1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
13 //
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
16 // a dependence in IR on Target.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "ConstantFold.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 using namespace llvm;
35 using namespace llvm::PatternMatch;
36
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
40
41 /// Convert the specified vector Constant node to the specified vector type.
42 /// At this point, we know that the elements of the input vector constant are
43 /// all simple integer or FP values.
BitCastConstantVector(Constant * CV,VectorType * DstTy)44 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45
46 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49 // If this cast changes element count then we can't handle it here:
50 // doing so requires endianness information. This should be handled by
51 // Analysis/ConstantFolding.cpp
52 unsigned NumElts = DstTy->getNumElements();
53 if (NumElts != CV->getType()->getVectorNumElements())
54 return nullptr;
55
56 Type *DstEltTy = DstTy->getElementType();
57
58 SmallVector<Constant*, 16> Result;
59 Type *Ty = IntegerType::get(CV->getContext(), 32);
60 for (unsigned i = 0; i != NumElts; ++i) {
61 Constant *C =
62 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
63 C = ConstantExpr::getBitCast(C, DstEltTy);
64 Result.push_back(C);
65 }
66
67 return ConstantVector::get(Result);
68 }
69
70 /// This function determines which opcode to use to fold two constant cast
71 /// expressions together. It uses CastInst::isEliminableCastPair to determine
72 /// the opcode. Consequently its just a wrapper around that function.
73 /// @brief Determine if it is valid to fold a cast of a cast
74 static unsigned
foldConstantCastPair(unsigned opc,ConstantExpr * Op,Type * DstTy)75 foldConstantCastPair(
76 unsigned opc, ///< opcode of the second cast constant expression
77 ConstantExpr *Op, ///< the first cast constant expression
78 Type *DstTy ///< destination type of the first cast
79 ) {
80 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82 assert(CastInst::isCast(opc) && "Invalid cast opcode");
83
84 // The types and opcodes for the two Cast constant expressions
85 Type *SrcTy = Op->getOperand(0)->getType();
86 Type *MidTy = Op->getType();
87 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
88 Instruction::CastOps secondOp = Instruction::CastOps(opc);
89
90 // Assume that pointers are never more than 64 bits wide, and only use this
91 // for the middle type. Otherwise we could end up folding away illegal
92 // bitcasts between address spaces with different sizes.
93 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
94
95 // Let CastInst::isEliminableCastPair do the heavy lifting.
96 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
97 nullptr, FakeIntPtrTy, nullptr);
98 }
99
FoldBitCast(Constant * V,Type * DestTy)100 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
101 Type *SrcTy = V->getType();
102 if (SrcTy == DestTy)
103 return V; // no-op cast
104
105 // Check to see if we are casting a pointer to an aggregate to a pointer to
106 // the first element. If so, return the appropriate GEP instruction.
107 if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
108 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
109 if (PTy->getAddressSpace() == DPTy->getAddressSpace()
110 && PTy->getElementType()->isSized()) {
111 SmallVector<Value*, 8> IdxList;
112 Value *Zero =
113 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
114 IdxList.push_back(Zero);
115 Type *ElTy = PTy->getElementType();
116 while (ElTy != DPTy->getElementType()) {
117 if (StructType *STy = dyn_cast<StructType>(ElTy)) {
118 if (STy->getNumElements() == 0) break;
119 ElTy = STy->getElementType(0);
120 IdxList.push_back(Zero);
121 } else if (SequentialType *STy =
122 dyn_cast<SequentialType>(ElTy)) {
123 if (ElTy->isPointerTy()) break; // Can't index into pointers!
124 ElTy = STy->getElementType();
125 IdxList.push_back(Zero);
126 } else {
127 break;
128 }
129 }
130
131 if (ElTy == DPTy->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134 V, IdxList);
135 }
136
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142 "Not cast between same sized vectors!");
143 SrcTy = nullptr;
144 // First, check for null. Undef is already handled.
145 if (isa<ConstantAggregateZero>(V))
146 return Constant::getNullValue(DestTy);
147
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V, DestPTy);
150 }
151
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
157 }
158
159 // Finally, implement bitcast folding now. The code below doesn't handle
160 // bitcast right.
161 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast<PointerType>(DestTy));
163
164 // Handle integral constant input.
165 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166 if (DestTy->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
169 return V;
170
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy->getContext(),
174 APFloat(DestTy->getFltSemantics(),
175 CI->getValue()));
176
177 // Otherwise, can't fold this (vector?)
178 return nullptr;
179 }
180
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP->getType()->isPPC_FP128Ty())
190 return nullptr;
191
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy->isIntegerTy())
194 return nullptr;
195
196 return ConstantInt::get(FP->getContext(),
197 FP->getValueAPF().bitcastToAPInt());
198 }
199
200 return nullptr;
201 }
202
203
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
207 /// of bytes used.
208 ///
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
ExtractConstantBytes(Constant * C,unsigned ByteStart,unsigned ByteSize)212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213 unsigned ByteSize) {
214 assert(C->getType()->isIntegerTy() &&
215 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218 assert(ByteSize && "Must be accessing some piece");
219 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220 assert(ByteSize != CSize && "Should not extract everything");
221
222 // Constant Integers are simple.
223 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224 APInt V = CI->getValue();
225 if (ByteStart)
226 V = V.lshr(ByteStart*8);
227 V = V.trunc(ByteSize*8);
228 return ConstantInt::get(CI->getContext(), V);
229 }
230
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234 if (!CE) return nullptr;
235
236 switch (CE->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or: {
239 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240 if (!RHS)
241 return nullptr;
242
243 // X | -1 -> -1.
244 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245 if (RHSC->isAllOnesValue())
246 return RHSC;
247
248 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249 if (!LHS)
250 return nullptr;
251 return ConstantExpr::getOr(LHS, RHS);
252 }
253 case Instruction::And: {
254 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255 if (!RHS)
256 return nullptr;
257
258 // X & 0 -> 0.
259 if (RHS->isNullValue())
260 return RHS;
261
262 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263 if (!LHS)
264 return nullptr;
265 return ConstantExpr::getAnd(LHS, RHS);
266 }
267 case Instruction::LShr: {
268 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269 if (!Amt)
270 return nullptr;
271 unsigned ShAmt = Amt->getZExtValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt & 7) != 0)
274 return nullptr;
275 ShAmt >>= 3;
276
277 // If the extract is known to be all zeros, return zero.
278 if (ByteStart >= CSize-ShAmt)
279 return Constant::getNullValue(IntegerType::get(CE->getContext(),
280 ByteSize*8));
281 // If the extract is known to be fully in the input, extract it.
282 if (ByteStart+ByteSize+ShAmt <= CSize)
283 return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
284
285 // TODO: Handle the 'partially zero' case.
286 return nullptr;
287 }
288
289 case Instruction::Shl: {
290 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
291 if (!Amt)
292 return nullptr;
293 unsigned ShAmt = Amt->getZExtValue();
294 // Cannot analyze non-byte shifts.
295 if ((ShAmt & 7) != 0)
296 return nullptr;
297 ShAmt >>= 3;
298
299 // If the extract is known to be all zeros, return zero.
300 if (ByteStart+ByteSize <= ShAmt)
301 return Constant::getNullValue(IntegerType::get(CE->getContext(),
302 ByteSize*8));
303 // If the extract is known to be fully in the input, extract it.
304 if (ByteStart >= ShAmt)
305 return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
306
307 // TODO: Handle the 'partially zero' case.
308 return nullptr;
309 }
310
311 case Instruction::ZExt: {
312 unsigned SrcBitSize =
313 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
314
315 // If extracting something that is completely zero, return 0.
316 if (ByteStart*8 >= SrcBitSize)
317 return Constant::getNullValue(IntegerType::get(CE->getContext(),
318 ByteSize*8));
319
320 // If exactly extracting the input, return it.
321 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
322 return CE->getOperand(0);
323
324 // If extracting something completely in the input, if if the input is a
325 // multiple of 8 bits, recurse.
326 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
327 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
328
329 // Otherwise, if extracting a subset of the input, which is not multiple of
330 // 8 bits, do a shift and trunc to get the bits.
331 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
332 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
333 Constant *Res = CE->getOperand(0);
334 if (ByteStart)
335 Res = ConstantExpr::getLShr(Res,
336 ConstantInt::get(Res->getType(), ByteStart*8));
337 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
338 ByteSize*8));
339 }
340
341 // TODO: Handle the 'partially zero' case.
