1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/SourceMgr.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36
37 using namespace llvm;
38
PerFunctionMIParsingState(MachineFunction & MF,SourceMgr & SM,const SlotMapping & IRSlots)39 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
40 SourceMgr &SM, const SlotMapping &IRSlots)
41 : MF(MF), SM(&SM), IRSlots(IRSlots) {
42 }
43
44 namespace {
45
46 /// A wrapper struct around the 'MachineOperand' struct that includes a source
47 /// range and other attributes.
48 struct ParsedMachineOperand {
49 MachineOperand Operand;
50 StringRef::iterator Begin;
51 StringRef::iterator End;
52 Optional<unsigned> TiedDefIdx;
53
ParsedMachineOperand__anon9477babd0111::ParsedMachineOperand54 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
55 StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
56 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
57 if (TiedDefIdx)
58 assert(Operand.isReg() && Operand.isUse() &&
59 "Only used register operands can be tied");
60 }
61 };
62
63 class MIParser {
64 MachineFunction &MF;
65 SMDiagnostic &Error;
66 StringRef Source, CurrentSource;
67 MIToken Token;
68 const PerFunctionMIParsingState &PFS;
69 /// Maps from instruction names to op codes.
70 StringMap<unsigned> Names2InstrOpCodes;
71 /// Maps from register names to registers.
72 StringMap<unsigned> Names2Regs;
73 /// Maps from register mask names to register masks.
74 StringMap<const uint32_t *> Names2RegMasks;
75 /// Maps from subregister names to subregister indices.
76 StringMap<unsigned> Names2SubRegIndices;
77 /// Maps from slot numbers to function's unnamed basic blocks.
78 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
79 /// Maps from slot numbers to function's unnamed values.
80 DenseMap<unsigned, const Value *> Slots2Values;
81 /// Maps from target index names to target indices.
82 StringMap<int> Names2TargetIndices;
83 /// Maps from direct target flag names to the direct target flag values.
84 StringMap<unsigned> Names2DirectTargetFlags;
85 /// Maps from direct target flag names to the bitmask target flag values.
86 StringMap<unsigned> Names2BitmaskTargetFlags;
87
88 public:
89 MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
90 StringRef Source);
91
92 /// \p SkipChar gives the number of characters to skip before looking
93 /// for the next token.
94 void lex(unsigned SkipChar = 0);
95
96 /// Report an error at the current location with the given message.
97 ///
98 /// This function always return true.
99 bool error(const Twine &Msg);
100
101 /// Report an error at the given location with the given message.
102 ///
103 /// This function always return true.
104 bool error(StringRef::iterator Loc, const Twine &Msg);
105
106 bool
107 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
108 bool parseBasicBlocks();
109 bool parse(MachineInstr *&MI);
110 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
111 bool parseStandaloneNamedRegister(unsigned &Reg);
112 bool parseStandaloneVirtualRegister(unsigned &Reg);
113 bool parseStandaloneStackObject(int &FI);
114 bool parseStandaloneMDNode(MDNode *&Node);
115
116 bool
117 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
118 bool parseBasicBlock(MachineBasicBlock &MBB);
119 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
120 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
121
122 bool parseRegister(unsigned &Reg);
123 bool parseRegisterFlag(unsigned &Flags);
124 bool parseSubRegisterIndex(unsigned &SubReg);
125 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
126 bool parseSize(unsigned &Size);
127 bool parseRegisterOperand(MachineOperand &Dest,
128 Optional<unsigned> &TiedDefIdx, bool IsDef = false);
129 bool parseImmediateOperand(MachineOperand &Dest);
130 bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
131 const Constant *&C);
132 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
133 bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read,
134 Type *&Ty);
135 // \p MustBeSized defines whether or not \p Ty must be sized.
136 bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true);
137 bool parseTypedImmediateOperand(MachineOperand &Dest);
138 bool parseFPImmediateOperand(MachineOperand &Dest);
139 bool parseMBBReference(MachineBasicBlock *&MBB);
140 bool parseMBBOperand(MachineOperand &Dest);
141 bool parseStackFrameIndex(int &FI);
142 bool parseStackObjectOperand(MachineOperand &Dest);
143 bool parseFixedStackFrameIndex(int &FI);
144 bool parseFixedStackObjectOperand(MachineOperand &Dest);
145 bool parseGlobalValue(GlobalValue *&GV);
146 bool parseGlobalAddressOperand(MachineOperand &Dest);
147 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
148 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
149 bool parseJumpTableIndexOperand(MachineOperand &Dest);
150 bool parseExternalSymbolOperand(MachineOperand &Dest);
151 bool parseMDNode(MDNode *&Node);
152 bool parseMetadataOperand(MachineOperand &Dest);
153 bool parseCFIOffset(int &Offset);
154 bool parseCFIRegister(unsigned &Reg);
155 bool parseCFIOperand(MachineOperand &Dest);
156 bool parseIRBlock(BasicBlock *&BB, const Function &F);
157 bool parseBlockAddressOperand(MachineOperand &Dest);
158 bool parseTargetIndexOperand(MachineOperand &Dest);
159 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
160 bool parseMachineOperand(MachineOperand &Dest,
161 Optional<unsigned> &TiedDefIdx);
162 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
163 Optional<unsigned> &TiedDefIdx);
164 bool parseOffset(int64_t &Offset);
165 bool parseAlignment(unsigned &Alignment);
166 bool parseOperandsOffset(MachineOperand &Op);
167 bool parseIRValue(const Value *&V);
168 bool parseMemoryOperandFlag(unsigned &Flags);
169 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
170 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
171 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
172
173 private:
174 /// Convert the integer literal in the current token into an unsigned integer.
175 ///
176 /// Return true if an error occurred.
177 bool getUnsigned(unsigned &Result);
178
179 /// Convert the integer literal in the current token into an uint64.
180 ///
181 /// Return true if an error occurred.
182 bool getUint64(uint64_t &Result);
183
184 /// If the current token is of the given kind, consume it and return false.
185 /// Otherwise report an error and return true.
186 bool expectAndConsume(MIToken::TokenKind TokenKind);
187
188 /// If the current token is of the given kind, consume it and return true.
189 /// Otherwise return false.
190 bool consumeIfPresent(MIToken::TokenKind TokenKind);
191
192 void initNames2InstrOpCodes();
193
194 /// Try to convert an instruction name to an opcode. Return true if the
195 /// instruction name is invalid.
196 bool parseInstrName(StringRef InstrName, unsigned &OpCode);
197
198 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
199
200 bool assignRegisterTies(MachineInstr &MI,
201 ArrayRef<ParsedMachineOperand> Operands);
202
203 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
204 const MCInstrDesc &MCID);
205
206 void initNames2Regs();
207
208 /// Try to convert a register name to a register number. Return true if the
209 /// register name is invalid.
210 bool getRegisterByName(StringRef RegName, unsigned &Reg);
211
212 void initNames2RegMasks();
213
214 /// Check if the given identifier is a name of a register mask.
215 ///
216 /// Return null if the identifier isn't a register mask.
217 const uint32_t *getRegMask(StringRef Identifier);
218
219 void initNames2SubRegIndices();
220
221 /// Check if the given identifier is a name of a subregister index.
222 ///
223 /// Return 0 if the name isn't a subregister index class.
224 unsigned getSubRegIndex(StringRef Name);
225
226 const BasicBlock *getIRBlock(unsigned Slot);
227 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
228
229 const Value *getIRValue(unsigned Slot);
230
231 void initNames2TargetIndices();
232
233 /// Try to convert a name of target index to the corresponding target index.
234 ///
235 /// Return true if the name isn't a name of a target index.
236 bool getTargetIndex(StringRef Name, int &Index);
237
238 void initNames2DirectTargetFlags();
239
240 /// Try to convert a name of a direct target flag to the corresponding
241 /// target flag.
242 ///
243 /// Return true if the name isn't a name of a direct flag.
244 bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
245
246 void initNames2BitmaskTargetFlags();
247
248 /// Try to convert a name of a bitmask target flag to the corresponding
249 /// target flag.
250 ///
251 /// Return true if the name isn't a name of a bitmask target flag.
252 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
253 };
254
255 } // end anonymous namespace
256
MIParser(const PerFunctionMIParsingState & PFS,SMDiagnostic & Error,StringRef Source)257 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
258 StringRef Source)
259 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
260 {}
261
lex(unsigned SkipChar)262 void MIParser::lex(unsigned SkipChar) {
263 CurrentSource = lexMIToken(
264 CurrentSource.data() + SkipChar, Token,
265 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
266 }
267
error(const Twine & Msg)268 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
269
error(StringRef::iterator Loc,const Twine & Msg)270 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
271 const SourceMgr &SM = *PFS.SM;
272 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
273 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
274 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
275 // Create an ordinary diagnostic when the source manager's buffer is the
276 // source string.
277 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
278 return true;
279 }
280 // Create a diagnostic for a YAML string literal.
