex();
432   if (expectAndConsume(MIToken::colon))
433     return true;
434   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
435     return false;
436   do {
437     if (Token.isNot(MIToken::NamedRegister))
438       return error("expected a named register");
439     unsigned Reg = 0;
440     if (parseRegister(Reg))
441       return true;
442     MBB.addLiveIn(Reg);
443     lex();
444   } while (consumeIfPresent(MIToken::comma));
445   return false;
446 }
447 
parseBasicBlockSuccessors(MachineBasicBlock & MBB)448 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
449   assert(Token.is(MIToken::kw_successors));
450   lex();
451   if (expectAndConsume(MIToken::colon))
452     return true;
453   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
454     return false;
455   do {
456     if (Token.isNot(MIToken::MachineBasicBlock))
457       return error("expected a machine basic block reference");
458     MachineBasicBlock *SuccMBB = nullptr;
459     if (parseMBBReference(SuccMBB))
460       return true;
461     lex();
462     unsigned Weight = 0;
463     if (consumeIfPresent(MIToken::lparen)) {
464       if (Token.isNot(MIToken::IntegerLiteral))
465         return error("expected an integer literal after '('");
466       if (getUnsigned(Weight))
467         return true;
468       lex();
469       if (expectAndConsume(MIToken::rparen))
470         return true;
471     }
472     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
473   } while (consumeIfPresent(MIToken::comma));
474   MBB.normalizeSuccProbs();
475   return false;
476 }
477 
parseBasicBlock(MachineBasicBlock & MBB)478 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
479   // Skip the definition.
480   assert(Token.is(MIToken::MachineBasicBlockLabel));
481   lex();
482   if (consumeIfPresent(MIToken::lparen)) {
483     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
484       lex();
485     consumeIfPresent(MIToken::rparen);
486   }
487   consumeIfPresent(MIToken::colon);
488 
489   // Parse the liveins and successors.
490   // N.B: Multiple lists of successors and liveins are allowed and they're
491   // merged into one.
492   // Example:
493   //   liveins: %edi
494   //   liveins: %esi
495   //
496   // is equivalent to
497   //   liveins: %edi, %esi
498   while (true) {
499     if (Token.is(MIToken::kw_successors)) {
500       if (parseBasicBlockSuccessors(MBB))
501         return true;
502     } else if (Token.is(MIToken::kw_liveins)) {
503       if (parseBasicBlockLiveins(MBB))
504         return true;
505     } else if (consumeIfPresent(MIToken::Newline)) {
506       continue;
507     } else
508       break;
509     if (!Token.isNewlineOrEOF())
510       return error("expected line break at the end of a list");
511     lex();
512   }
513 
514   // Parse the instructions.
515   bool IsInBundle = false;
516   MachineInstr *PrevMI = nullptr;
517   while (true) {
518     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
519       return false;
520     else if (consumeIfPresent(MIToken::Newline))
521       continue;
522     if (consumeIfPresent(MIToken::rbrace)) {
523       // The first parsing pass should verify that all closing '}' have an
524       // opening '{'.
525       assert(IsInBundle);
526       IsInBundle = false;
527       continue;
528     }
529     MachineInstr *MI = nullptr;
530     if (parse(MI))
531       return true;
532     MBB.insert(MBB.end(), MI);
533     if (IsInBundle) {
534       PrevMI->setFlag(MachineInstr::BundledSucc);
535       MI->setFlag(MachineInstr::BundledPred);
536     }
537     PrevMI = MI;
538     if (Token.is(MIToken::lbrace)) {
539       if (IsInBundle)
540         return error("nested instruction bundles are not allowed");
541       lex();
542       // This instruction is the start of the bundle.
543       MI->setFlag(MachineInstr::BundledSucc);
544       IsInBundle = true;
545       if (!Token.is(MIToken::Newline))
546         // The next instruction can be on the same line.
547         continue;
548     }
549     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
550     lex();
551   }
552   return false;
553 }
554 
parseBasicBlocks()555 bool MIParser::parseBasicBlocks() {
556   lex();
557   // Skip until the first machine basic block.
558   while (Token.is(MIToken::Newline))
559     lex();
560   if (Token.isErrorOrEOF())
561     return Token.isError();
562   // The first parsing pass should have verified that this token is a MBB label
563   // in the 'parseBasicBlockDefinitions' method.
564   assert(Token.is(MIToken::MachineBasicBlockLabel));
565   do {
566     MachineBasicBlock *MBB = nullptr;
567     if (parseMBBReference(MBB))
568       return true;
569     if (parseBasicBlock(*MBB))
570       return true;
571     // The method 'parseBasicBlock' should parse the whole block until the next
572     // block or the end of file.
573     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
574   } while (Token.isNot(MIToken::Eof));
575   return false;
576 }
577 
parse(MachineInstr * & MI)578 bool MIParser::parse(MachineInstr *&MI) {
579   // Parse any register operands before '='
580   MachineOperand MO = MachineOperand::CreateImm(0);
581   SmallVector<ParsedMachineOperand, 8> Operands;
582   while (Token.isRegister() || Token.isRegisterFlag()) {
583     auto Loc = Token.location();
584     Optional<unsigned> TiedDefIdx;
585     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
586       return true;
587     Operands.push_back(
588         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
589     if (Token.isNot(MIToken::comma))
590       break;
591     lex();
592   }
593   if (!Operands.empty() && expectAndConsume(MIToken::equal))
594     return true;
595 
596   unsigned OpCode, Flags = 0;
597   if (Token.isError() || parseInstruction(OpCode, Flags))
598     return true;
599 
600   Type *Ty = nullptr;
601   if (isPreISelGenericOpcode(OpCode)) {
602     // For generic opcode, a type is mandatory.
603     auto Loc = Token.location();
604     if (parseIRType(Loc, Ty))
605       return true;
606   }
607 
608   // Parse the remaining machine operands.
609   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
610          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
611     auto Loc = Token.location();
612     Optional<unsigned> TiedDefIdx;
613     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
614       return true;
615     Operands.push_back(
616         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
617     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
618         Token.is(MIToken::lbrace))
619       break;
620     if (Token.isNot(MIToken::comma))
621       return error("expected ',' before the next machine operand");
622     lex();
623   }
624 
625   DebugLoc DebugLocation;
626   if (Token.is(MIToken::kw_debug_location)) {
627     lex();
628     if (Token.isNot(MIToken::exclaim))
629       return error("expected a metadata node after 'debug-location'");
630     MDNode *Node = nullptr;
631     if (parseMDNode(Node))
632       return true;
633     DebugLocation = DebugLoc(Node);
634   }
635 
636   // Parse the machine memory operands.
637   SmallVector<MachineMemOperand *, 2> MemOperands;
638   if (Token.is(MIToken::coloncolon)) {
639     lex();
640     while (!Token.isNewlineOrEOF()) {
641       MachineMemOperand *MemOp = nullptr;
642       if (parseMachineMemoryOperand(MemOp))
643         return true;
644       MemOperands.push_back(MemOp);
645       if (Token.isNewlineOrEOF())
646         break;
647       if (Token.isNot(MIToken::comma))
648         return error("expected ',' before the next machine memory operand");
649       lex();
650     }
651   }
652 
653   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
654   if (!MCID.isVariadic()) {
655     // FIXME: Move the implicit operand verification to the machine verifier.