342 return nullptr;
343 }
344 }
345 }
346
347 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
348 /// factors factored out. If Folded is false, return null if no factoring was
349 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
350 /// top-level folder.
getFoldedSizeOf(Type * Ty,Type * DestTy,bool Folded)351 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
352 bool Folded) {
353 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
354 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
355 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
356 return ConstantExpr::getNUWMul(E, N);
357 }
358
359 if (StructType *STy = dyn_cast<StructType>(Ty))
360 if (!STy->isPacked()) {
361 unsigned NumElems = STy->getNumElements();
362 // An empty struct has size zero.
363 if (NumElems == 0)
364 return ConstantExpr::getNullValue(DestTy);
365 // Check for a struct with all members having the same size.
366 Constant *MemberSize =
367 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
368 bool AllSame = true;
369 for (unsigned i = 1; i != NumElems; ++i)
370 if (MemberSize !=
371 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
372 AllSame = false;
373 break;
374 }
375 if (AllSame) {
376 Constant *N = ConstantInt::get(DestTy, NumElems);
377 return ConstantExpr::getNUWMul(MemberSize, N);
378 }
379 }
380
381 // Pointer size doesn't depend on the pointee type, so canonicalize them
382 // to an arbitrary pointee.
383 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
384 if (!PTy->getElementType()->isIntegerTy(1))
385 return
386 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
387 PTy->getAddressSpace()),
388 DestTy, true);
389
390 // If there's no interesting folding happening, bail so that we don't create
391 // a constant that looks like it needs folding but really doesn't.
392 if (!Folded)
393 return nullptr;
394
395 // Base case: Get a regular sizeof expression.
396 Constant *C = ConstantExpr::getSizeOf(Ty);
397 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398 DestTy, false),
399 C, DestTy);
400 return C;
401 }
402
403 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
404 /// factors factored out. If Folded is false, return null if no factoring was
405 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
406 /// top-level folder.
getFoldedAlignOf(Type * Ty,Type * DestTy,bool Folded)407 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
408 bool Folded) {
409 // The alignment of an array is equal to the alignment of the
410 // array element. Note that this is not always true for vectors.
411 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
412 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
413 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
414 DestTy,
415 false),
416 C, DestTy);
417 return C;
418 }
419
420 if (StructType *STy = dyn_cast<StructType>(Ty)) {
421 // Packed structs always have an alignment of 1.
422 if (STy->isPacked())
423 return ConstantInt::get(DestTy, 1);
424
425 // Otherwise, struct alignment is the maximum alignment of any member.
426 // Without target data, we can't compare much, but we can check to see
427 // if all the members have the same alignment.
428 unsigned NumElems = STy->getNumElements();
429 // An empty struct has minimal alignment.
430 if (NumElems == 0)
431 return ConstantInt::get(DestTy, 1);
432 // Check for a struct with all members having the same alignment.
433 Constant *MemberAlign =
434 getFoldedAlignOf(STy->getElementType(0), DestTy, true);
435 bool AllSame = true;
436 for (unsigned i = 1; i != NumElems; ++i)
437 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
438 AllSame = false;
439 break;
440 }
441 if (AllSame)
442 return MemberAlign;
443 }
444
445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446 // to an arbitrary pointee.
447 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
448 if (!PTy->getElementType()->isIntegerTy(1))
449 return
450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
451 1),
452 PTy->getAddressSpace()),
453 DestTy, true);
454
455 // If there's no interesting folding happening, bail so that we don't create
456 // a constant that looks like it needs folding but really doesn't.
457 if (!Folded)
458 return nullptr;
459
460 // Base case: Get a regular alignof expression.
461 Constant *C = ConstantExpr::getAlignOf(Ty);
462 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
463 DestTy, false),
464 C, DestTy);
465 return C;
466 }
467
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
getFoldedOffsetOf(Type * Ty,Constant * FieldNo,Type * DestTy,bool Folded)472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
473 Type *DestTy,
474 bool Folded) {
475 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
476 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
477 DestTy, false),
478 FieldNo, DestTy);
479 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
480 return ConstantExpr::getNUWMul(E, N);
481 }
482
483 if (StructType *STy = dyn_cast<StructType>(Ty))
484 if (!STy->isPacked()) {
485 unsigned NumElems = STy->getNumElements();
486 // An empty struct has no members.
487 if (NumElems == 0)
488 return nullptr;
489 // Check for a struct with all members having the same size.
490 Constant *MemberSize =
491 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
492 bool AllSame = true;
493 for (unsigned i = 1; i != NumElems; ++i)
494 if (MemberSize !=
495 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
496 AllSame = false;
497 break;
498 }
499 if (AllSame) {
500 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
501 false,
502 DestTy,
503 false),
504 FieldNo, DestTy);
505 return ConstantExpr::getNUWMul(MemberSize, N);
506 }
507 }
508
509 // If there's no interesting folding happening, bail so that we don't create
510 // a constant that looks like it needs folding but really doesn't.
511 if (!Folded)
512 return nullptr;
513
514 // Base case: Get a regular offsetof expression.
515 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
516 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
517 DestTy, false),
518 C, DestTy);
519 return C;
520 }
521
ConstantFoldCastInstruction(unsigned opc,Constant * V,Type * DestTy)522 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
523 Type *DestTy) {
524 if (isa<UndefValue>(V)) {
525 // zext(undef) = 0, because the top bits will be zero.
526 // sext(undef) = 0, because the top bits will all be the same.
527 // [us]itofp(undef) = 0, because the result value is bounded.
528 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
529 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
530 return Constant::getNullValue(DestTy);
531 return UndefValue::get(DestTy);
532 }
533
534 if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
535 opc != Instruction::AddrSpaceCast)
536 return Constant::getNullValue(DestTy);
537
538 // If the cast operand is a constant expression, there's a few things we can
539 // do to try to simplify it.
540 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
541 if (CE->isCast()) {
542 // Try hard to fold cast of cast because they are often eliminable.
543 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
544 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
545 } else if (CE->getOpcode() == Instruction::GetElementPtr &&
546 // Do not fold addrspacecast (gep 0, .., 0). It might make the
547 // addrspacecast uncanonicalized.
548 opc != Instruction::AddrSpaceCast) {
549 // If all of the indexes in the GEP are null values, there is no pointer
550 // adjustment going on. We might as well cast the source pointer.
551 bool isAllNull = true;
552 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
553 if (!CE->getOperand(i)->isNullValue()) {
554 isAllNull = false;
555 break;
556 }
557 if (isAllNull)
558 // This is casting one pointer type to another, always BitCast
559 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
560 }
561 }
562
563 // If the cast operand is a constant vector, perform the cast by
564 // operating on each element. In the cast of bitcasts, the element
565 // count may be mismatched; don't attempt to handle that here.
566 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
567 DestTy->isVectorTy() &&
568 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
569 SmallVector<Constant*, 16> res;
570 VectorType *DestVecTy = cast<VectorType>(DestTy);
571 Type *DstEltTy = DestVecTy->getElementType();
572 Type *Ty = IntegerType::get(V->getContext(), 32);
573 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
574 Constant *C =
575 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
576 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
577 }
578 return ConstantVector::get(res);
579 }
580
581 // We actually have to do a cast now. Perform the cast according to the
582 // opcode specified.
583 switch (opc) {
584 default:
585 llvm_unreachable("Failed to cast constant expression");
586 case Instruction::FPTrunc:
587 case Instruction::FPExt:
588 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
589 bool ignored;
590 APFloat Val = FPC->getValueAPF();
591 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
592 DestTy->isFloatTy() ? APFloat::IEEEsingle :
593 DestTy->isDoubleTy() ? APFloat::IEEEdouble :
594 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
595 DestTy->isFP128Ty() ? APFloat::IEEEquad :
596 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
597 APFloat::Bogus,
598 APFloat::rmNearestTiesToEven, &ignored);
599 return ConstantFP::get(V->getContext(), Val);
600 }
601 return nullptr; // Can't fold.
602 case Instruction::FPToUI:
603 case Instruction::FPToSI:
604 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
605 const APFloat &V = FPC->getValueAPF();
606 bool ignored;
607 uint64_t x[2];
608 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
609 if (APFloat::opInvalidOp ==
610 V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
611 APFloat::rmTowardZero, &ignored)) {
612 // Undefined behavior invoked - the destination type can't represent
613 // the input constant.