281 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
282 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
283 Source, None, None);
284 return true;
285 }
286
toString(MIToken::TokenKind TokenKind)287 static const char *toString(MIToken::TokenKind TokenKind) {
288 switch (TokenKind) {
289 case MIToken::comma:
290 return "','";
291 case MIToken::equal:
292 return "'='";
293 case MIToken::colon:
294 return "':'";
295 case MIToken::lparen:
296 return "'('";
297 case MIToken::rparen:
298 return "')'";
299 default:
300 return "<unknown token>";
301 }
302 }
303
expectAndConsume(MIToken::TokenKind TokenKind)304 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
305 if (Token.isNot(TokenKind))
306 return error(Twine("expected ") + toString(TokenKind));
307 lex();
308 return false;
309 }
310
consumeIfPresent(MIToken::TokenKind TokenKind)311 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
312 if (Token.isNot(TokenKind))
313 return false;
314 lex();
315 return true;
316 }
317
parseBasicBlockDefinition(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)318 bool MIParser::parseBasicBlockDefinition(
319 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
320 assert(Token.is(MIToken::MachineBasicBlockLabel));
321 unsigned ID = 0;
322 if (getUnsigned(ID))
323 return true;
324 auto Loc = Token.location();
325 auto Name = Token.stringValue();
326 lex();
327 bool HasAddressTaken = false;
328 bool IsLandingPad = false;
329 unsigned Alignment = 0;
330 BasicBlock *BB = nullptr;
331 if (consumeIfPresent(MIToken::lparen)) {
332 do {
333 // TODO: Report an error when multiple same attributes are specified.
334 switch (Token.kind()) {
335 case MIToken::kw_address_taken:
336 HasAddressTaken = true;
337 lex();
338 break;
339 case MIToken::kw_landing_pad:
340 IsLandingPad = true;
341 lex();
342 break;
343 case MIToken::kw_align:
344 if (parseAlignment(Alignment))
345 return true;
346 break;
347 case MIToken::IRBlock:
348 // TODO: Report an error when both name and ir block are specified.
349 if (parseIRBlock(BB, *MF.getFunction()))
350 return true;
351 lex();
352 break;
353 default:
354 break;
355 }
356 } while (consumeIfPresent(MIToken::comma));
357 if (expectAndConsume(MIToken::rparen))
358 return true;
359 }
360 if (expectAndConsume(MIToken::colon))
361 return true;
362
363 if (!Name.empty()) {
364 BB = dyn_cast_or_null<BasicBlock>(
365 MF.getFunction()->getValueSymbolTable().lookup(Name));
366 if (!BB)
367 return error(Loc, Twine("basic block '") + Name +
368 "' is not defined in the function '" +
369 MF.getName() + "'");
370 }
371 auto *MBB = MF.CreateMachineBasicBlock(BB);
372 MF.insert(MF.end(), MBB);
373 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
374 if (!WasInserted)
375 return error(Loc, Twine("redefinition of machine basic block with id #") +
376 Twine(ID));
377 if (Alignment)
378 MBB->setAlignment(Alignment);
379 if (HasAddressTaken)
380 MBB->setHasAddressTaken();
381 MBB->setIsEHPad(IsLandingPad);
382 return false;
383 }
384
parseBasicBlockDefinitions(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)385 bool MIParser::parseBasicBlockDefinitions(
386 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
387 lex();
388 // Skip until the first machine basic block.
389 while (Token.is(MIToken::Newline))
390 lex();
391 if (Token.isErrorOrEOF())
392 return Token.isError();
393 if (Token.isNot(MIToken::MachineBasicBlockLabel))
394 return error("expected a basic block definition before instructions");
395 unsigned BraceDepth = 0;
396 do {
397 if (parseBasicBlockDefinition(MBBSlots))
398 return true;
399 bool IsAfterNewline = false;
400 // Skip until the next machine basic block.
401 while (true) {
402 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
403 Token.isErrorOrEOF())
404 break;
405 else if (Token.is(MIToken::MachineBasicBlockLabel))
406 return error("basic block definition should be located at the start of "
407 "the line");
408 else if (consumeIfPresent(MIToken::Newline)) {
409 IsAfterNewline = true;
410 continue;
411 }
412 IsAfterNewline = false;
413 if (Token.is(MIToken::lbrace))
414 ++BraceDepth;
415 if (Token.is(MIToken::rbrace)) {
416 if (!BraceDepth)
417 return error("extraneous closing brace ('}')");
418 --BraceDepth;
419 }
420 lex();
421 }
422 // Verify that we closed all of the '{' at the end of a file or a block.
423 if (!Token.isError() && BraceDepth)
424 return error("expected '}'"); // FIXME: Report a note that shows '{'.
425 } while (!Token.isErrorOrEOF());
426 return Token.isError();
427 }
428
parseBasicBlockLiveins(MachineBasicBlock & MBB)429 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
430 assert(Token.is(MIToken::kw_liveins));
431 lex();
432 if (expectAndConsume(MIToken::colon))
433 return true;
434 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
435 return false;
436 do {
437 if (Token.isNot(MIToken::NamedRegister))
438 return error("expected a named register");
439 unsigned Reg = 0;
440 if (parseRegister(Reg))
441 return true;
442 MBB.addLiveIn(Reg);
443 lex();
444 } while (consumeIfPresent(MIToken::comma));
445 return false;
446 }
447
parseBasicBlockSuccessors(MachineBasicBlock & MBB)448 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
449 assert(Token.is(MIToken::kw_successors));
450 lex();
451 if (expectAndConsume(MIToken::colon))
452 return true;
453 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
454 return false;
455 do {
456 if (Token.isNot(MIToken::MachineBasicBlock))
457 return error("expected a machine basic block reference");
458 MachineBasicBlock *SuccMBB = nullptr;
459 if (parseMBBReference(SuccMBB))
460 return true;
461 lex();
462 unsigned Weight = 0;
463 if (consumeIfPresent(MIToken::lparen)) {
464 if (Token.isNot(MIToken::IntegerLiteral))
465 return error("expected an integer literal after '('");
466 if (getUnsigned(Weight))
467 return true;
468 lex();
469 if (expectAndConsume(MIToken::rparen))
470 return true;
471 }
472 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
473 } while (consumeIfPresent(MIToken::comma));
474 MBB.normalizeSuccProbs();
475 return false;
476 }
477
parseBasicBlock(MachineBasicBlock & MBB)478 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
479 // Skip the definition.
480 assert(Token.is(MIToken::MachineBasicBlockLabel));
481 lex();
482 if (consumeIfPresent(MIToken::lparen)) {
483 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
484 lex();
485 consumeIfPresent(MIToken::rparen);
486 }
487 consumeIfPresent(MIToken::colon);
488
489 // Parse the liveins and successors.
490 // N.B: Multiple lists of successors and liveins are allowed and they're
491 // merged into one.
492 // Example:
493 // liveins: %edi
494 // liveins: %esi
495 //
496 // is equivalent to
497 // liveins: %edi, %esi
498 while (true) {
499 if (Token.is(MIToken::kw_successors)) {
500 if (parseBasicBlockSuccessors(MBB))
501 return true;
502 } else if (Token.is(MIToken::kw_liveins)) {
503 if (parseBasicBlockLiveins(MBB))
504 return true;
505 } else if (consumeIfPresent(MIToken::Newline)) {
506 continue;
507 } else
508 break;
509 if (!Token.isNewlineOrEOF())
510 return error("expected line break at the end of a list");
511 lex();
512 }
513
514 // Parse the instructions.
515 bool IsInBundle = false;
516 MachineInstr *PrevMI = nullptr;
517 while (true) {
518 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
519 return false;
520 else if (consumeIfPresent(MIToken::Newline))
521 continue;
522 if (consumeIfPresent(MIToken::rbrace)) {
523 // The first parsing pass should verify that all closing '}' have an
524 // opening '{'.
525 assert(IsInBundle);
526 IsInBundle = false;
527 continue;
528 }
529 MachineInstr *MI = nullptr;
530 if (parse(MI))
531 return true;
532 MBB.insert(MBB.end(), MI);
533 if (IsInBundle) {
534 PrevMI->setFlag(MachineInstr::BundledSucc);
535 MI->setFlag(MachineInstr::BundledPred);
536 }
537 PrevMI = MI;
538 if (Token.is(MIToken::lbrace)) {
539 if (IsInBundle)
540 return error("nested instruction bundles are not allowed");
541 lex();
542 // This instruction is the start of the bundle.
543 MI->setFlag(MachineInstr::BundledSucc);
544 IsInBundle = true;
545 if (!Token.is(MIToken::Newline))
546 // The next instruction can be on the same line.
547 continue;
548 }
549 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
550 lex();
551 }
552 return false;
553 }
554
parseBasicBlocks()555 bool MIParser::parseBasicBlocks() {
556 lex();
557 // Skip until the first machine basic block.
558 while (Token.is(MIToken::Newline))
559 lex();
560 if (Token.isErrorOrEOF())
561 return Token.isError();
562 // The first parsing pass should have verified that this token is a MBB label
563 // in the 'parseBasicBlockDefinitions' method.