656     if (verifyImplicitOperands(Operands, MCID))
657       return true;
658   }
659 
660   // TODO: Check for extraneous machine operands.
661   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
662   MI->setFlags(Flags);
663   if (Ty)
664     MI->setType(Ty);
665   for (const auto &Operand : Operands)
666     MI->addOperand(MF, Operand.Operand);
667   if (assignRegisterTies(*MI, Operands))
668     return true;
669   if (MemOperands.empty())
670     return false;
671   MachineInstr::mmo_iterator MemRefs =
672       MF.allocateMemRefsArray(MemOperands.size());
673   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
674   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
675   return false;
676 }
677 
parseStandaloneMBB(MachineBasicBlock * & MBB)678 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
679   lex();
680   if (Token.isNot(MIToken::MachineBasicBlock))
681     return error("expected a machine basic block reference");
682   if (parseMBBReference(MBB))
683     return true;
684   lex();
685   if (Token.isNot(MIToken::Eof))
686     return error(
687         "expected end of string after the machine basic block reference");
688   return false;
689 }
690 
parseStandaloneNamedRegister(unsigned & Reg)691 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
692   lex();
693   if (Token.isNot(MIToken::NamedRegister))
694     return error("expected a named register");
695   if (parseRegister(Reg))
696     return true;
697   lex();
698   if (Token.isNot(MIToken::Eof))
699     return error("expected end of string after the register reference");
700   return false;
701 }
702 
parseStandaloneVirtualRegister(unsigned & Reg)703 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
704   lex();
705   if (Token.isNot(MIToken::VirtualRegister))
706     return error("expected a virtual register");
707   if (parseRegister(Reg))
708     return true;
709   lex();
710   if (Token.isNot(MIToken::Eof))
711     return error("expected end of string after the register reference");
712   return false;
713 }
714 
parseStandaloneStackObject(int & FI)715 bool MIParser::parseStandaloneStackObject(int &FI) {
716   lex();
717   if (Token.isNot(MIToken::StackObject))
718     return error("expected a stack object");
719   if (parseStackFrameIndex(FI))
720     return true;
721   if (Token.isNot(MIToken::Eof))
722     return error("expected end of string after the stack object reference");
723   return false;
724 }
725 
parseStandaloneMDNode(MDNode * & Node)726 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
727   lex();
728   if (Token.isNot(MIToken::exclaim))
729     return error("expected a metadata node");
730   if (parseMDNode(Node))
731     return true;
732   if (Token.isNot(MIToken::Eof))
733     return error("expected end of string after the metadata node");
734   return false;
735 }
736 
printImplicitRegisterFlag(const MachineOperand & MO)737 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
738   assert(MO.isImplicit());
739   return MO.isDef() ? "implicit-def" : "implicit";
740 }
741 
getRegisterName(const TargetRegisterInfo * TRI,unsigned Reg)742 static std::string getRegisterName(const TargetRegisterInfo *TRI,
743                                    unsigned Reg) {
744   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
745   return StringRef(TRI->getName(Reg)).lower();
746 }
747 
748 /// Return true if the parsed machine operands contain a given machine operand.
isImplicitOperandIn(const MachineOperand & ImplicitOperand,ArrayRef<ParsedMachineOperand> Operands)749 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
750                                 ArrayRef<ParsedMachineOperand> Operands) {
751   for (const auto &I : Operands) {
752     if (ImplicitOperand.isIdenticalTo(I.Operand))
753       return true;
754   }
755   return false;
756 }
757 
verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,const MCInstrDesc & MCID)758 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
759                                       const MCInstrDesc &MCID) {
760   if (MCID.isCall())
761     // We can't verify call instructions as they can contain arbitrary implicit
762     // register and register mask operands.
763     return false;
764 
765   // Gather all the expected implicit operands.
766   SmallVector<MachineOperand, 4> ImplicitOperands;
767   if (MCID.ImplicitDefs)
768     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
769       ImplicitOperands.push_back(
770           MachineOperand::CreateReg(*ImpDefs, true, true));
771   if (MCID.ImplicitUses)
772     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
773       ImplicitOperands.push_back(
774           MachineOperand::CreateReg(*ImpUses, false, true));
775 
776   const auto *TRI = MF.getSubtarget().getRegisterInfo();
777   assert(TRI && "Expected target register info");
778   for (const auto &I : ImplicitOperands) {
779     if (isImplicitOperandIn(I, Operands))
780       continue;
781     return error(Operands.empty() ? Token.location() : Operands.back().End,
782                  Twine("missing implicit register operand '") +
783                      printImplicitRegisterFlag(I) + " %" +
784                      getRegisterName(TRI, I.getReg()) + "'");
785   }
786   return false;
787 }
788 
parseInstruction(unsigned & OpCode,unsigned & Flags)789 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
790   if (Token.is(MIToken::kw_frame_setup)) {
791     Flags |= MachineInstr::FrameSetup;
792     lex();
793   }
794   if (Token.isNot(MIToken::Identifier))
795     return error("expected a machine instruction");
796   StringRef InstrName = Token.stringValue();
797   if (parseInstrName(InstrName, OpCode))
798     return error(Twine("unknown machine instruction name '") + InstrName + "'");
799   lex();
800   return false;
801 }
802 
parseRegister(unsigned & Reg)803 bool MIParser::parseRegister(unsigned &Reg) {
804   switch (Token.kind()) {
805   case MIToken::underscore:
806     Reg = 0;
807     break;
808   case MIToken::NamedRegister: {
809     StringRef Name = Token.stringValue();
810     if (getRegisterByName(Name, Reg))
811       return error(Twine("unknown register name '") + Name + "'");
812     break;
813   }
814   case MIToken::VirtualRegister: {
815     unsigned ID;
816     if (getUnsigned(ID))
817       return true;
818     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
819     if (RegInfo == PFS.VirtualRegisterSlots.end())
820       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
821                    "'");
822     Reg = RegInfo->second;
823     break;
824   }
825   // TODO: Parse other register kinds.
826   default:
827     llvm_unreachable("The current token should be a register");
828   }
829   return false;
830 }
831 
parseRegisterFlag(unsigned & Flags)832 bool MIParser::parseRegisterFlag(unsigned &Flags) {
833   const unsigned OldFlags = Flags;
834   switch (Token.kind()) {
835   case MIToken::kw_implicit:
836     Flags |= RegState::Implicit;
837     break;
838   case MIToken::kw_implicit_define:
839     Flags |= RegState::ImplicitDefine;
840     break;
841   case MIToken::kw_def:
842     Flags |= RegState::Define;
843     break;
844   case MIToken::kw_dead:
845     Flags |= RegState::Dead;
846     break;
847   case MIToken::kw_killed:
848     Flags |= RegState::Kill;
849     break;
850   case MIToken::kw_undef:
851     Flags |= RegState::Undef;
852     break;
853   case MIToken::kw_internal:
854     Flags |= RegState::InternalRead;
855     break;
856   case MIToken::kw_early_clobber:
857     Flags |= RegState::EarlyClobber;
858     break;
859   case MIToken::kw_debug_use:
860     Flags |= RegState::Debug;
861     break;
862   default:
863     llvm_unreachable("The current token should be a register flag");
864   }
865   if (OldFlags == Flags)
866     // We know that the same flag is specified more than once when the flags
867     // weren't modified.