614 return UndefValue::get(DestTy);
615 }
616 APInt Val(DestBitWidth, x);
617 return ConstantInt::get(FPC->getContext(), Val);
618 }
619 return nullptr; // Can't fold.
620 case Instruction::IntToPtr: //always treated as unsigned
621 if (V->isNullValue()) // Is it an integral null value?
622 return ConstantPointerNull::get(cast<PointerType>(DestTy));
623 return nullptr; // Other pointer types cannot be casted
624 case Instruction::PtrToInt: // always treated as unsigned
625 // Is it a null pointer value?
626 if (V->isNullValue())
627 return ConstantInt::get(DestTy, 0);
628 // If this is a sizeof-like expression, pull out multiplications by
629 // known factors to expose them to subsequent folding. If it's an
630 // alignof-like expression, factor out known factors.
631 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
632 if (CE->getOpcode() == Instruction::GetElementPtr &&
633 CE->getOperand(0)->isNullValue()) {
634 GEPOperator *GEPO = cast<GEPOperator>(CE);
635 Type *Ty = GEPO->getSourceElementType();
636 if (CE->getNumOperands() == 2) {
637 // Handle a sizeof-like expression.
638 Constant *Idx = CE->getOperand(1);
639 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
640 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
641 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
642 DestTy, false),
643 Idx, DestTy);
644 return ConstantExpr::getMul(C, Idx);
645 }
646 } else if (CE->getNumOperands() == 3 &&
647 CE->getOperand(1)->isNullValue()) {
648 // Handle an alignof-like expression.
649 if (StructType *STy = dyn_cast<StructType>(Ty))
650 if (!STy->isPacked()) {
651 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
652 if (CI->isOne() &&
653 STy->getNumElements() == 2 &&
654 STy->getElementType(0)->isIntegerTy(1)) {
655 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
656 }
657 }
658 // Handle an offsetof-like expression.
659 if (Ty->isStructTy() || Ty->isArrayTy()) {
660 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
661 DestTy, false))
662 return C;
663 }
664 }
665 }
666 // Other pointer types cannot be casted
667 return nullptr;
668 case Instruction::UIToFP:
669 case Instruction::SIToFP:
670 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
671 const APInt &api = CI->getValue();
672 APFloat apf(DestTy->getFltSemantics(),
673 APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
674 if (APFloat::opOverflow &
675 apf.convertFromAPInt(api, opc==Instruction::SIToFP,
676 APFloat::rmNearestTiesToEven)) {
677 // Undefined behavior invoked - the destination type can't represent
678 // the input constant.
679 return UndefValue::get(DestTy);
680 }
681 return ConstantFP::get(V->getContext(), apf);
682 }
683 return nullptr;
684 case Instruction::ZExt:
685 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
686 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
687 return ConstantInt::get(V->getContext(),
688 CI->getValue().zext(BitWidth));
689 }
690 return nullptr;
691 case Instruction::SExt:
692 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
693 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
694 return ConstantInt::get(V->getContext(),
695 CI->getValue().sext(BitWidth));
696 }
697 return nullptr;
698 case Instruction::Trunc: {
699 if (V->getType()->isVectorTy())
700 return nullptr;
701
702 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
703 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
704 return ConstantInt::get(V->getContext(),
705 CI->getValue().trunc(DestBitWidth));
706 }
707
708 // The input must be a constantexpr. See if we can simplify this based on
709 // the bytes we are demanding. Only do this if the source and dest are an
710 // even multiple of a byte.
711 if ((DestBitWidth & 7) == 0 &&
712 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
713 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
714 return Res;
715
716 return nullptr;
717 }
718 case Instruction::BitCast:
719 return FoldBitCast(V, DestTy);
720 case Instruction::AddrSpaceCast:
721 return nullptr;
722 }
723 }
724
ConstantFoldSelectInstruction(Constant * Cond,Constant * V1,Constant * V2)725 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
726 Constant *V1, Constant *V2) {
727 // Check for i1 and vector true/false conditions.
728 if (Cond->isNullValue()) return V2;
729 if (Cond->isAllOnesValue()) return V1;
730
731 // If the condition is a vector constant, fold the result elementwise.
732 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
733 SmallVector<Constant*, 16> Result;
734 Type *Ty = IntegerType::get(CondV->getContext(), 32);
735 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
736 Constant *V;
737 Constant *V1Element = ConstantExpr::getExtractElement(V1,
738 ConstantInt::get(Ty, i));
739 Constant *V2Element = ConstantExpr::getExtractElement(V2,
740 ConstantInt::get(Ty, i));
741 Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
742 if (V1Element == V2Element) {
743 V = V1Element;
744 } else if (isa<UndefValue>(Cond)) {
745 V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
746 } else {
747 if (!isa<ConstantInt>(Cond)) break;
748 V = Cond->isNullValue() ? V2Element : V1Element;
749 }
750 Result.push_back(V);
751 }
752
753 // If we were able to build the vector, return it.
754 if (Result.size() == V1->getType()->getVectorNumElements())
755 return ConstantVector::get(Result);
756 }
757
758 if (isa<UndefValue>(Cond)) {
759 if (isa<UndefValue>(V1)) return V1;
760 return V2;
761 }
762 if (isa<UndefValue>(V1)) return V2;
763 if (isa<UndefValue>(V2)) return V1;
764 if (V1 == V2) return V1;
765
766 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
767 if (TrueVal->getOpcode() == Instruction::Select)
768 if (TrueVal->getOperand(0) == Cond)
769 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
770 }
771 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
772 if (FalseVal->getOpcode() == Instruction::Select)
773 if (FalseVal->getOperand(0) == Cond)
774 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
775 }
776
777 return nullptr;
778 }
779
ConstantFoldExtractElementInstruction(Constant * Val,Constant * Idx)780 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
781 Constant *Idx) {
782 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
783 return UndefValue::get(Val->getType()->getVectorElementType());
784 if (Val->isNullValue()) // ee(zero, x) -> zero
785 return Constant::getNullValue(Val->getType()->getVectorElementType());
786 // ee({w,x,y,z}, undef) -> undef
787 if (isa<UndefValue>(Idx))
788 return UndefValue::get(Val->getType()->getVectorElementType());
789
790 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
791 // ee({w,x,y,z}, wrong_value) -> undef
792 if (CIdx->uge(Val->getType()->getVectorNumElements()))
793 return UndefValue::get(Val->getType()->getVectorElementType());
794 return Val->getAggregateElement(CIdx->getZExtValue());
795 }
796 return nullptr;
797 }
798
ConstantFoldInsertElementInstruction(Constant * Val,Constant * Elt,Constant * Idx)799 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
800 Constant *Elt,
801 Constant *Idx) {
802 if (isa<UndefValue>(Idx))
803 return UndefValue::get(Val->getType());
804
805 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
806 if (!CIdx) return nullptr;
807
808 unsigned NumElts = Val->getType()->getVectorNumElements();
809 if (CIdx->uge(NumElts))
810 return UndefValue::get(Val->getType());
811
812 SmallVector<Constant*, 16> Result;
813 Result.reserve(NumElts);
814 auto *Ty = Type::getInt32Ty(Val->getContext());
815 uint64_t IdxVal = CIdx->getZExtValue();
816 for (unsigned i = 0; i != NumElts; ++i) {
817 if (i == IdxVal) {
818 Result.push_back(Elt);
819 continue;
820 }
821
822 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
823 Result.push_back(C);
824 }
825
826 return ConstantVector::get(Result);
827 }
828
ConstantFoldShuffleVectorInstruction(Constant * V1,Constant * V2,Constant * Mask)829 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
830 Constant *V2,
831 Constant *Mask) {
832 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
833 Type *EltTy = V1->getType()->getVectorElementType();
834
835 // Undefined shuffle mask -> undefined value.
836 if (isa<UndefValue>(Mask))
837 return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
838
839 // Don't break the bitcode reader hack.
840 if (isa<ConstantExpr>(Mask)) return nullptr;
841
842 unsigned SrcNumElts = V1->getType()->getVectorNumElements();
843
844 // Loop over the shuffle mask, evaluating each element.