564 assert(Token.is(MIToken::MachineBasicBlockLabel));
565 do {
566 MachineBasicBlock *MBB = nullptr;
567 if (parseMBBReference(MBB))
568 return true;
569 if (parseBasicBlock(*MBB))
570 return true;
571 // The method 'parseBasicBlock' should parse the whole block until the next
572 // block or the end of file.
573 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
574 } while (Token.isNot(MIToken::Eof));
575 return false;
576 }
577
parse(MachineInstr * & MI)578 bool MIParser::parse(MachineInstr *&MI) {
579 // Parse any register operands before '='
580 MachineOperand MO = MachineOperand::CreateImm(0);
581 SmallVector<ParsedMachineOperand, 8> Operands;
582 while (Token.isRegister() || Token.isRegisterFlag()) {
583 auto Loc = Token.location();
584 Optional<unsigned> TiedDefIdx;
585 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
586 return true;
587 Operands.push_back(
588 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
589 if (Token.isNot(MIToken::comma))
590 break;
591 lex();
592 }
593 if (!Operands.empty() && expectAndConsume(MIToken::equal))
594 return true;
595
596 unsigned OpCode, Flags = 0;
597 if (Token.isError() || parseInstruction(OpCode, Flags))
598 return true;
599
600 Type *Ty = nullptr;
601 if (isPreISelGenericOpcode(OpCode)) {
602 // For generic opcode, a type is mandatory.
603 auto Loc = Token.location();
604 if (parseIRType(Loc, Ty))
605 return true;
606 }
607
608 // Parse the remaining machine operands.
609 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
610 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
611 auto Loc = Token.location();
612 Optional<unsigned> TiedDefIdx;
613 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
614 return true;
615 Operands.push_back(
616 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
617 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
618 Token.is(MIToken::lbrace))
619 break;
620 if (Token.isNot(MIToken::comma))
621 return error("expected ',' before the next machine operand");
622 lex();
623 }
624
625 DebugLoc DebugLocation;
626 if (Token.is(MIToken::kw_debug_location)) {
627 lex();
628 if (Token.isNot(MIToken::exclaim))
629 return error("expected a metadata node after 'debug-location'");
630 MDNode *Node = nullptr;
631 if (parseMDNode(Node))
632 return true;
633 DebugLocation = DebugLoc(Node);
634 }
635
636 // Parse the machine memory operands.
637 SmallVector<MachineMemOperand *, 2> MemOperands;
638 if (Token.is(MIToken::coloncolon)) {
639 lex();
640 while (!Token.isNewlineOrEOF()) {
641 MachineMemOperand *MemOp = nullptr;
642 if (parseMachineMemoryOperand(MemOp))
643 return true;
644 MemOperands.push_back(MemOp);
645 if (Token.isNewlineOrEOF())
646 break;
647 if (Token.isNot(MIToken::comma))
648 return error("expected ',' before the next machine memory operand");
649 lex();
650 }
651 }
652
653 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
654 if (!MCID.isVariadic()) {
655 // FIXME: Move the implicit operand verification to the machine verifier.
656 if (verifyImplicitOperands(Operands, MCID))
657 return true;
658 }
659
660 // TODO: Check for extraneous machine operands.
661 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
662 MI->setFlags(Flags);
663 if (Ty)
664 MI->setType(Ty);
665 for (const auto &Operand : Operands)
666 MI->addOperand(MF, Operand.Operand);
667 if (assignRegisterTies(*MI, Operands))
668 return true;
669 if (MemOperands.empty())
670 return false;
671 MachineInstr::mmo_iterator MemRefs =
672 MF.allocateMemRefsArray(MemOperands.size());
673 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
674 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
675 return false;
676 }
677
parseStandaloneMBB(MachineBasicBlock * & MBB)678 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
679 lex();
680 if (Token.isNot(MIToken::MachineBasicBlock))
681 return error("expected a machine basic block reference");
682 if (parseMBBReference(MBB))
683 return true;
684 lex();
685 if (Token.isNot(MIToken::Eof))
686 return error(
687 "expected end of string after the machine basic block reference");
688 return false;
689 }
690
parseStandaloneNamedRegister(unsigned & Reg)691 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
692 lex();
693 if (Token.isNot(MIToken::NamedRegister))
694 return error("expected a named register");
695 if (parseRegister(Reg))
696 return true;
697 lex();
698 if (Token.isNot(MIToken::Eof))
699 return error("expected end of string after the register reference");
700 return false;
701 }
702
parseStandaloneVirtualRegister(unsigned & Reg)703 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
704 lex();
705 if (Token.isNot(MIToken::VirtualRegister))
706 return error("expected a virtual register");
707 if (parseRegister(Reg))
708 return true;
709 lex();
710 if (Token.isNot(MIToken::Eof))
711 return error("expected end of string after the register reference");
712 return false;
713 }
714
parseStandaloneStackObject(int & FI)715 bool MIParser::parseStandaloneStackObject(int &FI) {
716 lex();
717 if (Token.isNot(MIToken::StackObject))
718 return error("expected a stack object");
719 if (parseStackFrameIndex(FI))
720 return true;
721 if (Token.isNot(MIToken::Eof))
722 return error("expected end of string after the stack object reference");
723 return false;
724 }
725
parseStandaloneMDNode(MDNode * & Node)726 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
727 lex();
728 if (Token.isNot(MIToken::exclaim))
729 return error("expected a metadata node");
730 if (parseMDNode(Node))
731 return true;
732 if (Token.isNot(MIToken::Eof))
733 return error("expected end of string after the metadata node");
734 return false;
735 }
736
printImplicitRegisterFlag(const MachineOperand & MO)737 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
738 assert(MO.isImplicit());
739 return MO.isDef() ? "implicit-def" : "implicit";
740 }
741
getRegisterName(const TargetRegisterInfo * TRI,unsigned Reg)742 static std::string getRegisterName(const TargetRegisterInfo *TRI,
743 unsigned Reg) {
744 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
745 return StringRef(TRI->getName(Reg)).lower();
746 }
747
748 /// Return true if the parsed machine operands contain a given machine operand.
isImplicitOperandIn(const MachineOperand & ImplicitOperand,ArrayRef<ParsedMachineOperand> Operands)749 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
750 ArrayRef<ParsedMachineOperand> Operands) {
751 for (const auto &I : Operands) {
752 if (ImplicitOperand.isIdenticalTo(I.Operand))
753 return true;
754 }
755 return false;
756 }
757
verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,const MCInstrDesc & MCID)758 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
759 const MCInstrDesc &MCID) {
760 if (MCID.isCall())
761 // We can't verify call instructions as they can contain arbitrary implicit
762 // register and register mask operands.
763 return false;
764
765 // Gather all the expected implicit operands.
766 SmallVector<MachineOperand, 4> ImplicitOperands;
767 if (MCID.ImplicitDefs)
768 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
769 ImplicitOperands.push_back(
770 MachineOperand::CreateReg(*ImpDefs, true, true));
771 if (MCID.ImplicitUses)
772 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
773 ImplicitOperands.push_back(
774 MachineOperand::CreateReg(*ImpUses, false, true));
775
776 const auto *TRI = MF.getSubtarget().getRegisterInfo();
777 assert(TRI && "Expected target register info");
778 for (const auto &I : ImplicitOperands) {
779 if (isImplicitOperandIn(I, Operands))
780 continue;
781 return error(Operands.empty() ? Token.location() : Operands.back().End,
782 Twine("missing implicit register operand '") +
783 printImplicitRegisterFlag(I) + " %" +
784 getRegisterName(TRI, I.getReg()) + "'");
785 }
786 return false;
787 }
788
parseInstruction(unsigned & OpCode,unsigned & Flags)789 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
790 if (Token.is(MIToken::kw_frame_setup)) {
791 Flags |= MachineInstr::FrameSetup;
792 lex();
793 }
794 if (Token.isNot(MIToken::Identifier))
795 return error("expected a machine instruction");
796 StringRef InstrName = Token.stringValue();
797 if (parseInstrName(InstrName, OpCode))
798 return error(Twine("unknown machine instruction name '") + InstrName + "'");
799 lex();
800 return false;
801 }
802
parseRegister(unsigned & Reg)803 bool MIParser::parseRegister(unsigned &Reg) {
804 switch (Token.kind()) {
805 case MIToken::underscore:
806 Reg = 0;
807 break;
808 case MIToken::NamedRegister: {
809 StringRef Name = Token.stringValue();
810 if (getRegisterByName(Name, Reg))
811 return error(Twine("unknown register name '") + Name + "'");
812 break;
813 }
814 case MIToken::VirtualRegister: {
815 unsigned ID;
816 if (getUnsigned(ID))
817 return true;
818 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
819 if (RegInfo == PFS.VirtualRegisterSlots.end())
820 return error(Twine("use of undefined virtual register '%") + Twine(ID) +
821 "'");
822 Reg = RegInfo->second;
823 break;
824 }
825 // TODO: Parse other register kinds.