868     return error("duplicate '" + Token.stringValue() + "' register flag");
869   lex();
870   return false;
871 }
872 
parseSubRegisterIndex(unsigned & SubReg)873 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
874   assert(Token.is(MIToken::colon));
875   lex();
876   if (Token.isNot(MIToken::Identifier))
877     return error("expected a subregister index after ':'");
878   auto Name = Token.stringValue();
879   SubReg = getSubRegIndex(Name);
880   if (!SubReg)
881     return error(Twine("use of unknown subregister index '") + Name + "'");
882   lex();
883   return false;
884 }
885 
parseRegisterTiedDefIndex(unsigned & TiedDefIdx)886 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
887   if (!consumeIfPresent(MIToken::kw_tied_def))
888     return error("expected 'tied-def' after '('");
889   if (Token.isNot(MIToken::IntegerLiteral))
890     return error("expected an integer literal after 'tied-def'");
891   if (getUnsigned(TiedDefIdx))
892     return true;
893   lex();
894   if (expectAndConsume(MIToken::rparen))
895     return true;
896   return false;
897 }
898 
parseSize(unsigned & Size)899 bool MIParser::parseSize(unsigned &Size) {
900   if (Token.isNot(MIToken::IntegerLiteral))
901     return error("expected an integer literal for the size");
902   if (getUnsigned(Size))
903     return true;
904   lex();
905   if (expectAndConsume(MIToken::rparen))
906     return true;
907   return false;
908 }
909 
assignRegisterTies(MachineInstr & MI,ArrayRef<ParsedMachineOperand> Operands)910 bool MIParser::assignRegisterTies(MachineInstr &MI,
911                                   ArrayRef<ParsedMachineOperand> Operands) {
912   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
913   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
914     if (!Operands[I].TiedDefIdx)
915       continue;
916     // The parser ensures that this operand is a register use, so we just have
917     // to check the tied-def operand.
918     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
919     if (DefIdx >= E)
920       return error(Operands[I].Begin,
921                    Twine("use of invalid tied-def operand index '" +
922                          Twine(DefIdx) + "'; instruction has only ") +
923                        Twine(E) + " operands");
924     const auto &DefOperand = Operands[DefIdx].Operand;
925     if (!DefOperand.isReg() || !DefOperand.isDef())
926       // FIXME: add note with the def operand.
927       return error(Operands[I].Begin,
928                    Twine("use of invalid tied-def operand index '") +
929                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
930                        " isn't a defined register");
931     // Check that the tied-def operand wasn't tied elsewhere.
932     for (const auto &TiedPair : TiedRegisterPairs) {
933       if (TiedPair.first == DefIdx)
934         return error(Operands[I].Begin,
935                      Twine("the tied-def operand #") + Twine(DefIdx) +
936                          " is already tied with another register operand");
937     }
938     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
939   }
940   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
941   // indices must be less than tied max.
942   for (const auto &TiedPair : TiedRegisterPairs)
943     MI.tieOperands(TiedPair.first, TiedPair.second);
944   return false;
945 }
946 
parseRegisterOperand(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx,bool IsDef)947 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
948                                     Optional<unsigned> &TiedDefIdx,
949                                     bool IsDef) {
950   unsigned Reg;
951   unsigned Flags = IsDef ? RegState::Define : 0;
952   while (Token.isRegisterFlag()) {
953     if (parseRegisterFlag(Flags))
954       return true;
955   }
956   if (!Token.isRegister())
957     return error("expected a register after register flags");
958   if (parseRegister(Reg))
959     return true;
960   lex();
961   unsigned SubReg = 0;
962   if (Token.is(MIToken::colon)) {
963     if (parseSubRegisterIndex(SubReg))
964       return true;
965   }
966   if ((Flags & RegState::Define) == 0) {
967     if (consumeIfPresent(MIToken::lparen)) {
968       unsigned Idx;
969       if (parseRegisterTiedDefIndex(Idx))
970         return true;
971       TiedDefIdx = Idx;
972     }
973   } else if (consumeIfPresent(MIToken::lparen)) {
974     // Virtual registers may have a size with GlobalISel.
975     if (!TargetRegisterInfo::isVirtualRegister(Reg))
976       return error("unexpected size on physical register");
977     unsigned Size;
978     if (parseSize(Size))
979       return true;
980 
981     MachineRegisterInfo &MRI = MF.getRegInfo();
982     MRI.setSize(Reg, Size);
983   } else if (PFS.GenericVRegs.count(Reg)) {
984     // Generic virtual registers must have a size.
985     // If we end up here this means the size hasn't been specified and
986     // this is bad!
987     return error("generic virtual registers must have a size");
988   }
989   Dest = MachineOperand::CreateReg(
990       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
991       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
992       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
993       Flags & RegState::InternalRead);
994   return false;
995 }
996 
parseImmediateOperand(MachineOperand & Dest)997 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
998   assert(Token.is(MIToken::IntegerLiteral));
999   const APSInt &Int = Token.integerValue();
1000   if (Int.getMinSignedBits() > 64)
1001     return error("integer literal is too large to be an immediate operand");
1002   Dest = MachineOperand::CreateImm(Int.getExtValue());
1003   lex();
1004   return false;
1005 }
1006 
parseIRConstant(StringRef::iterator Loc,StringRef StringValue,const Constant * & C)1007 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1008                                const Constant *&C) {
1009   auto Source = StringValue.str(); // The source has to be null terminated.
1010   SMDiagnostic Err;
1011   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1012                          &PFS.IRSlots);
1013   if (!C)
1014     return error(Loc + Err.getColumnNo(), Err.getMessage());
1015   return false;
1016 }
1017 
parseIRConstant(StringRef::iterator Loc,const Constant * & C)1018 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1019   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1020     return true;
1021   lex();
1022   return false;
1023 }
1024 
parseIRType(StringRef::iterator Loc,StringRef StringValue,unsigned & Read,Type * & Ty)1025 bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue,
1026                            unsigned &Read, Type *&Ty) {
1027   auto Source = StringValue.str(); // The source has to be null terminated.
1028   SMDiagnostic Err;
1029   Ty = parseTypeAtBeginning(Source.c_str(), Read, Err,
1030                             *MF.getFunction()->getParent(), &PFS.IRSlots);
1031   if (!Ty)
1032     return error(Loc + Err.getColumnNo(), Err.getMessage());
1033   return false;
1034 }
1035 
parseIRType(StringRef::iterator Loc,Type * & Ty,bool MustBeSized)1036 bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty,
1037                            bool MustBeSized) {
1038   // At this point we enter in the IR world, i.e., to get the correct type,
1039   // we need to hand off the whole string, not just the current token.
1040   // E.g., <4 x i64> would give '<' as a token and there is not much
1041   // the IR parser can do with that.
1042   unsigned Read = 0;
1043   if (parseIRType(Loc, StringRef(Loc), Read, Ty))
1044     return true;
1045   // The type must be sized, otherwise there is not much the backend
1046   // can do with it.
1047   if (MustBeSized && !Ty->isSized())
1048     return error("expected a sized type");
1049   // The next token is Read characters from the Loc.
1050   // However, the current location is not Loc, but Loc + the length of Token.
1051   // Therefore, subtract the length of Token (range().end() - Loc) to the
1052   // number of characters to skip before the next token.