845 SmallVector<Constant*, 32> Result;
846 for (unsigned i = 0; i != MaskNumElts; ++i) {
847 int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
848 if (Elt == -1) {
849 Result.push_back(UndefValue::get(EltTy));
850 continue;
851 }
852 Constant *InElt;
853 if (unsigned(Elt) >= SrcNumElts*2)
854 InElt = UndefValue::get(EltTy);
855 else if (unsigned(Elt) >= SrcNumElts) {
856 Type *Ty = IntegerType::get(V2->getContext(), 32);
857 InElt =
858 ConstantExpr::getExtractElement(V2,
859 ConstantInt::get(Ty, Elt - SrcNumElts));
860 } else {
861 Type *Ty = IntegerType::get(V1->getContext(), 32);
862 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
863 }
864 Result.push_back(InElt);
865 }
866
867 return ConstantVector::get(Result);
868 }
869
ConstantFoldExtractValueInstruction(Constant * Agg,ArrayRef<unsigned> Idxs)870 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
871 ArrayRef<unsigned> Idxs) {
872 // Base case: no indices, so return the entire value.
873 if (Idxs.empty())
874 return Agg;
875
876 if (Constant *C = Agg->getAggregateElement(Idxs[0]))
877 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
878
879 return nullptr;
880 }
881
ConstantFoldInsertValueInstruction(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)882 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
883 Constant *Val,
884 ArrayRef<unsigned> Idxs) {
885 // Base case: no indices, so replace the entire value.
886 if (Idxs.empty())
887 return Val;
888
889 unsigned NumElts;
890 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
891 NumElts = ST->getNumElements();
892 else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
893 NumElts = AT->getNumElements();
894 else
895 NumElts = Agg->getType()->getVectorNumElements();
896
897 SmallVector<Constant*, 32> Result;
898 for (unsigned i = 0; i != NumElts; ++i) {
899 Constant *C = Agg->getAggregateElement(i);
900 if (!C) return nullptr;
901
902 if (Idxs[0] == i)
903 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
904
905 Result.push_back(C);
906 }
907
908 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
909 return ConstantStruct::get(ST, Result);
910 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
911 return ConstantArray::get(AT, Result);
912 return ConstantVector::get(Result);
913 }
914
915
ConstantFoldBinaryInstruction(unsigned Opcode,Constant * C1,Constant * C2)916 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
917 Constant *C1, Constant *C2) {
918 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
919
920 // Handle UndefValue up front.
921 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
922 switch (static_cast<Instruction::BinaryOps>(Opcode)) {
923 case Instruction::Xor:
924 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
925 // Handle undef ^ undef -> 0 special case. This is a common
926 // idiom (misuse).
927 return Constant::getNullValue(C1->getType());
928 // Fallthrough
929 case Instruction::Add:
930 case Instruction::Sub:
931 return UndefValue::get(C1->getType());
932 case Instruction::And:
933 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
934 return C1;
935 return Constant::getNullValue(C1->getType()); // undef & X -> 0
936 case Instruction::Mul: {
937 // undef * undef -> undef
938 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
939 return C1;
940 const APInt *CV;
941 // X * undef -> undef if X is odd
942 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
943 if ((*CV)[0])
944 return UndefValue::get(C1->getType());
945
946 // X * undef -> 0 otherwise
947 return Constant::getNullValue(C1->getType());
948 }
949 case Instruction::SDiv:
950 case Instruction::UDiv:
951 // X / undef -> undef
952 if (isa<UndefValue>(C2))
953 return C2;
954 // undef / 0 -> undef
955 // undef / 1 -> undef
956 if (match(C2, m_Zero()) || match(C2, m_One()))
957 return C1;
958 // undef / X -> 0 otherwise
959 return Constant::getNullValue(C1->getType());
960 case Instruction::URem:
961 case Instruction::SRem:
962 // X % undef -> undef
963 if (match(C2, m_Undef()))
964 return C2;
965 // undef % 0 -> undef
966 if (match(C2, m_Zero()))
967 return C1;
968 // undef % X -> 0 otherwise
969 return Constant::getNullValue(C1->getType());
970 case Instruction::Or: // X | undef -> -1
971 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
972 return C1;
973 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
974 case Instruction::LShr:
975 // X >>l undef -> undef
976 if (isa<UndefValue>(C2))
977 return C2;
978 // undef >>l 0 -> undef
979 if (match(C2, m_Zero()))
980 return C1;
981 // undef >>l X -> 0
982 return Constant::getNullValue(C1->getType());
983 case Instruction::AShr:
984 // X >>a undef -> undef
985 if (isa<UndefValue>(C2))
986 return C2;
987 // undef >>a 0 -> undef
988 if (match(C2, m_Zero()))
989 return C1;
990 // TODO: undef >>a X -> undef if the shift is exact
991 // undef >>a X -> 0
992 return Constant::getNullValue(C1->getType());
993 case Instruction::Shl:
994 // X << undef -> undef
995 if (isa<UndefValue>(C2))
996 return C2;
997 // undef << 0 -> undef
998 if (match(C2, m_Zero()))
999 return C1;
1000 // undef << X -> 0
1001 return Constant::getNullValue(C1->getType());
1002 case Instruction::FAdd:
1003 case Instruction::FSub:
1004 case Instruction::FMul:
1005 case Instruction::FDiv:
1006 case Instruction::FRem:
1007 // TODO: UNDEF handling for binary float instructions.
1008 return nullptr;
1009 case Instruction::BinaryOpsEnd:
1010 llvm_unreachable("Invalid BinaryOp");
1011 }
1012 }
1013
1014 // At this point neither constant should be an UndefValue.
1015 assert(!isa<UndefValue>(C1) && !isa<UndefValue>(C2) &&
1016 "Unexpected UndefValue");
1017
1018 // Handle simplifications when the RHS is a constant int.
1019 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1020 switch (Opcode) {
1021 case Instruction::Add:
1022 if (CI2->equalsInt(0)) return C1; // X + 0 == X
1023 break;
1024 case Instruction::Sub:
1025 if (CI2->equalsInt(0)) return C1; // X - 0 == X
1026 break;
1027 case Instruction::Mul:
1028 if (CI2->equalsInt(0)) return C2; // X * 0 == 0
1029 if (CI2->equalsInt(1))
1030 return C1; // X * 1 == X
1031 break;
1032 case Instruction::UDiv:
1033 case Instruction::SDiv:
1034 if (CI2->equalsInt(1))
1035 return C1; // X / 1 == X
1036 if (CI2->equalsInt(0))
1037 return UndefValue::get(CI2->getType()); // X / 0 == undef
1038 break;
1039 case Instruction::URem:
1040 case Instruction::SRem:
1041 if (CI2->equalsInt(1))
1042 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
1043 if (CI2->equalsInt(0))
1044 return UndefValue::get(CI2->getType()); // X % 0 == undef
1045 break;
1046 case Instruction::And:
1047 if (CI2->isZero()) return C2; // X & 0 == 0
1048 if (CI2->isAllOnesValue())
1049 return C1; // X & -1 == X
1050
1051 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1052 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1053 if (CE1->getOpcode() == Instruction::ZExt) {
1054 unsigned DstWidth = CI2->getType()->getBitWidth();
1055 unsigned SrcWidth =
1056 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1057 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1058 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1059 return C1;
1060 }
1061
1062 // If and'ing the address of a global with a constant, fold it.
1063 if (CE1->getOpcode() == Instruction::PtrToInt &&
1064 isa<GlobalValue>(CE1->getOperand(0))) {
1065 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1066
1067 // Functions are at least 4-byte aligned.
1068 unsigned GVAlign = GV->getAlignment();
1069 if (isa<Function>(GV))
1070 GVAlign = std::max(GVAlign, 4U);
1071
1072 if (GVAlign > 1) {
1073 unsigned DstWidth = CI2->getType()->getBitWidth();
1074 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1075 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1076
1077 // If checking bits we know are clear, return zero.