826 default:
827 llvm_unreachable("The current token should be a register");
828 }
829 return false;
830 }
831
parseRegisterFlag(unsigned & Flags)832 bool MIParser::parseRegisterFlag(unsigned &Flags) {
833 const unsigned OldFlags = Flags;
834 switch (Token.kind()) {
835 case MIToken::kw_implicit:
836 Flags |= RegState::Implicit;
837 break;
838 case MIToken::kw_implicit_define:
839 Flags |= RegState::ImplicitDefine;
840 break;
841 case MIToken::kw_def:
842 Flags |= RegState::Define;
843 break;
844 case MIToken::kw_dead:
845 Flags |= RegState::Dead;
846 break;
847 case MIToken::kw_killed:
848 Flags |= RegState::Kill;
849 break;
850 case MIToken::kw_undef:
851 Flags |= RegState::Undef;
852 break;
853 case MIToken::kw_internal:
854 Flags |= RegState::InternalRead;
855 break;
856 case MIToken::kw_early_clobber:
857 Flags |= RegState::EarlyClobber;
858 break;
859 case MIToken::kw_debug_use:
860 Flags |= RegState::Debug;
861 break;
862 default:
863 llvm_unreachable("The current token should be a register flag");
864 }
865 if (OldFlags == Flags)
866 // We know that the same flag is specified more than once when the flags
867 // weren't modified.
868 return error("duplicate '" + Token.stringValue() + "' register flag");
869 lex();
870 return false;
871 }
872
parseSubRegisterIndex(unsigned & SubReg)873 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
874 assert(Token.is(MIToken::colon));
875 lex();
876 if (Token.isNot(MIToken::Identifier))
877 return error("expected a subregister index after ':'");
878 auto Name = Token.stringValue();
879 SubReg = getSubRegIndex(Name);
880 if (!SubReg)
881 return error(Twine("use of unknown subregister index '") + Name + "'");
882 lex();
883 return false;
884 }
885
parseRegisterTiedDefIndex(unsigned & TiedDefIdx)886 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
887 if (!consumeIfPresent(MIToken::kw_tied_def))
888 return error("expected 'tied-def' after '('");
889 if (Token.isNot(MIToken::IntegerLiteral))
890 return error("expected an integer literal after 'tied-def'");
891 if (getUnsigned(TiedDefIdx))
892 return true;
893 lex();
894 if (expectAndConsume(MIToken::rparen))
895 return true;
896 return false;
897 }
898
parseSize(unsigned & Size)899 bool MIParser::parseSize(unsigned &Size) {
900 if (Token.isNot(MIToken::IntegerLiteral))
901 return error("expected an integer literal for the size");
902 if (getUnsigned(Size))
903 return true;
904 lex();
905 if (expectAndConsume(MIToken::rparen))
906 return true;
907 return false;
908 }
909
assignRegisterTies(MachineInstr & MI,ArrayRef<ParsedMachineOperand> Operands)910 bool MIParser::assignRegisterTies(MachineInstr &MI,
911 ArrayRef<ParsedMachineOperand> Operands) {
912 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
913 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
914 if (!Operands[I].TiedDefIdx)
915 continue;
916 // The parser ensures that this operand is a register use, so we just have
917 // to check the tied-def operand.
918 unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
919 if (DefIdx >= E)
920 return error(Operands[I].Begin,
921 Twine("use of invalid tied-def operand index '" +
922 Twine(DefIdx) + "'; instruction has only ") +
923 Twine(E) + " operands");
924 const auto &DefOperand = Operands[DefIdx].Operand;
925 if (!DefOperand.isReg() || !DefOperand.isDef())
926 // FIXME: add note with the def operand.
927 return error(Operands[I].Begin,
928 Twine("use of invalid tied-def operand index '") +
929 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
930 " isn't a defined register");
931 // Check that the tied-def operand wasn't tied elsewhere.
932 for (const auto &TiedPair : TiedRegisterPairs) {
933 if (TiedPair.first == DefIdx)
934 return error(Operands[I].Begin,
935 Twine("the tied-def operand #") + Twine(DefIdx) +
936 " is already tied with another register operand");
937 }
938 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
939 }
940 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
941 // indices must be less than tied max.
942 for (const auto &TiedPair : TiedRegisterPairs)
943 MI.tieOperands(TiedPair.first, TiedPair.second);
944 return false;
945 }
946
parseRegisterOperand(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx,bool IsDef)947 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
948 Optional<unsigned> &TiedDefIdx,
949 bool IsDef) {
950 unsigned Reg;
951 unsigned Flags = IsDef ? RegState::Define : 0;
952 while (Token.isRegisterFlag()) {
953 if (parseRegisterFlag(Flags))
954 return true;
955 }
956 if (!Token.isRegister())
957 return error("expected a register after register flags");
958 if (parseRegister(Reg))
959 return true;
960 lex();
961 unsigned SubReg = 0;
962 if (Token.is(MIToken::colon)) {
963 if (parseSubRegisterIndex(SubReg))
964 return true;
965 }
966 if ((Flags & RegState::Define) == 0) {
967 if (consumeIfPresent(MIToken::lparen)) {
968 unsigned Idx;
969 if (parseRegisterTiedDefIndex(Idx))
970 return true;
971 TiedDefIdx = Idx;
972 }
973 } else if (consumeIfPresent(MIToken::lparen)) {
974 // Virtual registers may have a size with GlobalISel.
975 if (!TargetRegisterInfo::isVirtualRegister(Reg))
976 return error("unexpected size on physical register");
977 unsigned Size;
978 if (parseSize(Size))
979 return true;
980
981 MachineRegisterInfo &MRI = MF.getRegInfo();
982 MRI.setSize(Reg, Size);
983 } else if (PFS.GenericVRegs.count(Reg)) {
984 // Generic virtual registers must have a size.
985 // If we end up here this means the size hasn't been specified and
986 // this is bad!
987 return error("generic virtual registers must have a size");
988 }
989 Dest = MachineOperand::CreateReg(
990 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
991 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
992 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
993 Flags & RegState::InternalRead);
994 return false;
995 }
996
parseImmediateOperand(MachineOperand & Dest)997 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
998 assert(Token.is(MIToken::IntegerLiteral));
999 const APSInt &Int = Token.integerValue();
1000 if (Int.getMinSignedBits() > 64)
1001 return error("integer literal is too large to be an immediate operand");
1002 Dest = MachineOperand::CreateImm(Int.getExtValue());
1003 lex();
1004 return false;
1005 }
1006
parseIRConstant(StringRef::iterator Loc,StringRef StringValue,const Constant * & C)1007 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1008 const Constant *&C) {
1009 auto Source = StringValue.str(); // The source has to be null terminated.
1010 SMDiagnostic Err;
1011 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1012 &PFS.IRSlots);
1013 if (!C)
1014 return error(Loc + Err.getColumnNo(), Err.getMessage());
1015 return false;
1016 }
1017
parseIRConstant(StringRef::iterator Loc,const Constant * & C)1018 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1019 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1020 return true;
1021 lex();
1022 return false;
1023 }
1024
parseIRType(StringRef::iterator Loc,StringRef StringValue,unsigned & Read,Type * & Ty)1025 bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue,
1026 unsigned &Read, Type *&Ty) {
1027 auto Source = StringValue.str(); // The source has to be null terminated.
1028 SMDiagnostic Err;
1029 Ty = parseTypeAtBeginning(Source.c_str(), Read, Err,
1030 *MF.getFunction()->getParent(), &PFS.IRSlots);
1031 if (!Ty)
1032 return error(Loc + Err.getColumnNo(), Err.getMessage());
1033 return false;
1034 }
1035
parseIRType(StringRef::iterator Loc,Type * & Ty,bool MustBeSized)1036 bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty,
1037 bool MustBeSized) {
1038 // At this point we enter in the IR world, i.e., to get the correct type,
1039 // we need to hand off the whole string, not just the current token.
1040 // E.g., <4 x i64> would give '<' as a token and there is not much
1041 // the IR parser can do with that.
1042 unsigned Read = 0;
1043 if (parseIRType(Loc, StringRef(Loc), Read, Ty))
1044 return true;
1045 // The type must be sized, otherwise there is not much the backend
1046 // can do with it.
1047 if (MustBeSized && !Ty->isSized())
1048 return error("expected a sized type");
1049 // The next token is Read characters from the Loc.
1050 // However, the current location is not Loc, but Loc + the length of Token.
1051 // Therefore, subtract the length of Token (range().end() - Loc) to the
1052 // number of characters to skip before the next token.
