1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetFrameLowering.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 
26 #define DEBUG_TYPE "target-reg-info"
27 
28 using namespace llvm;
29 
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const unsigned * SRILaneMasks,unsigned SRICoveringLanes)30 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
31                              regclass_iterator RCB, regclass_iterator RCE,
32                              const char *const *SRINames,
33                              const unsigned *SRILaneMasks,
34                              unsigned SRICoveringLanes)
35   : InfoDesc(ID), SubRegIndexNames(SRINames),
36     SubRegIndexLaneMasks(SRILaneMasks),
37     RegClassBegin(RCB), RegClassEnd(RCE),
38     CoveringLanes(SRICoveringLanes) {
39 }
40 
~TargetRegisterInfo()41 TargetRegisterInfo::~TargetRegisterInfo() {}
42 
43 namespace llvm {
44 
PrintReg(unsigned Reg,const TargetRegisterInfo * TRI,unsigned SubIdx)45 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI,
46                    unsigned SubIdx) {
47   return Printable([Reg, TRI, SubIdx](raw_ostream &OS) {
48     if (!Reg)
49       OS << "%noreg";
50     else if (TargetRegisterInfo::isStackSlot(Reg))
51       OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
52     else if (TargetRegisterInfo::isVirtualRegister(Reg))
53       OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
54     else if (TRI && Reg < TRI->getNumRegs())
55       OS << '%' << TRI->getName(Reg);
56     else
57       OS << "%physreg" << Reg;
58     if (SubIdx) {
59       if (TRI)
60         OS << ':' << TRI->getSubRegIndexName(SubIdx);
61       else
62         OS << ":sub(" << SubIdx << ')';
63     }
64   });
65 }
66 
PrintRegUnit(unsigned Unit,const TargetRegisterInfo * TRI)67 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
68   return Printable([Unit, TRI](raw_ostream &OS) {
69     // Generic printout when TRI is missing.
70     if (!TRI) {
71       OS << "Unit~" << Unit;
72       return;
73     }
74 
75     // Check for invalid register units.
76     if (Unit >= TRI->getNumRegUnits()) {
77       OS << "BadUnit~" << Unit;
78       return;
79     }
80 
81     // Normal units have at least one root.
82     MCRegUnitRootIterator Roots(Unit, TRI);
83     assert(Roots.isValid() && "Unit has no roots.");
84     OS << TRI->getName(*Roots);
85     for (++Roots; Roots.isValid(); ++Roots)
86       OS << '~' << TRI->getName(*Roots);
87   });
88 }
89 
PrintVRegOrUnit(unsigned Unit,const TargetRegisterInfo * TRI)90 Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
91   return Printable([Unit, TRI](raw_ostream &OS) {
92     if (TRI && TRI->isVirtualRegister(Unit)) {
93       OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
94     } else {
95       OS << PrintRegUnit(Unit, TRI);
96     }
97   });
98 }
99 
PrintLaneMask(LaneBitmask LaneMask)100 Printable PrintLaneMask(LaneBitmask LaneMask) {
101   return Printable([LaneMask](raw_ostream &OS) {
102     OS << format("%08X", LaneMask);
103   });
104 }
105 
106 } // End of llvm namespace
107 
108 /// getAllocatableClass - Return the maximal subclass of the given register
109 /// class that is alloctable, or NULL.
110 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const111 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
112   if (!RC || RC->isAllocatable())
113     return RC;
114 
115   for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
116        ++It) {
117     const TargetRegisterClass *SubRC = getRegClass(It.getID());
118     if (SubRC->isAllocatable())
119       return SubRC;
120   }
121   return nullptr;
122 }
123 
124 /// getMinimalPhysRegClass - Returns the Register Class of a physical
125 /// register of the given type, picking the most sub register class of
126 /// the right type that contains this physreg.
127 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,MVT VT) const128 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
129   assert(isPhysicalRegister(reg) && "reg must be a physical register");
130 
131   // Pick the most sub register class of the right type that contains
132   // this physreg.