1078 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1079 return Constant::getNullValue(CI2->getType());
1080 }
1081 }
1082 }
1083 break;
1084 case Instruction::Or:
1085 if (CI2->equalsInt(0)) return C1; // X | 0 == X
1086 if (CI2->isAllOnesValue())
1087 return C2; // X | -1 == -1
1088 break;
1089 case Instruction::Xor:
1090 if (CI2->equalsInt(0)) return C1; // X ^ 0 == X
1091
1092 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1093 switch (CE1->getOpcode()) {
1094 default: break;
1095 case Instruction::ICmp:
1096 case Instruction::FCmp:
1097 // cmp pred ^ true -> cmp !pred
1098 assert(CI2->equalsInt(1));
1099 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1100 pred = CmpInst::getInversePredicate(pred);
1101 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1102 CE1->getOperand(1));
1103 }
1104 }
1105 break;
1106 case Instruction::AShr:
1107 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1108 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1109 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1110 return ConstantExpr::getLShr(C1, C2);
1111 break;
1112 }
1113 } else if (isa<ConstantInt>(C1)) {
1114 // If C1 is a ConstantInt and C2 is not, swap the operands.
1115 if (Instruction::isCommutative(Opcode))
1116 return ConstantExpr::get(Opcode, C2, C1);
1117 }
1118
1119 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1120 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1121 const APInt &C1V = CI1->getValue();
1122 const APInt &C2V = CI2->getValue();
1123 switch (Opcode) {
1124 default:
1125 break;
1126 case Instruction::Add:
1127 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1128 case Instruction::Sub:
1129 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1130 case Instruction::Mul:
1131 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1132 case Instruction::UDiv:
1133 assert(!CI2->isNullValue() && "Div by zero handled above");
1134 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1135 case Instruction::SDiv:
1136 assert(!CI2->isNullValue() && "Div by zero handled above");
1137 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1138 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
1139 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1140 case Instruction::URem:
1141 assert(!CI2->isNullValue() && "Div by zero handled above");
1142 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1143 case Instruction::SRem:
1144 assert(!CI2->isNullValue() && "Div by zero handled above");
1145 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1146 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
1147 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1148 case Instruction::And:
1149 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1150 case Instruction::Or:
1151 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1152 case Instruction::Xor:
1153 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1154 case Instruction::Shl:
1155 if (C2V.ult(C1V.getBitWidth()))
1156 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1157 return UndefValue::get(C1->getType()); // too big shift is undef
1158 case Instruction::LShr:
1159 if (C2V.ult(C1V.getBitWidth()))
1160 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1161 return UndefValue::get(C1->getType()); // too big shift is undef
1162 case Instruction::AShr:
1163 if (C2V.ult(C1V.getBitWidth()))
1164 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1165 return UndefValue::get(C1->getType()); // too big shift is undef
1166 }
1167 }
1168
1169 switch (Opcode) {
1170 case Instruction::SDiv:
1171 case Instruction::UDiv:
1172 case Instruction::URem:
1173 case Instruction::SRem:
1174 case Instruction::LShr:
1175 case Instruction::AShr:
1176 case Instruction::Shl:
1177 if (CI1->equalsInt(0)) return C1;
1178 break;
1179 default:
1180 break;
1181 }
1182 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1183 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1184 const APFloat &C1V = CFP1->getValueAPF();
1185 const APFloat &C2V = CFP2->getValueAPF();
1186 APFloat C3V = C1V; // copy for modification
1187 switch (Opcode) {
1188 default:
1189 break;
1190 case Instruction::FAdd:
1191 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1192 return ConstantFP::get(C1->getContext(), C3V);
1193 case Instruction::FSub:
1194 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1195 return ConstantFP::get(C1->getContext(), C3V);
1196 case Instruction::FMul:
1197 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1198 return ConstantFP::get(C1->getContext(), C3V);
1199 case Instruction::FDiv:
1200 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1201 return ConstantFP::get(C1->getContext(), C3V);
1202 case Instruction::FRem:
1203 (void)C3V.mod(C2V);
1204 return ConstantFP::get(C1->getContext(), C3V);
1205 }
1206 }
1207 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1208 // Perform elementwise folding.
1209 SmallVector<Constant*, 16> Result;
1210 Type *Ty = IntegerType::get(VTy->getContext(), 32);
1211 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1212 Constant *LHS =
1213 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1214 Constant *RHS =
1215 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1216
1217 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1218 }
1219
1220 return ConstantVector::get(Result);
1221 }
1222
1223 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1224 // There are many possible foldings we could do here. We should probably
1225 // at least fold add of a pointer with an integer into the appropriate
1226 // getelementptr. This will improve alias analysis a bit.
1227
1228 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1229 // (a + (b + c)).
1230 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1231 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1232 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1233 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1234 }
1235 } else if (isa<ConstantExpr>(C2)) {
1236 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1237 // other way if possible.
1238 if (Instruction::isCommutative(Opcode))
1239 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1240 }
1241
1242 // i1 can be simplified in many cases.
1243 if (C1->getType()->isIntegerTy(1)) {
1244 switch (Opcode) {
1245 case Instruction::Add:
1246 case Instruction::Sub:
1247 return ConstantExpr::getXor(C1, C2);
1248 case Instruction::Mul:
1249 return ConstantExpr::getAnd(C1, C2);
1250 case Instruction::Shl:
1251 case Instruction::LShr:
1252 case Instruction::AShr:
1253 // We can assume that C2 == 0. If it were one the result would be
1254 // undefined because the shift value is as large as the bitwidth.
1255 return C1;
1256 case Instruction::SDiv:
1257 case Instruction::UDiv:
1258 // We can assume that C2 == 1. If it were zero the result would be
1259 // undefined through division by zero.
1260 return C1;
1261 case Instruction::URem:
1262 case Instruction::SRem:
1263 // We can assume that C2 == 1. If it were zero the result would be
1264 // undefined through division by zero.
1265 return ConstantInt::getFalse(C1->getContext());
1266 default:
1267 break;
1268 }
1269 }
1270
1271 // We don't know how to fold this.
1272 return nullptr;
1273 }
1274
1275 /// This type is zero-sized if it's an array or structure of zero-sized types.
1276 /// The only leaf zero-sized type is an empty structure.
isMaybeZeroSizedType(Type * Ty)1277 static bool isMaybeZeroSizedType(Type *Ty) {
1278 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1279 if (STy->isOpaque()) return true; // Can't say.
1280
1281 // If all of elements have zero size, this does too.
1282 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1283 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1284 return true;
1285
1286 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1287 return isMaybeZeroSizedType(ATy->getElementType());
1288 }
1289 return false;
1290 }
1291
1292 /// Compare the two constants as though they were getelementptr indices.
1293 /// This allows coercion of the types to be the same thing.
1294 ///
1295 /// If the two constants are the "same" (after coercion), return 0. If the
1296 /// first is less than the second, return -1, if the second is less than the
1297 /// first, return 1. If the constants are not integral, return -2.
1298 ///
IdxCompare(Constant * C1,Constant * C2,Type * ElTy)1299 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1300 if (C1 == C2) return 0;
1301
1302 // Ok, we found a different index. If they are not ConstantInt, we can't do
1303 // anything with them.
1304 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1305 return -2; // don't know!
1306
1307 // We cannot compare the indices if they don't fit in an int64_t.
1308 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1309 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1310 return -2; // don't know!
1311
1312 // Ok, we have two differing integer indices. Sign extend them to be the same
1313 // type.
1314 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1315 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1316
1317 if (C1Val == C2Val) return 0; // They are equal
1318
1319 // If the type being indexed over is really just a zero sized type, there is
1320 // no pointer difference being made here.
1321 if (isMaybeZeroSizedType(ElTy))
1322 return -2; // dunno.
1323
1324 // If they are really different, now that they are the same type, then we
1325 // found a difference!
1326 if (C1Val < C2Val)
1327 return -1;
1328 else
1329 return 1;
1330 }
1331
1332 /// This function determines if there is anything we can decide about the two
1333 /// constants provided. This doesn't need to handle simple things like
1334 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1335 /// If we can determine that the two constants have a particular relation to
1336 /// each other, we should return the corresponding FCmpInst predicate,
1337 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1338 /// ConstantFoldCompareInstruction.
1339 ///
1340 /// To simplify this code we canonicalize the relation so that the first
1341 /// operand is always the most "complex" of the two. We consider ConstantFP
1342 /// to be the simplest, and ConstantExprs to be the most complex.
evaluateFCmpRelation(Constant * V1,Constant * V2)1343 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1344 assert(V1->getType() == V2->getType() &&
1345 "Cannot compare values of different types!");
1346
1347 // Handle degenerate case quickly
1348 if (V1 == V2) return FCmpInst::FCMP_OEQ;
1349
1350 if (!isa<ConstantExpr>(V1)) {
1351 if (!isa<ConstantExpr>(V2)) {
1352 // Simple case, use the standard constant folder.