1053   lex(Read - (Token.range().end() - Loc));
1054   return false;
1055 }
1056 
parseTypedImmediateOperand(MachineOperand & Dest)1057 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1058   assert(Token.is(MIToken::IntegerType));
1059   auto Loc = Token.location();
1060   lex();
1061   if (Token.isNot(MIToken::IntegerLiteral))
1062     return error("expected an integer literal");
1063   const Constant *C = nullptr;
1064   if (parseIRConstant(Loc, C))
1065     return true;
1066   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1067   return false;
1068 }
1069 
parseFPImmediateOperand(MachineOperand & Dest)1070 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1071   auto Loc = Token.location();
1072   lex();
1073   if (Token.isNot(MIToken::FloatingPointLiteral))
1074     return error("expected a floating point literal");
1075   const Constant *C = nullptr;
1076   if (parseIRConstant(Loc, C))
1077     return true;
1078   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1079   return false;
1080 }
1081 
getUnsigned(unsigned & Result)1082 bool MIParser::getUnsigned(unsigned &Result) {
1083   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1084   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1085   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1086   if (Val64 == Limit)
1087     return error("expected 32-bit integer (too large)");
1088   Result = Val64;
1089   return false;
1090 }
1091 
parseMBBReference(MachineBasicBlock * & MBB)1092 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1093   assert(Token.is(MIToken::MachineBasicBlock) ||
1094          Token.is(MIToken::MachineBasicBlockLabel));
1095   unsigned Number;
1096   if (getUnsigned(Number))
1097     return true;
1098   auto MBBInfo = PFS.MBBSlots.find(Number);
1099   if (MBBInfo == PFS.MBBSlots.end())
1100     return error(Twine("use of undefined machine basic block #") +
1101                  Twine(Number));
1102   MBB = MBBInfo->second;
1103   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1104     return error(Twine("the name of machine basic block #") + Twine(Number) +
1105                  " isn't '" + Token.stringValue() + "'");
1106   return false;
1107 }
1108 
parseMBBOperand(MachineOperand & Dest)1109 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1110   MachineBasicBlock *MBB;
1111   if (parseMBBReference(MBB))
1112     return true;
1113   Dest = MachineOperand::CreateMBB(MBB);
1114   lex();
1115   return false;
1116 }
1117 
parseStackFrameIndex(int & FI)1118 bool MIParser::parseStackFrameIndex(int &FI) {
1119   assert(Token.is(MIToken::StackObject));
1120   unsigned ID;
1121   if (getUnsigned(ID))
1122     return true;
1123   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1124   if (ObjectInfo == PFS.StackObjectSlots.end())
1125     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1126                  "'");
1127   StringRef Name;
1128   if (const auto *Alloca =
1129           MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
1130     Name = Alloca->getName();
1131   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1132     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1133                  "' isn't '" + Token.stringValue() + "'");
1134   lex();
1135   FI = ObjectInfo->second;
1136   return false;
1137 }
1138 
parseStackObjectOperand(MachineOperand & Dest)1139 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1140   int FI;
1141   if (parseStackFrameIndex(FI))
1142     return true;
1143   Dest = MachineOperand::CreateFI(FI);
1144   return false;
1145 }
1146 
parseFixedStackFrameIndex(int & FI)1147 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1148   assert(Token.is(MIToken::FixedStackObject));
1149   unsigned ID;
1150   if (getUnsigned(ID))
1151     return true;
1152   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1153   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1154     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1155                  Twine(ID) + "'");
1156   lex();
1157   FI = ObjectInfo->second;
1158   return false;
1159 }
1160 
parseFixedStackObjectOperand(MachineOperand & Dest)1161 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1162   int FI;
1163   if (parseFixedStackFrameIndex(FI))
1164     return true;
1165   Dest = MachineOperand::CreateFI(FI);
1166   return false;
1167 }
1168 
parseGlobalValue(GlobalValue * & GV)1169 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1170   switch (Token.kind()) {
1171   case MIToken::NamedGlobalValue: {
1172     const Module *M = MF.getFunction()->getParent();
1173     GV = M->getNamedValue(Token.stringValue());
1174     if (!GV)
1175       return error(Twine("use of undefined global value '") + Token.range() +
1176                    "'");
1177     break;
1178   }
1179   case MIToken::GlobalValue: {
1180     unsigned GVIdx;
1181     if (getUnsigned(GVIdx))
1182       return true;
1183     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1184       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1185                    "'");
1186     GV = PFS.IRSlots.GlobalValues[GVIdx];
1187     break;
1188   }
1189   default:
1190     llvm_unreachable("The current token should be a global value");
1191   }
1192   return false;
1193 }
1194 
parseGlobalAddressOperand(MachineOperand & Dest)1195 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1196   GlobalValue *GV = nullptr;
1197   if (parseGlobalValue(GV))
1198     return true;
1199   lex();
1200   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1201   if (parseOperandsOffset(Dest))
1202     return true;
1203   return false;
1204 }
1205 
parseConstantPoolIndexOperand(MachineOperand & Dest)1206 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1207   assert(Token.is(MIToken::ConstantPoolItem));
1208   unsigned ID;
1209   if (getUnsigned(ID))
1210     return true;
1211   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1212   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1213     return error("use of undefined constant '%const." + Twine(ID) + "'");
1214   lex();
1215   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1216   if (parseOperandsOffset(Dest))
1217     return true;
1218   return false;
1219 }
1220 
parseJumpTableIndexOperand(MachineOperand & Dest)1221 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1222   assert(Token.is(MIToken::JumpTableIndex));
1223   unsigned ID;
1224   if (getUnsigned(ID))
1225     return true;
1226   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1227   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1228     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1229   lex();
1230   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1231   return false;
1232 }
1233 
parseExternalSymbolOperand(MachineOperand & Dest)1234 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1235   assert(Token.is(MIToken::ExternalSymbol));
1236   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1237   lex();
1238   Dest = MachineOperand::CreateES(Symbol);
1239   if (parseOperandsOffset(Dest))
1240     return true;
1241   return false;
1242 }
1243 
parseSubRegisterIndexOperand(MachineOperand & Dest)1244 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1245   assert(Token.is(MIToken::SubRegisterIndex));
1246   StringRef Name = Token.stringValue();
1247   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1248   if (SubRegIndex == 0)