133   const TargetRegisterClass* BestRC = nullptr;
134   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
135     const TargetRegisterClass* RC = *I;
136     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
137         (!BestRC || BestRC->hasSubClass(RC)))
138       BestRC = RC;
139   }
140 
141   assert(BestRC && "Couldn't find the register class");
142   return BestRC;
143 }
144 
145 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
146 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)147 static void getAllocatableSetForRC(const MachineFunction &MF,
148                                    const TargetRegisterClass *RC, BitVector &R){
149   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
150   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
151   for (unsigned i = 0; i != Order.size(); ++i)
152     R.set(Order[i]);
153 }
154 
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const155 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
156                                           const TargetRegisterClass *RC) const {
157   BitVector Allocatable(getNumRegs());
158   if (RC) {
159     // A register class with no allocatable subclass returns an empty set.
160     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
161     if (SubClass)
162       getAllocatableSetForRC(MF, SubClass, Allocatable);
163   } else {
164     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
165          E = regclass_end(); I != E; ++I)
166       if ((*I)->isAllocatable())
167         getAllocatableSetForRC(MF, *I, Allocatable);
168   }
169 
170   // Mask out the reserved registers
171   BitVector Reserved = getReservedRegs(MF);
172   Allocatable &= Reserved.flip();
173 
174   return Allocatable;
175 }
176 
177 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI,const MVT::SimpleValueType SVT=MVT::SimpleValueType::Any)178 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
179                                             const uint32_t *B,
180                                             const TargetRegisterInfo *TRI,
181                                             const MVT::SimpleValueType SVT =
182                                             MVT::SimpleValueType::Any) {
183   const MVT VT(SVT);
184   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
185     if (unsigned Common = *A++ & *B++) {
186       const TargetRegisterClass *RC =
187           TRI->getRegClass(I + countTrailingZeros(Common));
188       if (SVT == MVT::SimpleValueType::Any || RC->hasType(VT))
189         return RC;
190     }
191   return nullptr;
192 }
193 
194 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B,const MVT::SimpleValueType SVT) const195 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
196                                       const TargetRegisterClass *B,
197                                       const MVT::SimpleValueType SVT) const {
198   // First take care of the trivial cases.
199   if (A == B)
200     return A;
201   if (!A || !B)
202     return nullptr;
203 
204   // Register classes are ordered topologically, so the largest common
205   // sub-class it the common sub-class with the smallest ID.
206   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
207 }
208 
209 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const210 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
211                                              const TargetRegisterClass *B,
212                                              unsigned Idx) const {
213   assert(A && B && "Missing register class");
214   assert(Idx && "Bad sub-register index");
215 
216   // Find Idx in the list of super-register indices.
217   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
218     if (RCI.getSubReg() == Idx)
219       // The bit mask contains all register classes that are projected into B
220       // by Idx. Find a class that is also a sub-class of A.
221       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
222   return nullptr;
223 }
224 
225 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const226 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
227                        const TargetRegisterClass *RCB, unsigned SubB,
228                        unsigned &PreA, unsigned &PreB) const {
229   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
230 
231   // Search all pairs of sub-register indices that project into RCA and RCB
232   // respectively. This is quadratic, but usually the sets are very small. On
233   // most targets like X86, there will only be a single sub-register index
234   // (e.g., sub_16bit projecting into GR16).
235   //
236   // The worst case is a register class like DPR on ARM.
237   // We have indices dsub_0..dsub_7 projecting into that class.
238   //
239   // It is very common that one register class is a sub-register of the other.
240   // Arrange for RCA to be the larger register so the answer will be found in
241   // the first iteration. This makes the search linear for the most common
242   // case.
243   const TargetRegisterClass *BestRC = nullptr;
244   unsigned *BestPreA = &PreA;
245   unsigned *BestPreB = &PreB;
246   if (RCA->getSize() < RCB->getSize()) {
247     std::swap(RCA, RCB);
248     std::swap(SubA, SubB);
249     std::swap(BestPreA, BestPreB);
250   }
251 
252   // Also terminate the search one we have found a register class as small as
253   // RCA.
254   unsigned MinSize = RCA->getSize();
255 
256   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
257     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
258     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
259       // Check if a common super-register class exists for this index pair.
260       const TargetRegisterClass *RC =
261         firstCommonClass(IA.getMask(), IB.getMask(), this);
262       if (!RC || RC->getSize() < MinSize)
263         continue;
264 
265       // The indexes must compose identically: PreA+SubA == PreB+SubB.
266       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
267       if (FinalA != FinalB)
268         continue;
269 
270       // Is RC a better candidate than BestRC?