1353 ConstantInt *R = nullptr;
1354 R = dyn_cast<ConstantInt>(
1355 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1356 if (R && !R->isZero())
1357 return FCmpInst::FCMP_OEQ;
1358 R = dyn_cast<ConstantInt>(
1359 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1360 if (R && !R->isZero())
1361 return FCmpInst::FCMP_OLT;
1362 R = dyn_cast<ConstantInt>(
1363 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1364 if (R && !R->isZero())
1365 return FCmpInst::FCMP_OGT;
1366
1367 // Nothing more we can do
1368 return FCmpInst::BAD_FCMP_PREDICATE;
1369 }
1370
1371 // If the first operand is simple and second is ConstantExpr, swap operands.
1372 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1373 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1374 return FCmpInst::getSwappedPredicate(SwappedRelation);
1375 } else {
1376 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1377 // constantexpr or a simple constant.
1378 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1379 switch (CE1->getOpcode()) {
1380 case Instruction::FPTrunc:
1381 case Instruction::FPExt:
1382 case Instruction::UIToFP:
1383 case Instruction::SIToFP:
1384 // We might be able to do something with these but we don't right now.
1385 break;
1386 default:
1387 break;
1388 }
1389 }
1390 // There are MANY other foldings that we could perform here. They will
1391 // probably be added on demand, as they seem needed.
1392 return FCmpInst::BAD_FCMP_PREDICATE;
1393 }
1394
areGlobalsPotentiallyEqual(const GlobalValue * GV1,const GlobalValue * GV2)1395 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1396 const GlobalValue *GV2) {
1397 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1398 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1399 return true;
1400 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1401 Type *Ty = GVar->getValueType();
1402 // A global with opaque type might end up being zero sized.
1403 if (!Ty->isSized())
1404 return true;
1405 // A global with an empty type might lie at the address of any other
1406 // global.
1407 if (Ty->isEmptyTy())
1408 return true;
1409 }
1410 return false;
1411 };
1412 // Don't try to decide equality of aliases.
1413 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1414 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1415 return ICmpInst::ICMP_NE;
1416 return ICmpInst::BAD_ICMP_PREDICATE;
1417 }
1418
1419 /// This function determines if there is anything we can decide about the two
1420 /// constants provided. This doesn't need to handle simple things like integer
1421 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1422 /// If we can determine that the two constants have a particular relation to
1423 /// each other, we should return the corresponding ICmp predicate, otherwise
1424 /// return ICmpInst::BAD_ICMP_PREDICATE.
1425 ///
1426 /// To simplify this code we canonicalize the relation so that the first
1427 /// operand is always the most "complex" of the two. We consider simple
1428 /// constants (like ConstantInt) to be the simplest, followed by
1429 /// GlobalValues, followed by ConstantExpr's (the most complex).
1430 ///
evaluateICmpRelation(Constant * V1,Constant * V2,bool isSigned)1431 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1432 bool isSigned) {
1433 assert(V1->getType() == V2->getType() &&
1434 "Cannot compare different types of values!");
1435 if (V1 == V2) return ICmpInst::ICMP_EQ;
1436
1437 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1438 !isa<BlockAddress>(V1)) {
1439 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1440 !isa<BlockAddress>(V2)) {
1441 // We distilled this down to a simple case, use the standard constant
1442 // folder.
1443 ConstantInt *R = nullptr;
1444 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1445 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1446 if (R && !R->isZero())
1447 return pred;
1448 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1449 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1450 if (R && !R->isZero())
1451 return pred;
1452 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1453 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1454 if (R && !R->isZero())
1455 return pred;
1456
1457 // If we couldn't figure it out, bail.
1458 return ICmpInst::BAD_ICMP_PREDICATE;
1459 }
1460
1461 // If the first operand is simple, swap operands.
1462 ICmpInst::Predicate SwappedRelation =
1463 evaluateICmpRelation(V2, V1, isSigned);
1464 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1465 return ICmpInst::getSwappedPredicate(SwappedRelation);
1466
1467 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1468 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1469 ICmpInst::Predicate SwappedRelation =
1470 evaluateICmpRelation(V2, V1, isSigned);
1471 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1472 return ICmpInst::getSwappedPredicate(SwappedRelation);
1473 return ICmpInst::BAD_ICMP_PREDICATE;
1474 }
1475
1476 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1477 // constant (which, since the types must match, means that it's a
1478 // ConstantPointerNull).
1479 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1480 return areGlobalsPotentiallyEqual(GV, GV2);
1481 } else if (isa<BlockAddress>(V2)) {
1482 return ICmpInst::ICMP_NE; // Globals never equal labels.
1483 } else {
1484 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1485 // GlobalVals can never be null unless they have external weak linkage.
1486 // We don't try to evaluate aliases here.
1487 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1488 return ICmpInst::ICMP_NE;
1489 }
1490 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1491 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1492 ICmpInst::Predicate SwappedRelation =
1493 evaluateICmpRelation(V2, V1, isSigned);
1494 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1495 return ICmpInst::getSwappedPredicate(SwappedRelation);
1496 return ICmpInst::BAD_ICMP_PREDICATE;
1497 }
1498
1499 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1500 // constant (which, since the types must match, means that it is a
1501 // ConstantPointerNull).
1502 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1503 // Block address in another function can't equal this one, but block
1504 // addresses in the current function might be the same if blocks are
1505 // empty.
1506 if (BA2->getFunction() != BA->getFunction())
1507 return ICmpInst::ICMP_NE;
1508 } else {
1509 // Block addresses aren't null, don't equal the address of globals.
1510 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1511 "Canonicalization guarantee!");
1512 return ICmpInst::ICMP_NE;
1513 }
1514 } else {
1515 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1516 // constantexpr, a global, block address, or a simple constant.
1517 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1518 Constant *CE1Op0 = CE1->getOperand(0);
1519
1520 switch (CE1->getOpcode()) {
1521 case Instruction::Trunc:
1522 case Instruction::FPTrunc:
1523 case Instruction::FPExt:
1524 case Instruction::FPToUI:
1525 case Instruction::FPToSI:
1526 break; // We can't evaluate floating point casts or truncations.
1527
1528 case Instruction::UIToFP:
1529 case Instruction::SIToFP:
1530 case Instruction::BitCast:
1531 case Instruction::ZExt:
1532 case Instruction::SExt:
1533 // We can't evaluate floating point casts or truncations.
1534 if (CE1Op0->getType()->isFloatingPointTy())
1535 break;
1536
1537 // If the cast is not actually changing bits, and the second operand is a
1538 // null pointer, do the comparison with the pre-casted value.
1539 if (V2->isNullValue() &&
1540 (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1541 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1542 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1543 return evaluateICmpRelation(CE1Op0,
1544 Constant::getNullValue(CE1Op0->getType()),
1545 isSigned);
1546 }
1547 break;
1548
1549 case Instruction::GetElementPtr: {
1550 GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1551 // Ok, since this is a getelementptr, we know that the constant has a
1552 // pointer type. Check the various cases.
1553 if (isa<ConstantPointerNull>(V2)) {
1554 // If we are comparing a GEP to a null pointer, check to see if the base
1555 // of the GEP equals the null pointer.
1556 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1557 if (GV->hasExternalWeakLinkage())
1558 // Weak linkage GVals could be zero or not. We're comparing that
1559 // to null pointer so its greater-or-equal
1560 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1561 else
1562 // If its not weak linkage, the GVal must have a non-zero address
1563 // so the result is greater-than
1564 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1565 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1566 // If we are indexing from a null pointer, check to see if we have any
1567 // non-zero indices.
1568 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1569 if (!CE1->getOperand(i)->isNullValue())
1570 // Offsetting from null, must not be equal.
1571 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1572 // Only zero indexes from null, must still be zero.
1573 return ICmpInst::ICMP_EQ;
1574 }
1575 // Otherwise, we can't really say if the first operand is null or not.
1576 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1577 if (isa<ConstantPointerNull>(CE1Op0)) {
1578 if (GV2->hasExternalWeakLinkage())
1579 // Weak linkage GVals could be zero or not. We're comparing it to
1580 // a null pointer, so its less-or-equal
1581 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1582 else
1583 // If its not weak linkage, the GVal must have a non-zero address
1584 // so the result is less-than
1585 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1586 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1587 if (GV == GV2) {
1588 // If this is a getelementptr of the same global, then it must be
1589 // different. Because the types must match, the getelementptr could
1590 // only have at most one index, and because we fold getelementptr's
1591 // with a single zero index, it must be nonzero.