1053 lex(Read - (Token.range().end() - Loc));
1054 return false;
1055 }
1056
parseTypedImmediateOperand(MachineOperand & Dest)1057 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1058 assert(Token.is(MIToken::IntegerType));
1059 auto Loc = Token.location();
1060 lex();
1061 if (Token.isNot(MIToken::IntegerLiteral))
1062 return error("expected an integer literal");
1063 const Constant *C = nullptr;
1064 if (parseIRConstant(Loc, C))
1065 return true;
1066 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1067 return false;
1068 }
1069
parseFPImmediateOperand(MachineOperand & Dest)1070 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1071 auto Loc = Token.location();
1072 lex();
1073 if (Token.isNot(MIToken::FloatingPointLiteral))
1074 return error("expected a floating point literal");
1075 const Constant *C = nullptr;
1076 if (parseIRConstant(Loc, C))
1077 return true;
1078 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1079 return false;
1080 }
1081
getUnsigned(unsigned & Result)1082 bool MIParser::getUnsigned(unsigned &Result) {
1083 assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1084 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1085 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1086 if (Val64 == Limit)
1087 return error("expected 32-bit integer (too large)");
1088 Result = Val64;
1089 return false;
1090 }
1091
parseMBBReference(MachineBasicBlock * & MBB)1092 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1093 assert(Token.is(MIToken::MachineBasicBlock) ||
1094 Token.is(MIToken::MachineBasicBlockLabel));
1095 unsigned Number;
1096 if (getUnsigned(Number))
1097 return true;
1098 auto MBBInfo = PFS.MBBSlots.find(Number);
1099 if (MBBInfo == PFS.MBBSlots.end())
1100 return error(Twine("use of undefined machine basic block #") +
1101 Twine(Number));
1102 MBB = MBBInfo->second;
1103 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1104 return error(Twine("the name of machine basic block #") + Twine(Number) +
1105 " isn't '" + Token.stringValue() + "'");
1106 return false;
1107 }
1108
parseMBBOperand(MachineOperand & Dest)1109 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1110 MachineBasicBlock *MBB;
1111 if (parseMBBReference(MBB))
1112 return true;
1113 Dest = MachineOperand::CreateMBB(MBB);
1114 lex();
1115 return false;
1116 }
1117
parseStackFrameIndex(int & FI)1118 bool MIParser::parseStackFrameIndex(int &FI) {
1119 assert(Token.is(MIToken::StackObject));
1120 unsigned ID;
1121 if (getUnsigned(ID))
1122 return true;
1123 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1124 if (ObjectInfo == PFS.StackObjectSlots.end())
1125 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1126 "'");
1127 StringRef Name;
1128 if (const auto *Alloca =
1129 MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
1130 Name = Alloca->getName();
1131 if (!Token.stringValue().empty() && Token.stringValue() != Name)
1132 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1133 "' isn't '" + Token.stringValue() + "'");
1134 lex();
1135 FI = ObjectInfo->second;
1136 return false;
1137 }
1138
parseStackObjectOperand(MachineOperand & Dest)1139 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1140 int FI;
1141 if (parseStackFrameIndex(FI))
1142 return true;
1143 Dest = MachineOperand::CreateFI(FI);
1144 return false;
1145 }
1146
parseFixedStackFrameIndex(int & FI)1147 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1148 assert(Token.is(MIToken::FixedStackObject));
1149 unsigned ID;
1150 if (getUnsigned(ID))
1151 return true;
1152 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1153 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1154 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1155 Twine(ID) + "'");
1156 lex();
1157 FI = ObjectInfo->second;
1158 return false;
1159 }
1160
parseFixedStackObjectOperand(MachineOperand & Dest)1161 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1162 int FI;
1163 if (parseFixedStackFrameIndex(FI))
1164 return true;
1165 Dest = MachineOperand::CreateFI(FI);
1166 return false;
1167 }
1168
parseGlobalValue(GlobalValue * & GV)1169 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1170 switch (Token.kind()) {
1171 case MIToken::NamedGlobalValue: {
1172 const Module *M = MF.getFunction()->getParent();
1173 GV = M->getNamedValue(Token.stringValue());
1174 if (!GV)
1175 return error(Twine("use of undefined global value '") + Token.range() +
1176 "'");
1177 break;
1178 }
1179 case MIToken::GlobalValue: {
1180 unsigned GVIdx;
1181 if (getUnsigned(GVIdx))
1182 return true;
1183 if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1184 return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1185 "'");
1186 GV = PFS.IRSlots.GlobalValues[GVIdx];
1187 break;
1188 }
1189 default:
1190 llvm_unreachable("The current token should be a global value");
1191 }
1192 return false;
1193 }
1194
parseGlobalAddressOperand(MachineOperand & Dest)1195 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1196 GlobalValue *GV = nullptr;
1197 if (parseGlobalValue(GV))
1198 return true;
1199 lex();
1200 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1201 if (parseOperandsOffset(Dest))
1202 return true;
1203 return false;
1204 }
1205
parseConstantPoolIndexOperand(MachineOperand & Dest)1206 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1207 assert(Token.is(MIToken::ConstantPoolItem));
1208 unsigned ID;
1209 if (getUnsigned(ID))
1210 return true;
1211 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1212 if (ConstantInfo == PFS.ConstantPoolSlots.end())
1213 return error("use of undefined constant '%const." + Twine(ID) + "'");
1214 lex();
1215 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1216 if (parseOperandsOffset(Dest))
1217 return true;
1218 return false;
1219 }
1220
parseJumpTableIndexOperand(MachineOperand & Dest)1221 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1222 assert(Token.is(MIToken::JumpTableIndex));
1223 unsigned ID;
1224 if (getUnsigned(ID))
1225 return true;
1226 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1227 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1228 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1229 lex();
1230 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1231 return false;
1232 }
1233
parseExternalSymbolOperand(MachineOperand & Dest)1234 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1235 assert(Token.is(MIToken::ExternalSymbol));
1236 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1237 lex();
1238 Dest = MachineOperand::CreateES(Symbol);
1239 if (parseOperandsOffset(Dest))
1240 return true;
1241 return false;
1242 }
1243
parseSubRegisterIndexOperand(MachineOperand & Dest)1244 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1245 assert(Token.is(MIToken::SubRegisterIndex));
1246 StringRef Name = Token.stringValue();
1247 unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1248 if (SubRegIndex == 0)
1249 return error(Twine("unknown subregister index '") + Name + "'");
1250 lex();
1251 Dest = MachineOperand::CreateImm(SubRegIndex);
1252 return false;
1253 }
1254
parseMDNode(MDNode * & Node)1255 bool MIParser::parseMDNode(MDNode *&Node) {
1256 assert(Token.is(MIToken::exclaim));
1257 auto Loc = Token.location();
1258 lex();
1259 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1260 return error("expected metadata id after '!'");
1261 unsigned ID;
1262 if (getUnsigned(ID))
1263 return true;
1264 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1265 if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1266 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1267 lex();
1268 Node = NodeInfo->second.get();
1269 return false;
1270 }
1271
parseMetadataOperand(MachineOperand & Dest)1272 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1273 MDNode *Node = nullptr;
1274 if (parseMDNode(Node))
1275 return true;
1276 Dest = MachineOperand::CreateMetadata(Node);
1277 return false;
1278 }
1279
parseCFIOffset(int & Offset)1280 bool MIParser::parseCFIOffset(int &Offset) {
1281 if (Token.isNot(MIToken::IntegerLiteral))
1282 return error("expected a cfi offset");
1283 if (Token.integerValue().getMinSignedBits() > 32)
1284 return error("expected a 32 bit integer (the cfi offset is too large)");
1285 Offset = (int)Token.integerValue().getExtValue();
1286 lex();
1287 return false;
1288 }
1289
parseCFIRegister(unsigned & Reg)1290 bool MIParser::parseCFIRegister(unsigned &Reg) {
1291 if (Token.isNot(MIToken::NamedRegister))
1292 return error("expected a cfi register");
1293 unsigned LLVMReg;
1294 if (parseRegister(LLVMReg))
1295 return true;
1296 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1297 assert(TRI && "Expected target register info");
1298 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1299 if (DwarfReg < 0)
1300 return error("invalid DWARF register");
1301 Reg = (unsigned)DwarfReg;
1302 lex();
1303 return false;
1304 }
1305
parseCFIOperand(MachineOperand & Dest)1306 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1307 auto Kind = Token.kind();
1308 lex();
1309 auto &MMI = MF.getMMI();
1310 int Offset;
1311 unsigned Reg;
1312 unsigned CFIIndex;
1313 switch (Kind) {
1314 case MIToken::kw_cfi_same_value:
1315 if (parseCFIRegister(Reg))
1316 return true;
1317 CFIIndex =
1318 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1319 break;
1320 case MIToken::kw_cfi_offset:
1321 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1322 parseCFIOffset(Offset))
1323 return true;
1324 CFIIndex =
1325 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1326 break;
1327 case MIToken::kw_cfi_def_cfa_register:
1328 if (parseCFIRegister(Reg))
1329 return true;
1330 CFIIndex =
1331 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1332 break;
1333 case MIToken::kw_cfi_def_cfa_offset:
1334 if (parseCFIOffset(Offset))
1335 return true;
1336 // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1337 CFIIndex = MMI.addFrameInst(
1338 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1339 break;
1340 case MIToken::kw_cfi_def_cfa:
1341 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1342 parseCFIOffset(Offset))
1343 return true;
1344 // NB: MCCFIInstruction::createDefCfa negates the offset.
1345 CFIIndex =
1346 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1347 break;
1348 default:
1349 // TODO: Parse the other CFI operands.