271       if (BestRC && RC->getSize() >= BestRC->getSize())
272         continue;
273 
274       // Yes, RC is the smallest super-register seen so far.
275       BestRC = RC;
276       *BestPreA = IA.getSubReg();
277       *BestPreB = IB.getSubReg();
278 
279       // Bail early if we reached MinSize. We won't find a better candidate.
280       if (BestRC->getSize() == MinSize)
281         return BestRC;
282     }
283   }
284   return BestRC;
285 }
286 
287 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
288 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)289 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
290                                   const TargetRegisterClass *DefRC,
291                                   unsigned DefSubReg,
292                                   const TargetRegisterClass *SrcRC,
293                                   unsigned SrcSubReg) {
294   // Same register class.
295   if (DefRC == SrcRC)
296     return true;
297 
298   // Both operands are sub registers. Check if they share a register class.
299   unsigned SrcIdx, DefIdx;
300   if (SrcSubReg && DefSubReg) {
301     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
302                                       SrcIdx, DefIdx) != nullptr;
303   }
304 
305   // At most one of the register is a sub register, make it Src to avoid
306   // duplicating the test.
307   if (!SrcSubReg) {
308     std::swap(DefSubReg, SrcSubReg);
309     std::swap(DefRC, SrcRC);
310   }
311 
312   // One of the register is a sub register, check if we can get a superclass.
313   if (SrcSubReg)
314     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
315 
316   // Plain copy.
317   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
318 }
319 
shouldRewriteCopySrc(const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg) const320 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
321                                               unsigned DefSubReg,
322                                               const TargetRegisterClass *SrcRC,
323                                               unsigned SrcSubReg) const {
324   // If this source does not incur a cross register bank copy, use it.
325   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
326 }
327 
328 // Compute target-independent register allocator hints to help eliminate copies.
329 void
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const330 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
331                                           ArrayRef<MCPhysReg> Order,
332                                           SmallVectorImpl<MCPhysReg> &Hints,
333                                           const MachineFunction &MF,
334                                           const VirtRegMap *VRM,
335                                           const LiveRegMatrix *Matrix) const {
336   const MachineRegisterInfo &MRI = MF.getRegInfo();
337   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
338 
339   // Hints with HintType != 0 were set by target-dependent code.
340   // Such targets must provide their own implementation of
341   // TRI::getRegAllocationHints to interpret those hint types.
342   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
343 
344   // Target-independent hints are either a physical or a virtual register.
345   unsigned Phys = Hint.second;
346   if (VRM && isVirtualRegister(Phys))
347     Phys = VRM->getPhys(Phys);
348 
349   // Check that Phys is a valid hint in VirtReg's register class.
350   if (!isPhysicalRegister(Phys))
351     return;
352   if (MRI.isReserved(Phys))
353     return;
354   // Check that Phys is in the allocation order. We shouldn't heed hints
355   // from VirtReg's register class if they aren't in the allocation order. The
356   // target probably has a reason for removing the register.
357   if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
358     return;
359 
360   // All clear, tell the register allocator to prefer this register.
361   Hints.push_back(Phys);
362 }
363 
canRealignStack(const MachineFunction & MF) const364 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
365   return !MF.getFunction()->hasFnAttribute("no-realign-stack");
366 }
367 
needsStackRealignment(const MachineFunction & MF) const368 bool TargetRegisterInfo::needsStackRealignment(
369     const MachineFunction &MF) const {
370   const MachineFrameInfo *MFI = MF.getFrameInfo();
371   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
372   const Function *F = MF.getFunction();
373   unsigned StackAlign = TFI->getStackAlignment();
374   bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
375                               F->hasFnAttribute(Attribute::StackAlignment));
376   if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) {
377     if (canRealignStack(MF))
378       return true;
379     DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n");
380   }
381   return false;
382 }
383 
regmaskSubsetEqual(const uint32_t * mask0,const uint32_t * mask1) const384 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
385                                             const uint32_t *mask1) const {
386   unsigned N = (getNumRegs()+31) / 32;
387   for (unsigned I = 0; I < N; ++I)
388     if ((mask0[I] & mask1[I]) != mask0[I])
389       return false;
390   return true;
391 }
392 
393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
394 void
dumpReg(unsigned Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)395 TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
396                             const TargetRegisterInfo *TRI) {
397   dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
398 }
399 #endif
400