1249     return error(Twine("unknown subregister index '") + Name + "'");
1250   lex();
1251   Dest = MachineOperand::CreateImm(SubRegIndex);
1252   return false;
1253 }
1254 
parseMDNode(MDNode * & Node)1255 bool MIParser::parseMDNode(MDNode *&Node) {
1256   assert(Token.is(MIToken::exclaim));
1257   auto Loc = Token.location();
1258   lex();
1259   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1260     return error("expected metadata id after '!'");
1261   unsigned ID;
1262   if (getUnsigned(ID))
1263     return true;
1264   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1265   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1266     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1267   lex();
1268   Node = NodeInfo->second.get();
1269   return false;
1270 }
1271 
parseMetadataOperand(MachineOperand & Dest)1272 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1273   MDNode *Node = nullptr;
1274   if (parseMDNode(Node))
1275     return true;
1276   Dest = MachineOperand::CreateMetadata(Node);
1277   return false;
1278 }
1279 
parseCFIOffset(int & Offset)1280 bool MIParser::parseCFIOffset(int &Offset) {
1281   if (Token.isNot(MIToken::IntegerLiteral))
1282     return error("expected a cfi offset");
1283   if (Token.integerValue().getMinSignedBits() > 32)
1284     return error("expected a 32 bit integer (the cfi offset is too large)");
1285   Offset = (int)Token.integerValue().getExtValue();
1286   lex();
1287   return false;
1288 }
1289 
parseCFIRegister(unsigned & Reg)1290 bool MIParser::parseCFIRegister(unsigned &Reg) {
1291   if (Token.isNot(MIToken::NamedRegister))
1292     return error("expected a cfi register");
1293   unsigned LLVMReg;
1294   if (parseRegister(LLVMReg))
1295     return true;
1296   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1297   assert(TRI && "Expected target register info");
1298   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1299   if (DwarfReg < 0)
1300     return error("invalid DWARF register");
1301   Reg = (unsigned)DwarfReg;
1302   lex();
1303   return false;
1304 }
1305 
parseCFIOperand(MachineOperand & Dest)1306 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1307   auto Kind = Token.kind();
1308   lex();
1309   auto &MMI = MF.getMMI();
1310   int Offset;
1311   unsigned Reg;
1312   unsigned CFIIndex;
1313   switch (Kind) {
1314   case MIToken::kw_cfi_same_value:
1315     if (parseCFIRegister(Reg))
1316       return true;
1317     CFIIndex =
1318         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1319     break;
1320   case MIToken::kw_cfi_offset:
1321     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1322         parseCFIOffset(Offset))
1323       return true;
1324     CFIIndex =
1325         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1326     break;
1327   case MIToken::kw_cfi_def_cfa_register:
1328     if (parseCFIRegister(Reg))
1329       return true;
1330     CFIIndex =
1331         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1332     break;
1333   case MIToken::kw_cfi_def_cfa_offset:
1334     if (parseCFIOffset(Offset))
1335       return true;
1336     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1337     CFIIndex = MMI.addFrameInst(
1338         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1339     break;
1340   case MIToken::kw_cfi_def_cfa:
1341     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1342         parseCFIOffset(Offset))
1343       return true;
1344     // NB: MCCFIInstruction::createDefCfa negates the offset.
1345     CFIIndex =
1346         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1347     break;
1348   default:
1349     // TODO: Parse the other CFI operands.
1350     llvm_unreachable("The current token should be a cfi operand");
1351   }
1352   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1353   return false;
1354 }
1355 
parseIRBlock(BasicBlock * & BB,const Function & F)1356 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1357   switch (Token.kind()) {
1358   case MIToken::NamedIRBlock: {
1359     BB = dyn_cast_or_null<BasicBlock>(
1360         F.getValueSymbolTable().lookup(Token.stringValue()));
1361     if (!BB)
1362       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1363     break;
1364   }
1365   case MIToken::IRBlock: {
1366     unsigned SlotNumber = 0;
1367     if (getUnsigned(SlotNumber))
1368       return true;
1369     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1370     if (!BB)
1371       return error(Twine("use of undefined IR block '%ir-block.") +
1372                    Twine(SlotNumber) + "'");
1373     break;
1374   }
1375   default:
1376     llvm_unreachable("The current token should be an IR block reference");
1377   }
1378   return false;
1379 }
1380 
parseBlockAddressOperand(MachineOperand & Dest)1381 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1382   assert(Token.is(MIToken::kw_blockaddress));
1383   lex();
1384   if (expectAndConsume(MIToken::lparen))
1385     return true;
1386   if (Token.isNot(MIToken::GlobalValue) &&
1387       Token.isNot(MIToken::NamedGlobalValue))
1388     return error("expected a global value");
1389   GlobalValue *GV = nullptr;
1390   if (parseGlobalValue(GV))
1391     return true;
1392   auto *F = dyn_cast<Function>(GV);
1393   if (!F)
1394     return error("expected an IR function reference");
1395   lex();
1396   if (expectAndConsume(MIToken::comma))
1397     return true;
1398   BasicBlock *BB = nullptr;
1399   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1400     return error("expected an IR block reference");
1401   if (parseIRBlock(BB, *F))
1402     return true;
1403   lex();
1404   if (expectAndConsume(MIToken::rparen))
1405     return true;
1406   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1407   if (parseOperandsOffset(Dest))
1408     return true;
1409   return false;
1410 }
1411 
parseTargetIndexOperand(MachineOperand & Dest)1412 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1413   assert(Token.is(MIToken::kw_target_index));
1414   lex();
1415   if (expectAndConsume(MIToken::lparen))
1416     return true;
1417   if (Token.isNot(MIToken::Identifier))
1418     return error("expected the name of the target index");
1419   int Index = 0;
1420   if (getTargetIndex(Token.stringValue(), Index))
1421     return error("use of undefined target index '" + Token.stringValue() + "'");
1422   lex();
1423   if (expectAndConsume(MIToken::rparen))
1424     return true;
1425   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1426   if (parseOperandsOffset(Dest))
1427     return true;
1428   return false;
1429 }
1430 
parseLiveoutRegisterMaskOperand(MachineOperand & Dest)1431 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1432   assert(Token.is(MIToken::kw_liveout));
1433   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1434   assert(TRI && "Expected target register info");
1435   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1436   lex();
1437   if (expectAndConsume(MIToken::lparen))
1438     return true;
1439   while (true) {
1440     if (Token.isNot(MIToken::NamedRegister))
1441       return error("expected a named register");
1442     unsigned Reg = 0;
1443     if (parseRegister(Reg))
1444       return true;
1445     lex();
1446     Mask[Reg / 32] |= 1U << (Reg % 32);
1447     // TODO: Report an error if the same register is used more than once.