1350 llvm_unreachable("The current token should be a cfi operand");
1351 }
1352 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1353 return false;
1354 }
1355
parseIRBlock(BasicBlock * & BB,const Function & F)1356 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1357 switch (Token.kind()) {
1358 case MIToken::NamedIRBlock: {
1359 BB = dyn_cast_or_null<BasicBlock>(
1360 F.getValueSymbolTable().lookup(Token.stringValue()));
1361 if (!BB)
1362 return error(Twine("use of undefined IR block '") + Token.range() + "'");
1363 break;
1364 }
1365 case MIToken::IRBlock: {
1366 unsigned SlotNumber = 0;
1367 if (getUnsigned(SlotNumber))
1368 return true;
1369 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1370 if (!BB)
1371 return error(Twine("use of undefined IR block '%ir-block.") +
1372 Twine(SlotNumber) + "'");
1373 break;
1374 }
1375 default:
1376 llvm_unreachable("The current token should be an IR block reference");
1377 }
1378 return false;
1379 }
1380
parseBlockAddressOperand(MachineOperand & Dest)1381 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1382 assert(Token.is(MIToken::kw_blockaddress));
1383 lex();
1384 if (expectAndConsume(MIToken::lparen))
1385 return true;
1386 if (Token.isNot(MIToken::GlobalValue) &&
1387 Token.isNot(MIToken::NamedGlobalValue))
1388 return error("expected a global value");
1389 GlobalValue *GV = nullptr;
1390 if (parseGlobalValue(GV))
1391 return true;
1392 auto *F = dyn_cast<Function>(GV);
1393 if (!F)
1394 return error("expected an IR function reference");
1395 lex();
1396 if (expectAndConsume(MIToken::comma))
1397 return true;
1398 BasicBlock *BB = nullptr;
1399 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1400 return error("expected an IR block reference");
1401 if (parseIRBlock(BB, *F))
1402 return true;
1403 lex();
1404 if (expectAndConsume(MIToken::rparen))
1405 return true;
1406 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1407 if (parseOperandsOffset(Dest))
1408 return true;
1409 return false;
1410 }
1411
parseTargetIndexOperand(MachineOperand & Dest)1412 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1413 assert(Token.is(MIToken::kw_target_index));
1414 lex();
1415 if (expectAndConsume(MIToken::lparen))
1416 return true;
1417 if (Token.isNot(MIToken::Identifier))
1418 return error("expected the name of the target index");
1419 int Index = 0;
1420 if (getTargetIndex(Token.stringValue(), Index))
1421 return error("use of undefined target index '" + Token.stringValue() + "'");
1422 lex();
1423 if (expectAndConsume(MIToken::rparen))
1424 return true;
1425 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1426 if (parseOperandsOffset(Dest))
1427 return true;
1428 return false;
1429 }
1430
parseLiveoutRegisterMaskOperand(MachineOperand & Dest)1431 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1432 assert(Token.is(MIToken::kw_liveout));
1433 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1434 assert(TRI && "Expected target register info");
1435 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1436 lex();
1437 if (expectAndConsume(MIToken::lparen))
1438 return true;
1439 while (true) {
1440 if (Token.isNot(MIToken::NamedRegister))
1441 return error("expected a named register");
1442 unsigned Reg = 0;
1443 if (parseRegister(Reg))
1444 return true;
1445 lex();
1446 Mask[Reg / 32] |= 1U << (Reg % 32);
1447 // TODO: Report an error if the same register is used more than once.
1448 if (Token.isNot(MIToken::comma))
1449 break;
1450 lex();
1451 }
1452 if (expectAndConsume(MIToken::rparen))
1453 return true;
1454 Dest = MachineOperand::CreateRegLiveOut(Mask);
1455 return false;
1456 }
1457
parseMachineOperand(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)1458 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1459 Optional<unsigned> &TiedDefIdx) {
1460 switch (Token.kind()) {
1461 case MIToken::kw_implicit:
1462 case MIToken::kw_implicit_define:
1463 case MIToken::kw_def:
1464 case MIToken::kw_dead:
1465 case MIToken::kw_killed:
1466 case MIToken::kw_undef:
1467 case MIToken::kw_internal:
1468 case MIToken::kw_early_clobber:
1469 case MIToken::kw_debug_use:
1470 case MIToken::underscore:
1471 case MIToken::NamedRegister:
1472 case MIToken::VirtualRegister:
1473 return parseRegisterOperand(Dest, TiedDefIdx);
1474 case MIToken::IntegerLiteral:
1475 return parseImmediateOperand(Dest);
1476 case MIToken::IntegerType:
1477 return parseTypedImmediateOperand(Dest);
1478 case MIToken::kw_half:
1479 case MIToken::kw_float:
1480 case MIToken::kw_double:
1481 case MIToken::kw_x86_fp80:
1482 case MIToken::kw_fp128:
1483 case MIToken::kw_ppc_fp128:
1484 return parseFPImmediateOperand(Dest);
1485 case MIToken::MachineBasicBlock:
1486 return parseMBBOperand(Dest);
1487 case MIToken::StackObject:
1488 return parseStackObjectOperand(Dest);
1489 case MIToken::FixedStackObject:
1490 return parseFixedStackObjectOperand(Dest);
1491 case MIToken::GlobalValue:
1492 case MIToken::NamedGlobalValue:
1493 return parseGlobalAddressOperand(Dest);
1494 case MIToken::ConstantPoolItem:
1495 return parseConstantPoolIndexOperand(Dest);
1496 case MIToken::JumpTableIndex:
1497 return parseJumpTableIndexOperand(Dest);
1498 case MIToken::ExternalSymbol:
1499 return parseExternalSymbolOperand(Dest);
1500 case MIToken::SubRegisterIndex:
1501 return parseSubRegisterIndexOperand(Dest);
1502 case MIToken::exclaim:
1503 return parseMetadataOperand(Dest);
1504 case MIToken::kw_cfi_same_value:
1505 case MIToken::kw_cfi_offset:
1506 case MIToken::kw_cfi_def_cfa_register:
1507 case MIToken::kw_cfi_def_cfa_offset:
1508 case MIToken::kw_cfi_def_cfa:
1509 return parseCFIOperand(Dest);
1510 case MIToken::kw_blockaddress:
1511 return parseBlockAddressOperand(Dest);
1512 case MIToken::kw_target_index:
1513 return parseTargetIndexOperand(Dest);
1514 case MIToken::kw_liveout:
1515 return parseLiveoutRegisterMaskOperand(Dest);
1516 case MIToken::Error:
1517 return true;
1518 case MIToken::Identifier:
1519 if (const auto *RegMask = getRegMask(Token.stringValue())) {
1520 Dest = MachineOperand::CreateRegMask(RegMask);
1521 lex();
1522 break;
1523 }
1524 // fallthrough
1525 default:
1526 // FIXME: Parse the MCSymbol machine operand.
1527 return error("expected a machine operand");
1528 }
1529 return false;
1530 }
1531
parseMachineOperandAndTargetFlags(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)1532 bool MIParser::parseMachineOperandAndTargetFlags(
1533 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1534 unsigned TF = 0;
1535 bool HasTargetFlags = false;
1536 if (Token.is(MIToken::kw_target_flags)) {
1537 HasTargetFlags = true;
1538 lex();
1539 if (expectAndConsume(MIToken::lparen))
1540 return true;
1541 if (Token.isNot(MIToken::Identifier))
1542 return error("expected the name of the target flag");
1543 if (getDirectTargetFlag(Token.stringValue(), TF)) {
1544 if (getBitmaskTargetFlag(Token.stringValue(), TF))
1545 return error("use of undefined target flag '" + Token.stringValue() +
1546 "'");
1547 }
1548 lex();
1549 while (Token.is(MIToken::comma)) {
1550 lex();
1551 if (Token.isNot(MIToken::Identifier))
1552 return error("expected the name of the target flag");
1553 unsigned BitFlag = 0;
1554 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1555 return error("use of undefined target flag '" + Token.stringValue() +
1556 "'");
1557 // TODO: Report an error when using a duplicate bit target flag.