1592 assert(CE1->getNumOperands() == 2 &&
1593 !CE1->getOperand(1)->isNullValue() &&
1594 "Surprising getelementptr!");
1595 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1596 } else {
1597 if (CE1GEP->hasAllZeroIndices())
1598 return areGlobalsPotentiallyEqual(GV, GV2);
1599 return ICmpInst::BAD_ICMP_PREDICATE;
1600 }
1601 }
1602 } else {
1603 ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1604 Constant *CE2Op0 = CE2->getOperand(0);
1605
1606 // There are MANY other foldings that we could perform here. They will
1607 // probably be added on demand, as they seem needed.
1608 switch (CE2->getOpcode()) {
1609 default: break;
1610 case Instruction::GetElementPtr:
1611 // By far the most common case to handle is when the base pointers are
1612 // obviously to the same global.
1613 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1614 // Don't know relative ordering, but check for inequality.
1615 if (CE1Op0 != CE2Op0) {
1616 GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1617 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1618 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1619 cast<GlobalValue>(CE2Op0));
1620 return ICmpInst::BAD_ICMP_PREDICATE;
1621 }
1622 // Ok, we know that both getelementptr instructions are based on the
1623 // same global. From this, we can precisely determine the relative
1624 // ordering of the resultant pointers.
1625 unsigned i = 1;
1626
1627 // The logic below assumes that the result of the comparison
1628 // can be determined by finding the first index that differs.
1629 // This doesn't work if there is over-indexing in any
1630 // subsequent indices, so check for that case first.
1631 if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1632 !CE2->isGEPWithNoNotionalOverIndexing())
1633 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1634
1635 // Compare all of the operands the GEP's have in common.
1636 gep_type_iterator GTI = gep_type_begin(CE1);
1637 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1638 ++i, ++GTI)
1639 switch (IdxCompare(CE1->getOperand(i),
1640 CE2->getOperand(i), GTI.getIndexedType())) {
1641 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1642 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1643 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1644 }
1645
1646 // Ok, we ran out of things they have in common. If any leftovers
1647 // are non-zero then we have a difference, otherwise we are equal.
1648 for (; i < CE1->getNumOperands(); ++i)
1649 if (!CE1->getOperand(i)->isNullValue()) {
1650 if (isa<ConstantInt>(CE1->getOperand(i)))
1651 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1652 else
1653 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1654 }
1655
1656 for (; i < CE2->getNumOperands(); ++i)
1657 if (!CE2->getOperand(i)->isNullValue()) {
1658 if (isa<ConstantInt>(CE2->getOperand(i)))
1659 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1660 else
1661 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1662 }
1663 return ICmpInst::ICMP_EQ;
1664 }
1665 }
1666 }
1667 }
1668 default:
1669 break;
1670 }
1671 }
1672
1673 return ICmpInst::BAD_ICMP_PREDICATE;
1674 }
1675
ConstantFoldCompareInstruction(unsigned short pred,Constant * C1,Constant * C2)1676 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1677 Constant *C1, Constant *C2) {
1678 Type *ResultTy;
1679 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1680 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1681 VT->getNumElements());
1682 else
1683 ResultTy = Type::getInt1Ty(C1->getContext());
1684
1685 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1686 if (pred == FCmpInst::FCMP_FALSE)
1687 return Constant::getNullValue(ResultTy);
1688
1689 if (pred == FCmpInst::FCMP_TRUE)
1690 return Constant::getAllOnesValue(ResultTy);
1691
1692 // Handle some degenerate cases first
1693 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1694 CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1695 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1696 // For EQ and NE, we can always pick a value for the undef to make the
1697 // predicate pass or fail, so we can return undef.
1698 // Also, if both operands are undef, we can return undef for int comparison.
1699 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1700 return UndefValue::get(ResultTy);
1701
1702 // Otherwise, for integer compare, pick the same value as the non-undef
1703 // operand, and fold it to true or false.
1704 if (isIntegerPredicate)
1705 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1706
1707 // Choosing NaN for the undef will always make unordered comparison succeed
1708 // and ordered comparison fails.
1709 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1710 }
1711
1712 // icmp eq/ne(null,GV) -> false/true
1713 if (C1->isNullValue()) {
1714 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1715 // Don't try to evaluate aliases. External weak GV can be null.
1716 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1717 if (pred == ICmpInst::ICMP_EQ)
1718 return ConstantInt::getFalse(C1->getContext());
1719 else if (pred == ICmpInst::ICMP_NE)
1720 return ConstantInt::getTrue(C1->getContext());
1721 }
1722 // icmp eq/ne(GV,null) -> false/true
1723 } else if (C2->isNullValue()) {
1724 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1725 // Don't try to evaluate aliases. External weak GV can be null.
1726 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1727 if (pred == ICmpInst::ICMP_EQ)
1728 return ConstantInt::getFalse(C1->getContext());
1729 else if (pred == ICmpInst::ICMP_NE)
1730 return ConstantInt::getTrue(C1->getContext());
1731 }
1732 }
1733
1734 // If the comparison is a comparison between two i1's, simplify it.
1735 if (C1->getType()->isIntegerTy(1)) {
1736 switch(pred) {
1737 case ICmpInst::ICMP_EQ:
1738 if (isa<ConstantInt>(C2))
1739 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1740 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1741 case ICmpInst::ICMP_NE:
1742 return ConstantExpr::getXor(C1, C2);
1743 default:
1744 break;
1745 }
1746 }
1747
1748 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1749 const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1750 const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1751 switch (pred) {
1752 default: llvm_unreachable("Invalid ICmp Predicate");
1753 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1754 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1755 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1756 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1757 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1758 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1759 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1760 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1761 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1762 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1763 }
1764 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1765 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1766 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1767 APFloat::cmpResult R = C1V.compare(C2V);
1768 switch (pred) {
1769 default: llvm_unreachable("Invalid FCmp Predicate");
1770 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1771 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1772 case FCmpInst::FCMP_UNO:
1773 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1774 case FCmpInst::FCMP_ORD:
1775 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1776 case FCmpInst::FCMP_UEQ:
1777 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1778 R==APFloat::cmpEqual);
1779 case FCmpInst::FCMP_OEQ:
1780 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1781 case FCmpInst::FCMP_UNE:
1782 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1783 case FCmpInst::FCMP_ONE:
1784 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1785 R==APFloat::cmpGreaterThan);
1786 case FCmpInst::FCMP_ULT:
1787 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1788 R==APFloat::cmpLessThan);
1789 case FCmpInst::FCMP_OLT:
1790 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1791 case FCmpInst::FCMP_UGT:
1792 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1793 R==APFloat::cmpGreaterThan);
1794 case FCmpInst::FCMP_OGT:
1795 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1796 case FCmpInst::FCMP_ULE:
1797 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1798 case FCmpInst::FCMP_OLE:
1799 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1800 R==APFloat::cmpEqual);
1801 case FCmpInst::FCMP_UGE:
1802 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1803 case FCmpInst::FCMP_OGE:
1804 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1805 R==APFloat::cmpEqual);
1806 }
1807 } else if (C1->getType()->isVectorTy()) {
1808 // If we can constant fold the comparison of each element, constant fold
1809 // the whole vector comparison.
1810 SmallVector<Constant*, 4> ResElts;
1811 Type *Ty = IntegerType::get(C1->getContext(), 32);
1812 // Compare the elements, producing an i1 result or constant expr.
1813 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1814 Constant *C1E =
1815 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1816 Constant *C2E =
1817 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1818
1819 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1820 }
1821
1822 return ConstantVector::get(ResElts);
1823 }
1824
1825 if (C1->getType()->isFloatingPointTy() &&
1826 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1827 // infinite recursive loop
1828 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1829 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1830 switch (evaluateFCmpRelation(C1, C2)) {
1831 default: llvm_unreachable("Unknown relation!");
1832 case FCmpInst::FCMP_UNO:
1833 case FCmpInst::FCMP_ORD:
1834 case FCmpInst::FCMP_UEQ:
1835 case FCmpInst::FCMP_UNE:
1836 case FCmpInst::FCMP_ULT:
1837 case FCmpInst::FCMP_UGT:
1838 case FCmpInst::FCMP_ULE:
1839 case FCmpInst::FCMP_UGE:
1840 case FCmpInst::FCMP_TRUE:
1841 case FCmpInst::FCMP_FALSE:
1842 case FCmpInst::BAD_FCMP_PREDICATE:
1843 break; // Couldn't determine anything about these constants.