1448     if (Token.isNot(MIToken::comma))
1449       break;
1450     lex();
1451   }
1452   if (expectAndConsume(MIToken::rparen))
1453     return true;
1454   Dest = MachineOperand::CreateRegLiveOut(Mask);
1455   return false;
1456 }
1457 
parseMachineOperand(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)1458 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1459                                    Optional<unsigned> &TiedDefIdx) {
1460   switch (Token.kind()) {
1461   case MIToken::kw_implicit:
1462   case MIToken::kw_implicit_define:
1463   case MIToken::kw_def:
1464   case MIToken::kw_dead:
1465   case MIToken::kw_killed:
1466   case MIToken::kw_undef:
1467   case MIToken::kw_internal:
1468   case MIToken::kw_early_clobber:
1469   case MIToken::kw_debug_use:
1470   case MIToken::underscore:
1471   case MIToken::NamedRegister:
1472   case MIToken::VirtualRegister:
1473     return parseRegisterOperand(Dest, TiedDefIdx);
1474   case MIToken::IntegerLiteral:
1475     return parseImmediateOperand(Dest);
1476   case MIToken::IntegerType:
1477     return parseTypedImmediateOperand(Dest);
1478   case MIToken::kw_half:
1479   case MIToken::kw_float:
1480   case MIToken::kw_double:
1481   case MIToken::kw_x86_fp80:
1482   case MIToken::kw_fp128:
1483   case MIToken::kw_ppc_fp128:
1484     return parseFPImmediateOperand(Dest);
1485   case MIToken::MachineBasicBlock:
1486     return parseMBBOperand(Dest);
1487   case MIToken::StackObject:
1488     return parseStackObjectOperand(Dest);
1489   case MIToken::FixedStackObject:
1490     return parseFixedStackObjectOperand(Dest);
1491   case MIToken::GlobalValue:
1492   case MIToken::NamedGlobalValue:
1493     return parseGlobalAddressOperand(Dest);
1494   case MIToken::ConstantPoolItem:
1495     return parseConstantPoolIndexOperand(Dest);
1496   case MIToken::JumpTableIndex:
1497     return parseJumpTableIndexOperand(Dest);
1498   case MIToken::ExternalSymbol:
1499     return parseExternalSymbolOperand(Dest);
1500   case MIToken::SubRegisterIndex:
1501     return parseSubRegisterIndexOperand(Dest);
1502   case MIToken::exclaim:
1503     return parseMetadataOperand(Dest);
1504   case MIToken::kw_cfi_same_value:
1505   case MIToken::kw_cfi_offset:
1506   case MIToken::kw_cfi_def_cfa_register:
1507   case MIToken::kw_cfi_def_cfa_offset:
1508   case MIToken::kw_cfi_def_cfa:
1509     return parseCFIOperand(Dest);
1510   case MIToken::kw_blockaddress:
1511     return parseBlockAddressOperand(Dest);
1512   case MIToken::kw_target_index:
1513     return parseTargetIndexOperand(Dest);
1514   case MIToken::kw_liveout:
1515     return parseLiveoutRegisterMaskOperand(Dest);
1516   case MIToken::Error:
1517     return true;
1518   case MIToken::Identifier:
1519     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1520       Dest = MachineOperand::CreateRegMask(RegMask);
1521       lex();
1522       break;
1523     }
1524   // fallthrough
1525   default:
1526     // FIXME: Parse the MCSymbol machine operand.
1527     return error("expected a machine operand");
1528   }
1529   return false;
1530 }
1531 
parseMachineOperandAndTargetFlags(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)1532 bool MIParser::parseMachineOperandAndTargetFlags(
1533     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1534   unsigned TF = 0;
1535   bool HasTargetFlags = false;
1536   if (Token.is(MIToken::kw_target_flags)) {
1537     HasTargetFlags = true;
1538     lex();
1539     if (expectAndConsume(MIToken::lparen))
1540       return true;
1541     if (Token.isNot(MIToken::Identifier))
1542       return error("expected the name of the target flag");
1543     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1544       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1545         return error("use of undefined target flag '" + Token.stringValue() +
1546                      "'");
1547     }
1548     lex();
1549     while (Token.is(MIToken::comma)) {
1550       lex();
1551       if (Token.isNot(MIToken::Identifier))
1552         return error("expected the name of the target flag");
1553       unsigned BitFlag = 0;
1554       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1555         return error("use of undefined target flag '" + Token.stringValue() +
1556                      "'");
1557       // TODO: Report an error when using a duplicate bit target flag.
1558       TF |= BitFlag;
1559       lex();
1560     }
1561     if (expectAndConsume(MIToken::rparen))
1562       return true;
1563   }
1564   auto Loc = Token.location();
1565   if (parseMachineOperand(Dest, TiedDefIdx))
1566     return true;
1567   if (!HasTargetFlags)
1568     return false;
1569   if (Dest.isReg())
1570     return error(Loc, "register operands can't have target flags");
1571   Dest.setTargetFlags(TF);
1572   return false;
1573 }
1574 
parseOffset(int64_t & Offset)1575 bool MIParser::parseOffset(int64_t &Offset) {
1576   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1577     return false;
1578   StringRef Sign = Token.range();
1579   bool IsNegative = Token.is(MIToken::minus);
1580   lex();
1581   if (Token.isNot(MIToken::IntegerLiteral))
1582     return error("expected an integer literal after '" + Sign + "'");
1583   if (Token.integerValue().getMinSignedBits() > 64)
1584     return error("expected 64-bit integer (too large)");
1585   Offset = Token.integerValue().getExtValue();
1586   if (IsNegative)
1587     Offset = -Offset;
1588   lex();
1589   return false;
1590 }
1591 
parseAlignment(unsigned & Alignment)1592 bool MIParser::parseAlignment(unsigned &Alignment) {
1593   assert(Token.is(MIToken::kw_align));
1594   lex();
1595   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1596     return error("expected an integer literal after 'align'");
1597   if (getUnsigned(Alignment))
1598     return true;
1599   lex();
1600   return false;
1601 }
1602 
parseOperandsOffset(MachineOperand & Op)1603 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1604   int64_t Offset = 0;
1605   if (parseOffset(Offset))
1606     return true;
1607   Op.setOffset(Offset);
1608   return false;
1609 }
1610 
parseIRValue(const Value * & V)1611 bool MIParser::parseIRValue(const Value *&V) {
1612   switch (Token.kind()) {
1613   case MIToken::NamedIRValue: {
1614     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1615     break;
1616   }
1617   case MIToken::IRValue: {
1618     unsigned SlotNumber = 0;
1619     if (getUnsigned(SlotNumber))
1620       return true;
1621     V = getIRValue(SlotNumber);
1622     break;
1623   }
1624   case MIToken::NamedGlobalValue:
1625   case MIToken::GlobalValue: {
1626     GlobalValue *GV = nullptr;
1627     if (parseGlobalValue(GV))
1628       return true;
1629     V = GV;
1630     break;
1631   }
1632   case MIToken::QuotedIRValue: {
1633     const Constant *C = nullptr;
1634     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1635       return true;
1636     V = C;
1637     break;
1638   }
1639   default:
1640     llvm_unreachable("The current token should be an IR block reference");
1641   }
1642   if (!V)
1643     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1644   return false;
1645 }
1646 
getUint64(uint64_t & Result)1647 bool MIParser::getUint64(uint64_t &Result) {
1648   assert(Token.hasIntegerValue());
1649   if (Token.integerValue().getActiveBits() > 64)
1650     return error("expected 64-bit integer (too large)");
1651   Result = Token.integerValue().getZExtValue();
1652   return false;
1653 }
1654 
parseMemoryOperandFlag(unsigned & Flags)1655 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) {
1656   const unsigned OldFlags = Flags;
1657   switch (Token.kind()) {
1658   case MIToken::kw_volatile:
1659     Flags |= MachineMemOperand::MOVolatile;
1660     break;
1661   case MIToken::kw_non_temporal:
1662     Flags |= MachineMemOperand::MONonTemporal;
1663     break;
1664   case MIToken::kw_invariant:
1665     Flags |= MachineMemOperand::MOInvariant;
1666     break;
1667   // TODO: parse the target specific memory operand flags.
1668   default:
1669     llvm_unreachable("The current token should be a memory operand flag");
1670   }
1671   if (OldFlags == Flags)
1672     // We know that the same flag is specified more than once when the flags
1673     // weren't modified.