1558 TF |= BitFlag;
1559 lex();
1560 }
1561 if (expectAndConsume(MIToken::rparen))
1562 return true;
1563 }
1564 auto Loc = Token.location();
1565 if (parseMachineOperand(Dest, TiedDefIdx))
1566 return true;
1567 if (!HasTargetFlags)
1568 return false;
1569 if (Dest.isReg())
1570 return error(Loc, "register operands can't have target flags");
1571 Dest.setTargetFlags(TF);
1572 return false;
1573 }
1574
parseOffset(int64_t & Offset)1575 bool MIParser::parseOffset(int64_t &Offset) {
1576 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1577 return false;
1578 StringRef Sign = Token.range();
1579 bool IsNegative = Token.is(MIToken::minus);
1580 lex();
1581 if (Token.isNot(MIToken::IntegerLiteral))
1582 return error("expected an integer literal after '" + Sign + "'");
1583 if (Token.integerValue().getMinSignedBits() > 64)
1584 return error("expected 64-bit integer (too large)");
1585 Offset = Token.integerValue().getExtValue();
1586 if (IsNegative)
1587 Offset = -Offset;
1588 lex();
1589 return false;
1590 }
1591
parseAlignment(unsigned & Alignment)1592 bool MIParser::parseAlignment(unsigned &Alignment) {
1593 assert(Token.is(MIToken::kw_align));
1594 lex();
1595 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1596 return error("expected an integer literal after 'align'");
1597 if (getUnsigned(Alignment))
1598 return true;
1599 lex();
1600 return false;
1601 }
1602
parseOperandsOffset(MachineOperand & Op)1603 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1604 int64_t Offset = 0;
1605 if (parseOffset(Offset))
1606 return true;
1607 Op.setOffset(Offset);
1608 return false;
1609 }
1610
parseIRValue(const Value * & V)1611 bool MIParser::parseIRValue(const Value *&V) {
1612 switch (Token.kind()) {
1613 case MIToken::NamedIRValue: {
1614 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1615 break;
1616 }
1617 case MIToken::IRValue: {
1618 unsigned SlotNumber = 0;
1619 if (getUnsigned(SlotNumber))
1620 return true;
1621 V = getIRValue(SlotNumber);
1622 break;
1623 }
1624 case MIToken::NamedGlobalValue:
1625 case MIToken::GlobalValue: {
1626 GlobalValue *GV = nullptr;
1627 if (parseGlobalValue(GV))
1628 return true;
1629 V = GV;
1630 break;
1631 }
1632 case MIToken::QuotedIRValue: {
1633 const Constant *C = nullptr;
1634 if (parseIRConstant(Token.location(), Token.stringValue(), C))
1635 return true;
1636 V = C;
1637 break;
1638 }
1639 default:
1640 llvm_unreachable("The current token should be an IR block reference");
1641 }
1642 if (!V)
1643 return error(Twine("use of undefined IR value '") + Token.range() + "'");
1644 return false;
1645 }
1646
getUint64(uint64_t & Result)1647 bool MIParser::getUint64(uint64_t &Result) {
1648 assert(Token.hasIntegerValue());
1649 if (Token.integerValue().getActiveBits() > 64)
1650 return error("expected 64-bit integer (too large)");
1651 Result = Token.integerValue().getZExtValue();
1652 return false;
1653 }
1654
parseMemoryOperandFlag(unsigned & Flags)1655 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) {
1656 const unsigned OldFlags = Flags;
1657 switch (Token.kind()) {
1658 case MIToken::kw_volatile:
1659 Flags |= MachineMemOperand::MOVolatile;
1660 break;
1661 case MIToken::kw_non_temporal:
1662 Flags |= MachineMemOperand::MONonTemporal;
1663 break;
1664 case MIToken::kw_invariant:
1665 Flags |= MachineMemOperand::MOInvariant;
1666 break;
1667 // TODO: parse the target specific memory operand flags.
1668 default:
1669 llvm_unreachable("The current token should be a memory operand flag");
1670 }
1671 if (OldFlags == Flags)
1672 // We know that the same flag is specified more than once when the flags
1673 // weren't modified.
1674 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1675 lex();
1676 return false;
1677 }
1678
parseMemoryPseudoSourceValue(const PseudoSourceValue * & PSV)1679 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1680 switch (Token.kind()) {
1681 case MIToken::kw_stack:
1682 PSV = MF.getPSVManager().getStack();
1683 break;
1684 case MIToken::kw_got:
1685 PSV = MF.getPSVManager().getGOT();
1686 break;
1687 case MIToken::kw_jump_table:
1688 PSV = MF.getPSVManager().getJumpTable();
1689 break;
1690 case MIToken::kw_constant_pool:
1691 PSV = MF.getPSVManager().getConstantPool();
1692 break;
1693 case MIToken::FixedStackObject: {
1694 int FI;
1695 if (parseFixedStackFrameIndex(FI))
1696 return true;
1697 PSV = MF.getPSVManager().getFixedStack(FI);
1698 // The token was already consumed, so use return here instead of break.
1699 return false;
1700 }
1701 case MIToken::StackObject: {
1702 int FI;
1703 if (parseStackFrameIndex(FI))
1704 return true;
1705 PSV = MF.getPSVManager().getFixedStack(FI);
1706 // The token was already consumed, so use return here instead of break.
1707 return false;
1708 }
1709 case MIToken::kw_call_entry: {
1710 lex();
1711 switch (Token.kind()) {
1712 case MIToken::GlobalValue:
1713 case MIToken::NamedGlobalValue: {
1714 GlobalValue *GV = nullptr;
1715 if (parseGlobalValue(GV))
1716 return true;
1717 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1718 break;
1719 }
1720 case MIToken::ExternalSymbol:
1721 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1722 MF.createExternalSymbolName(Token.stringValue()));
1723 break;
1724 default:
1725 return error(
1726 "expected a global value or an external symbol after 'call-entry'");
1727 }
1728 break;
1729 }
1730 default:
1731 llvm_unreachable("The current token should be pseudo source value");
1732 }
1733 lex();
1734 return false;
1735 }
1736
parseMachinePointerInfo(MachinePointerInfo & Dest)1737 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1738 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1739 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1740 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1741 Token.is(MIToken::kw_call_entry)) {
1742 const PseudoSourceValue *PSV = nullptr;
1743 if (parseMemoryPseudoSourceValue(PSV))
1744 return true;
1745 int64_t Offset = 0;
1746 if (parseOffset(Offset))
1747 return true;
1748 Dest = MachinePointerInfo(PSV, Offset);
1749 return false;
1750 }
1751 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1752 Token.isNot(MIToken::GlobalValue) &&
1753 Token.isNot(MIToken::NamedGlobalValue) &&
1754 Token.isNot(MIToken::QuotedIRValue))
1755 return error("expected an IR value reference");
1756 const Value *V = nullptr;
1757 if (parseIRValue(V))
1758 return true;
1759 if (!V->getType()->isPointerTy())
1760 return error("expected a pointer IR value");
1761 lex();
1762 int64_t Offset = 0;
1763 if (parseOffset(Offset))
1764 return true;
1765 Dest = MachinePointerInfo(V, Offset);
1766 return false;
1767 }
1768
parseMachineMemoryOperand(MachineMemOperand * & Dest)1769 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1770 if (expectAndConsume(MIToken::lparen))
1771 return true;
1772 unsigned Flags = 0;
1773 while (Token.isMemoryOperandFlag()) {
1774 if (parseMemoryOperandFlag(Flags))
1775 return true;
1776 }
1777 if (Token.isNot(MIToken::Identifier) ||
1778 (Token.stringValue() != "load" && Token.stringValue() != "store"))
1779 return error("expected 'load' or 'store' memory operation");
1780 if (Token.stringValue() == "load")
1781 Flags |= MachineMemOperand::MOLoad;
1782 else
1783 Flags |= MachineMemOperand::MOStore;
1784 lex();
1785
1786 if (Token.isNot(MIToken::IntegerLiteral))
1787 return error("expected the size integer literal after memory operation");
1788 uint64_t Size;
1789 if (getUint64(Size))
1790 return true;
1791 lex();
1792
1793 MachinePointerInfo Ptr = MachinePointerInfo();
1794 if (Token.is(MIToken::Identifier)) {
1795 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1796 if (Token.stringValue() != Word)
1797 return error(Twine("expected '") + Word + "'");
1798 lex();
1799
1800 if (parseMachinePointerInfo(Ptr))
1801 return true;
1802 }
1803 unsigned BaseAlignment = Size;
1804 AAMDNodes AAInfo;
1805 MDNode *Range = nullptr;
1806 while (consumeIfPresent(MIToken::comma)) {
1807 switch (Token.kind()) {
1808 case MIToken::kw_align:
1809 if (parseAlignment(BaseAlignment))
1810 return true;
1811 break;
1812 case MIToken::md_tbaa:
1813 lex();
1814 if (parseMDNode(AAInfo.TBAA))
1815 return true;
1816 break;
1817 case MIToken::md_alias_scope:
1818 lex();
1819 if (parseMDNode(AAInfo.Scope))
1820 return true;
1821 break;
1822 case MIToken::md_noalias:
1823 lex();
1824 if (parseMDNode(AAInfo.NoAlias))
1825 return true;
1826 break;
1827 case MIToken::md_range:
1828 lex();
1829 if (parseMDNode(Range))
1830 return true;
1831 break;
1832 // TODO: Report an error on duplicate metadata nodes.
1833 default:
1834 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1835 "'!noalias' or '!range'");
1836 }
1837 }
1838 if (expectAndConsume(MIToken::rparen))
1839 return true;
1840 Dest =
1841 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1842 return false;
1843 }
1844
initNames2InstrOpCodes()1845 void MIParser::initNames2InstrOpCodes() {
1846 if (!Names2InstrOpCodes.empty())
1847 return;
1848 const auto *TII = MF.getSubtarget().getInstrInfo();
1849 assert(TII && "Expected target instruction info");
1850 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1851 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1852 }
1853
parseInstrName(StringRef InstrName,unsigned & OpCode)1854 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1855 initNames2InstrOpCodes();
1856 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1857 if (InstrInfo == Names2InstrOpCodes.end())
1858 return true;
1859 OpCode = InstrInfo->getValue();
1860 return false;
1861 }
1862
initNames2Regs()1863 void MIParser::initNames2Regs() {
1864 if (!Names2Regs.empty())
1865 return;
1866 // The '%noreg' register is the register 0.