1674     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1675   lex();
1676   return false;
1677 }
1678 
parseMemoryPseudoSourceValue(const PseudoSourceValue * & PSV)1679 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1680   switch (Token.kind()) {
1681   case MIToken::kw_stack:
1682     PSV = MF.getPSVManager().getStack();
1683     break;
1684   case MIToken::kw_got:
1685     PSV = MF.getPSVManager().getGOT();
1686     break;
1687   case MIToken::kw_jump_table:
1688     PSV = MF.getPSVManager().getJumpTable();
1689     break;
1690   case MIToken::kw_constant_pool:
1691     PSV = MF.getPSVManager().getConstantPool();
1692     break;
1693   case MIToken::FixedStackObject: {
1694     int FI;
1695     if (parseFixedStackFrameIndex(FI))
1696       return true;
1697     PSV = MF.getPSVManager().getFixedStack(FI);
1698     // The token was already consumed, so use return here instead of break.
1699     return false;
1700   }
1701   case MIToken::StackObject: {
1702     int FI;
1703     if (parseStackFrameIndex(FI))
1704       return true;
1705     PSV = MF.getPSVManager().getFixedStack(FI);
1706     // The token was already consumed, so use return here instead of break.
1707     return false;
1708   }
1709   case MIToken::kw_call_entry: {
1710     lex();
1711     switch (Token.kind()) {
1712     case MIToken::GlobalValue:
1713     case MIToken::NamedGlobalValue: {
1714       GlobalValue *GV = nullptr;
1715       if (parseGlobalValue(GV))
1716         return true;
1717       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1718       break;
1719     }
1720     case MIToken::ExternalSymbol:
1721       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1722           MF.createExternalSymbolName(Token.stringValue()));
1723       break;
1724     default:
1725       return error(
1726           "expected a global value or an external symbol after 'call-entry'");
1727     }
1728     break;
1729   }
1730   default:
1731     llvm_unreachable("The current token should be pseudo source value");
1732   }
1733   lex();
1734   return false;
1735 }
1736 
parseMachinePointerInfo(MachinePointerInfo & Dest)1737 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1738   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1739       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1740       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1741       Token.is(MIToken::kw_call_entry)) {
1742     const PseudoSourceValue *PSV = nullptr;
1743     if (parseMemoryPseudoSourceValue(PSV))
1744       return true;
1745     int64_t Offset = 0;
1746     if (parseOffset(Offset))
1747       return true;
1748     Dest = MachinePointerInfo(PSV, Offset);
1749     return false;
1750   }
1751   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1752       Token.isNot(MIToken::GlobalValue) &&
1753       Token.isNot(MIToken::NamedGlobalValue) &&
1754       Token.isNot(MIToken::QuotedIRValue))
1755     return error("expected an IR value reference");
1756   const Value *V = nullptr;
1757   if (parseIRValue(V))
1758     return true;
1759   if (!V->getType()->isPointerTy())
1760     return error("expected a pointer IR value");
1761   lex();
1762   int64_t Offset = 0;
1763   if (parseOffset(Offset))
1764     return true;
1765   Dest = MachinePointerInfo(V, Offset);
1766   return false;
1767 }
1768 
parseMachineMemoryOperand(MachineMemOperand * & Dest)1769 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1770   if (expectAndConsume(MIToken::lparen))
1771     return true;
1772   unsigned Flags = 0;
1773   while (Token.isMemoryOperandFlag()) {
1774     if (parseMemoryOperandFlag(Flags))
1775       return true;
1776   }
1777   if (Token.isNot(MIToken::Identifier) ||
1778       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1779     return error("expected 'load' or 'store' memory operation");
1780   if (Token.stringValue() == "load")
1781     Flags |= MachineMemOperand::MOLoad;
1782   else
1783     Flags |= MachineMemOperand::MOStore;
1784   lex();
1785 
1786   if (Token.isNot(MIToken::IntegerLiteral))
1787     return error("expected the size integer literal after memory operation");
1788   uint64_t Size;
1789   if (getUint64(Size))
1790     return true;
1791   lex();
1792 
1793   MachinePointerInfo Ptr = MachinePointerInfo();
1794   if (Token.is(MIToken::Identifier)) {
1795     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1796     if (Token.stringValue() != Word)
1797       return error(Twine("expected '") + Word + "'");
1798     lex();
1799 
1800     if (parseMachinePointerInfo(Ptr))
1801       return true;
1802   }
1803   unsigned BaseAlignment = Size;
1804   AAMDNodes AAInfo;
1805   MDNode *Range = nullptr;
1806   while (consumeIfPresent(MIToken::comma)) {
1807     switch (Token.kind()) {
1808     case MIToken::kw_align:
1809       if (parseAlignment(BaseAlignment))
1810         return true;
1811       break;
1812     case MIToken::md_tbaa:
1813       lex();
1814       if (parseMDNode(AAInfo.TBAA))
1815         return true;
1816       break;
1817     case MIToken::md_alias_scope:
1818       lex();
1819       if (parseMDNode(AAInfo.Scope))
1820         return true;
1821       break;
1822     case MIToken::md_noalias:
1823       lex();
1824       if (parseMDNode(AAInfo.NoAlias))
1825         return true;
1826       break;
1827     case MIToken::md_range:
1828       lex();
1829       if (parseMDNode(Range))
1830         return true;
1831       break;
1832     // TODO: Report an error on duplicate metadata nodes.
1833     default:
1834       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1835                    "'!noalias' or '!range'");
1836     }
1837   }
1838   if (expectAndConsume(MIToken::rparen))
1839     return true;
1840   Dest =
1841       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1842   return false;
1843 }
1844 
initNames2InstrOpCodes()1845 void MIParser::initNames2InstrOpCodes() {
1846   if (!Names2InstrOpCodes.empty())
1847     return;
1848   const auto *TII = MF.getSubtarget().getInstrInfo();
1849   assert(TII && "Expected target instruction info");
1850   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1851     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1852 }
1853 
parseInstrName(StringRef InstrName,unsigned & OpCode)1854 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1855   initNames2InstrOpCodes();
1856   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1857   if (InstrInfo == Names2InstrOpCodes.end())
1858     return true;
1859   OpCode = InstrInfo->getValue();
1860   return false;
1861 }
1862 
initNames2Regs()1863 void MIParser::initNames2Regs() {
1864   if (!Names2Regs.empty())
1865     return;
1866   // The '%noreg' register is the register 0.
1867   Names2Regs.insert(std::make_pair("noreg", 0));
1868   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1869   assert(TRI && "Expected target register info");
1870   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1871     bool WasInserted =
1872         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1873             .second;
1874     (void)WasInserted;
1875     assert(WasInserted && "Expected registers to be unique case-insensitively");
1876   }
1877 }
1878 
getRegisterByName(StringRef RegName,unsigned & Reg)1879 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1880   initNames2Regs();
1881   auto RegInfo = Names2Regs.find(RegName);
1882   if (RegInfo == Names2Regs.end())
1883     return true;
1884   Reg = RegInfo->getValue();
1885   return false;
1886 }
1887 
initNames2RegMasks()1888 void MIParser::initNames2RegMasks() {
1889   if (!Names2RegMasks.empty())
1890     return;
1891   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1892   assert(TRI && "Expected target register info");
1893   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
1894   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
1895   assert(RegMasks.size() == RegMaskNames.size());
1896   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
1897     Names2RegMasks.insert(
1898         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
1899 }
1900 
getRegMask(StringRef Identifier)1901 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
1902   initNames2RegMasks();
1903   auto RegMaskInfo = Names2RegMasks.find(Identifier);
1904   if (RegMaskInfo == Names2RegMasks.end())
1905     return nullptr;
1906   return RegMaskInfo->getValue();
1907 }
1908 
initNames2SubRegIndices()1909 void MIParser::initNames2SubRegIndices() {
1910   if (!Names2SubRegIndices.empty())
1911     return;
1912   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1913   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
1914     Names2SubRegIndices.insert(
1915         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
1916 }
1917 
getSubRegIndex(StringRef Name)1918 unsigned MIParser::getSubRegIndex(StringRef Name) {
1919   initNames2SubRegIndices();
1920   auto SubRegInfo = Names2SubRegIndices.find(Name);
1921   if (SubRegInfo == Names2SubRegIndices.end())
1922     return 0;
1923   return SubRegInfo->getValue();
1924 }
1925 
initSlots2BasicBlocks(const Function & F,DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)1926 static void initSlots2BasicBlocks(
1927     const Function &F,
1928     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1929   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1930   MST.incorporateFunction(F);
1931   for (auto &BB : F) {
1932     if (BB.hasName())
1933       continue;
1934     int Slot = MST.getLocalSlot(&BB);
1935     if (Slot == -1)
1936       continue;
1937     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
1938   }
1939 }
1940 
getIRBlockFromSlot(unsigned Slot,const DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)1941 static const BasicBlock *getIRBlockFromSlot(
1942     unsigned Slot,
1943     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1944   auto BlockInfo = Slots2BasicBlocks.find(Slot);
1945   if (BlockInfo == Slots2BasicBlocks.end())
1946     return nullptr;
1947   return BlockInfo->second;
1948 }
1949 
getIRBlock(unsigned Slot)1950 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
1951   if (Slots2BasicBlocks.empty())
1952     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
1953   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
1954 }
1955 
getIRBlock(unsigned Slot,const Function & F)1956 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
1957   if (&F == MF.getFunction())
1958     return getIRBlock(Slot);
1959   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
1960   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
1961   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
1962 }
1963 
mapValueToSlot(const Value * V,ModuleSlotTracker & MST,DenseMap<unsigned,const Value * > & Slots2Values)1964 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
1965                            DenseMap<unsigned, const Value *> &Slots2Values) {
1966   int Slot = MST.getLocalSlot(V);
1967   if (Slot == -1)
1968     return;
1969   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
1970 }
1971 
1972 /// Creates the mapping from slot numbers to function's unnamed IR values.
initSlots2Values(const Function & F,DenseMap<unsigned,const Value * > & Slots2Values)1973 static void initSlots2Values(const Function &F,
1974                              DenseMap<unsigned, const Value *> &Slots2Values) {
1975   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1976   MST.incorporateFunction(F);
1977   for (const auto &Arg : F.args())
1978     mapValueToSlot(&Arg, MST, Slots2Values);
1979   for (const auto &BB : F) {
1980     mapValueToSlot(&BB, MST, Slots2Values);
1981     for (const auto &I : BB)
1982       mapValueToSlot(&I, MST, Slots2Values);
1983   }
1984 }
1985 
getIRValue(unsigned Slot)1986 const Value *MIParser::getIRValue(unsigned Slot) {
1987   if (Slots2Values.empty())
1988     initSlots2Values(*MF.getFunction(), Slots2Values);
1989   auto ValueInfo = Slots2Values.find(Slot);
1990   if (ValueInfo == Slots2Values.end())
1991     return nullptr;
1992   return ValueInfo->second;
1993 }
1994 
initNames2TargetIndices()1995 void MIParser::initNames2TargetIndices() {
1996   if (!Names2TargetIndices.empty())
1997     return;
1998   const auto *TII = MF.getSubtarget().getInstrInfo();
1999   assert(TII && "Expected target instruction info");
2000   auto Indices = TII->getSerializableTargetIndices();
2001   for (const auto &I : Indices)
2002     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2003 }
2004 
getTargetIndex(StringRef Name,int & Index)2005 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2006   initNames2TargetIndices();
2007   auto IndexInfo = Names2TargetIndices.find(Name);
2008   if (IndexInfo == Names2TargetIndices.end())
2009     return true;
2010   Index = IndexInfo->second;
2011   return false;
2012 }
2013 
initNames2DirectTargetFlags()2014 void MIParser::initNames2DirectTargetFlags() {
2015   if (!Names2DirectTargetFlags.empty())
2016     return;
2017   const auto *TII = MF.getSubtarget().getInstrInfo();
2018   assert(TII && "Expected target instruction info");
2019   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2020   for (const auto &I : Flags)
2021     Names2DirectTargetFlags.insert(
2022         std::make_pair(StringRef(I.second), I.first));
2023 }
2024 
getDirectTargetFlag(StringRef Name,unsigned & Flag)2025 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2026   initNames2DirectTargetFlags();
2027   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2028   if (FlagInfo == Names2DirectTargetFlags.end())
2029     return true;
2030   Flag = FlagInfo->second;
2031   return false;
2032 }
2033 
initNames2BitmaskTargetFlags()2034 void MIParser::initNames2BitmaskTargetFlags() {
2035   if (!Names2BitmaskTargetFlags.empty())
2036     return;
2037   const auto *TII = MF.getSubtarget().getInstrInfo();
2038   assert(TII && "Expected target instruction info");
2039   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2040   for (const auto &I : Flags)
2041     Names2BitmaskTargetFlags.insert(
2042         std::make_pair(StringRef(I.second), I.first));
2043 }
2044 
getBitmaskTargetFlag(StringRef Name,unsigned & Flag)2045 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2046   initNames2BitmaskTargetFlags();
2047   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2048   if (FlagInfo == Names2BitmaskTargetFlags.end())
2049     return true;
2050   Flag = FlagInfo->second;
2051   return false;
2052 }
2053 
parseMachineBasicBlockDefinitions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)2054 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2055                                              StringRef Src,
2056                                              SMDiagnostic &Error) {
2057   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2058 }
2059 
parseMachineInstructions(const PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)2060 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2061                                     StringRef Src, SMDiagnostic &Error) {
2062   return MIParser(PFS, Error, Src).parseBasicBlocks();
2063 }
2064 
parseMBBReference(const PerFunctionMIParsingState & PFS,MachineBasicBlock * & MBB,StringRef Src,SMDiagnostic & Error)2065 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2066                              MachineBasicBlock *&MBB, StringRef Src,
2067                              SMDiagnostic &Error) {
2068   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2069 }
2070 
parseNamedRegisterReference(const PerFunctionMIParsingState & PFS,unsigned & Reg,StringRef Src,SMDiagnostic & Error)2071 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2072                                        unsigned &Reg, StringRef Src,
2073                                        SMDiagnostic &Error) {
2074   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2075 }
2076 
parseVirtualRegisterReference(const PerFunctionMIParsingState & PFS,unsigned & Reg,StringRef Src,SMDiagnostic & Error)2077 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2078                                          unsigned &Reg, StringRef Src,
2079                                          SMDiagnostic &Error) {
2080   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2081 }
2082 
parseStackObjectReference(const PerFunctionMIParsingState & PFS,int & FI,StringRef Src,SMDiagnostic & Error)2083 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2084                                      int &FI, StringRef Src,
2085                                      SMDiagnostic &Error) {
2086   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2087 }
2088 
parseMDNode(const PerFunctionMIParsingState & PFS,MDNode * & Node,StringRef Src,SMDiagnostic & Error)2089 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2090                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2091   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2092 }
2093