1867 Names2Regs.insert(std::make_pair("noreg", 0));
1868 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1869 assert(TRI && "Expected target register info");
1870 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1871 bool WasInserted =
1872 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1873 .second;
1874 (void)WasInserted;
1875 assert(WasInserted && "Expected registers to be unique case-insensitively");
1876 }
1877 }
1878
getRegisterByName(StringRef RegName,unsigned & Reg)1879 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1880 initNames2Regs();
1881 auto RegInfo = Names2Regs.find(RegName);
1882 if (RegInfo == Names2Regs.end())
1883 return true;
1884 Reg = RegInfo->getValue();
1885 return false;
1886 }
1887
initNames2RegMasks()1888 void MIParser::initNames2RegMasks() {
1889 if (!Names2RegMasks.empty())
1890 return;
1891 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1892 assert(TRI && "Expected target register info");
1893 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
1894 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
1895 assert(RegMasks.size() == RegMaskNames.size());
1896 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
1897 Names2RegMasks.insert(
1898 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
1899 }
1900
getRegMask(StringRef Identifier)1901 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
1902 initNames2RegMasks();
1903 auto RegMaskInfo = Names2RegMasks.find(Identifier);
1904 if (RegMaskInfo == Names2RegMasks.end())
1905 return nullptr;
1906 return RegMaskInfo->getValue();
1907 }
1908
initNames2SubRegIndices()1909 void MIParser::initNames2SubRegIndices() {
1910 if (!Names2SubRegIndices.empty())
1911 return;
1912 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1913 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
1914 Names2SubRegIndices.insert(
1915 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
1916 }
1917
getSubRegIndex(StringRef Name)1918 unsigned MIParser::getSubRegIndex(StringRef Name) {
1919 initNames2SubRegIndices();
1920 auto SubRegInfo = Names2SubRegIndices.find(Name);
1921 if (SubRegInfo == Names2SubRegIndices.end())
1922 return 0;
1923 return SubRegInfo->getValue();
1924 }
1925
initSlots2BasicBlocks(const Function & F,DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)1926 static void initSlots2BasicBlocks(
1927 const Function &F,
1928 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1929 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1930 MST.incorporateFunction(F);
1931 for (auto &BB : F) {
1932 if (BB.hasName())
1933 continue;
1934 int Slot = MST.getLocalSlot(&BB);
1935 if (Slot == -1)
1936 continue;
1937 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
1938 }
1939 }
1940
getIRBlockFromSlot(unsigned Slot,const DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)1941 static const BasicBlock *getIRBlockFromSlot(
1942 unsigned Slot,
1943 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1944 auto BlockInfo = Slots2BasicBlocks.find(Slot);
1945 if (BlockInfo == Slots2BasicBlocks.end())
1946 return nullptr;
1947 return BlockInfo->second;
1948 }
1949
getIRBlock(unsigned Slot)1950 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
1951 if (Slots2BasicBlocks.empty())
1952 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
1953 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
1954 }
1955
getIRBlock(unsigned Slot,const Function & F)1956 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
1957 if (&F == MF.getFunction())
1958 return getIRBlock(Slot);
1959 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
1960 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
1961 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
1962 }
1963
mapValueToSlot(const Value * V,ModuleSlotTracker & MST,DenseMap<unsigned,const Value * > & Slots2Values)1964 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
1965 DenseMap<unsigned, const Value *> &Slots2Values) {
1966 int Slot = MST.getLocalSlot(V);
1967 if (Slot == -1)
1968 return;
1969 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
1970 }
1971
1972 /// Creates the mapping from slot numbers to function's unnamed IR values.
initSlots2Values(const Function & F,DenseMap<unsigned,const Value * > & Slots2Values)1973 static void initSlots2Values(const Function &F,
1974 DenseMap<unsigned, const Value *> &Slots2Values) {
1975 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1976 MST.incorporateFunction(F);
1977 for (const auto &Arg : F.args())
1978 mapValueToSlot(&Arg, MST, Slots2Values);
1979 for (const auto &BB : F) {
1980 mapValueToSlot(&BB, MST, Slots2Values);
1981 for (const auto &I : BB)
1982 mapValueToSlot(&I, MST, Slots2Values);
1983 }
1984 }
1985
getIRValue(unsigned Slot)1986 const Value *MIParser::getIRValue(unsigned Slot) {
1987 if (Slots2Values.empty())
1988 initSlots2Values(*MF.getFunction(), Slots2Values);
1989 auto ValueInfo = Slots2Values.find(Slot);
1990 if (ValueInfo == Slots2Values.end())
1991 return nullptr;
1992 return ValueInfo->second;
1993 }
1994
initNames2TargetIndices()1995 void MIParser::initNames2TargetIndices() {
1996 if (!Names2TargetIndices.empty())
1997 return;
1998 const auto *TII = MF.getSubtarget().getInstrInfo();
1999 assert(TII && "Expected target instruction info");
2000 auto Indices = TII->getSerializableTargetIndices();
2001 for (const auto &I : Indices)
2002 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2003 }
2004
getTargetIndex(StringRef Name,int & Index)2005 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2006 initNames2TargetIndices();
2007 auto IndexInfo = Names2TargetIndices.find(Name);
2008 if (IndexInfo == Names2TargetIndices.end())
2009 return true;
2010 Index = IndexInfo->second;
2011 return false;
2012 }
2013
initNames2DirectTargetFlags()2014 void MIParser::initNames2DirectTargetFlags() {
2015 if (!Names2DirectTargetFlags.empty())
2016 return;
2017 const auto *TII = MF.getSubtarget().getInstrInfo();
2018 assert(TII && "Expected target instruction info");
2019 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2020 for (const auto &I : Flags)
2021 Names2DirectTargetFlags.insert(
2022 std::make_pair(StringRef(I.second), I.first));
2023 }
2024
getDirectTargetFlag(StringRef Name,unsigned & Flag)2025 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2026 initNames2DirectTargetFlags();
2027 auto FlagInfo = Names2DirectTargetFlags.find(Name);
2028 if (FlagInfo == Names2DirectTargetFlags.end())
2029 return true;
2030 Flag = FlagInfo->second;
2031 return false;
2032 }
2033
initNames2BitmaskTargetFlags()2034 void MIParser::initNames2BitmaskTargetFlags() {
2035 if (!Names2BitmaskTargetFlags.empty())
2036 return;
2037 const auto *TII = MF.getSubtarget().getInstrInfo();
2038 assert(TII && "Expected target instruction info");
2039 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2040 for (const auto &I : Flags)
2041 Names2BitmaskTargetFlags.insert(
2042 std::make_pair(StringRef(I.second), I.first));
2043 }
2044
getBitmaskTargetFlag(StringRef Name,unsigned & Flag)2045 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2046 initNames2BitmaskTargetFlags();
2047 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2048 if (FlagInfo == Names2BitmaskTargetFlags.end())
2049 return true;
2050 Flag = FlagInfo->second;
2051 return false;
2052 }
2053
parseMachineBasicBlockDefinitions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)2054 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2055 StringRef Src,
2056 SMDiagnostic &Error) {
2057 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2058 }
2059
parseMachineInstructions(const PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)2060 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2061 StringRef Src, SMDiagnostic &Error) {
2062 return MIParser(PFS, Error, Src).parseBasicBlocks();
2063 }
2064
parseMBBReference(const PerFunctionMIParsingState & PFS,MachineBasicBlock * & MBB,StringRef Src,SMDiagnostic & Error)2065 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2066 MachineBasicBlock *&MBB, StringRef Src,
2067 SMDiagnostic &Error) {
2068 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2069 }
2070
parseNamedRegisterReference(const PerFunctionMIParsingState & PFS,unsigned & Reg,StringRef Src,SMDiagnostic & Error)2071 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2072 unsigned &Reg, StringRef Src,
2073 SMDiagnostic &Error) {
2074 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2075 }
2076
parseVirtualRegisterReference(const PerFunctionMIParsingState & PFS,unsigned & Reg,StringRef Src,SMDiagnostic & Error)2077 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2078 unsigned &Reg, StringRef Src,
2079 SMDiagnostic &Error) {
2080 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2081 }
2082
parseStackObjectReference(const PerFunctionMIParsingState & PFS,int & FI,StringRef Src,SMDiagnostic & Error)2083 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2084 int &FI, StringRef Src,
2085 SMDiagnostic &Error) {
2086 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2087 }
2088
parseMDNode(const PerFunctionMIParsingState & PFS,MDNode * & Node,StringRef Src,SMDiagnostic & Error)2089 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2090 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2091 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2092 }
2093