1844 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1845 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1846 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1847 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1848 break;
1849 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1850 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1851 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1852 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1853 break;
1854 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1855 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1856 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1857 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1858 break;
1859 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1860 // We can only partially decide this relation.
1861 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1862 Result = 0;
1863 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1864 Result = 1;
1865 break;
1866 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1867 // We can only partially decide this relation.
1868 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1869 Result = 0;
1870 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1871 Result = 1;
1872 break;
1873 case FCmpInst::FCMP_ONE: // We know that C1 != C2
1874 // We can only partially decide this relation.
1875 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1876 Result = 0;
1877 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1878 Result = 1;
1879 break;
1880 }
1881
1882 // If we evaluated the result, return it now.
1883 if (Result != -1)
1884 return ConstantInt::get(ResultTy, Result);
1885
1886 } else {
1887 // Evaluate the relation between the two constants, per the predicate.
1888 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1889 switch (evaluateICmpRelation(C1, C2,
1890 CmpInst::isSigned((CmpInst::Predicate)pred))) {
1891 default: llvm_unreachable("Unknown relational!");
1892 case ICmpInst::BAD_ICMP_PREDICATE:
1893 break; // Couldn't determine anything about these constants.
1894 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1895 // If we know the constants are equal, we can decide the result of this
1896 // computation precisely.
1897 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1898 break;
1899 case ICmpInst::ICMP_ULT:
1900 switch (pred) {
1901 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1902 Result = 1; break;
1903 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1904 Result = 0; break;
1905 }
1906 break;
1907 case ICmpInst::ICMP_SLT:
1908 switch (pred) {
1909 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1910 Result = 1; break;
1911 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1912 Result = 0; break;
1913 }
1914 break;
1915 case ICmpInst::ICMP_UGT:
1916 switch (pred) {
1917 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1918 Result = 1; break;
1919 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1920 Result = 0; break;
1921 }
1922 break;
1923 case ICmpInst::ICMP_SGT:
1924 switch (pred) {
1925 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1926 Result = 1; break;
1927 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1928 Result = 0; break;
1929 }
1930 break;
1931 case ICmpInst::ICMP_ULE:
1932 if (pred == ICmpInst::ICMP_UGT) Result = 0;
1933 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1934 break;
1935 case ICmpInst::ICMP_SLE:
1936 if (pred == ICmpInst::ICMP_SGT) Result = 0;
1937 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1938 break;
1939 case ICmpInst::ICMP_UGE:
1940 if (pred == ICmpInst::ICMP_ULT) Result = 0;
1941 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1942 break;
1943 case ICmpInst::ICMP_SGE:
1944 if (pred == ICmpInst::ICMP_SLT) Result = 0;
1945 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1946 break;
1947 case ICmpInst::ICMP_NE:
1948 if (pred == ICmpInst::ICMP_EQ) Result = 0;
1949 if (pred == ICmpInst::ICMP_NE) Result = 1;
1950 break;
1951 }
1952
1953 // If we evaluated the result, return it now.
1954 if (Result != -1)
1955 return ConstantInt::get(ResultTy, Result);
1956
1957 // If the right hand side is a bitcast, try using its inverse to simplify
1958 // it by moving it to the left hand side. We can't do this if it would turn
1959 // a vector compare into a scalar compare or visa versa.
1960 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1961 Constant *CE2Op0 = CE2->getOperand(0);
1962 if (CE2->getOpcode() == Instruction::BitCast &&
1963 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1964 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1965 return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1966 }
1967 }
1968
1969 // If the left hand side is an extension, try eliminating it.
1970 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1971 if ((CE1->getOpcode() == Instruction::SExt &&
1972 ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
1973 (CE1->getOpcode() == Instruction::ZExt &&
1974 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
1975 Constant *CE1Op0 = CE1->getOperand(0);
1976 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1977 if (CE1Inverse == CE1Op0) {
1978 // Check whether we can safely truncate the right hand side.
1979 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1980 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1981 C2->getType()) == C2)
1982 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1983 }
1984 }
1985 }
1986
1987 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1988 (C1->isNullValue() && !C2->isNullValue())) {
1989 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1990 // other way if possible.
1991 // Also, if C1 is null and C2 isn't, flip them around.
1992 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1993 return ConstantExpr::getICmp(pred, C2, C1);
1994 }
1995 }
1996 return nullptr;
1997 }
1998
1999 /// Test whether the given sequence of *normalized* indices is "inbounds".
2000 template<typename IndexTy>
isInBoundsIndices(ArrayRef<IndexTy> Idxs)2001 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2002 // No indices means nothing that could be out of bounds.
2003 if (Idxs.empty()) return true;
2004
2005 // If the first index is zero, it's in bounds.
2006 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2007
2008 // If the first index is one and all the rest are zero, it's in bounds,
2009 // by the one-past-the-end rule.
2010 if (!cast<ConstantInt>(Idxs[0])->isOne())
2011 return false;
2012 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2013 if (!cast<Constant>(Idxs[i])->isNullValue())
2014 return false;
2015 return true;
2016 }
2017
2018 /// Test whether a given ConstantInt is in-range for a SequentialType.
isIndexInRangeOfSequentialType(SequentialType * STy,const ConstantInt * CI)2019 static bool isIndexInRangeOfSequentialType(SequentialType *STy,
2020 const ConstantInt *CI) {
2021 // And indices are valid when indexing along a pointer
2022 if (isa<PointerType>(STy))
2023 return true;
2024
2025 uint64_t NumElements = 0;
2026 // Determine the number of elements in our sequential type.
2027 if (auto *ATy = dyn_cast<ArrayType>(STy))
2028 NumElements = ATy->getNumElements();
2029 else if (auto *VTy = dyn_cast<VectorType>(STy))
2030 NumElements = VTy->getNumElements();
2031
2032 assert((isa<ArrayType>(STy) || NumElements > 0) &&
2033 "didn't expect non-array type to have zero elements!");
2034
2035 // We cannot bounds check the index if it doesn't fit in an int64_t.
2036 if (CI->getValue().getActiveBits() > 64)
2037 return false;
2038
2039 // A negative index or an index past the end of our sequential type is
2040 // considered out-of-range.
2041 int64_t IndexVal = CI->getSExtValue();
2042 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2043 return false;
2044
2045 // Otherwise, it is in-range.
2046 return true;
2047 }
2048
2049 template<typename IndexTy>
ConstantFoldGetElementPtrImpl(Type * PointeeTy,Constant * C,bool inBounds,ArrayRef<IndexTy> Idxs)2050 static Constant *ConstantFoldGetElementPtrImpl(Type *PointeeTy, Constant *C,
2051 bool inBounds,
2052 ArrayRef<IndexTy> Idxs) {
2053 if (Idxs.empty()) return C;
2054 Constant *Idx0 = cast<Constant>(Idxs[0]);
2055 if ((Idxs.size() == 1 && Idx0->isNullValue()))
2056 return C;
2057
2058 if (isa<UndefValue>(C)) {
2059 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2060 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2061 assert(Ty && "Invalid indices for GEP!");
2062 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2063 if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2064 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
2065 return UndefValue::get(GEPTy);
2066 }
2067
2068 if (C->isNullValue()) {
2069 bool isNull = true;
2070 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2071 if (!cast<Constant>(Idxs[i])->isNullValue()) {
2072 isNull = false;
2073 break;
2074 }
2075 if (isNull) {
2076 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2077 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2078
2079 assert(Ty && "Invalid indices for GEP!");
2080 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2081 if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2082 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
2083 return Constant::getNullValue(GEPTy);
2084 }
2085 }
2086
2087 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2088 // Combine Indices - If the source pointer to this getelementptr instruction
2089 // is a getelementptr instruction, combine the indices of the two
2090 // getelementptr instructions into a single instruction.
2091 //
2092 if (CE->getOpcode() == Instruction::GetElementPtr) {
2093 Type *LastTy = nullptr;
2094 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2095 I != E; ++I)
2096 LastTy = *I;
2097
2098 // We cannot combine indices if doing so would take us outside of an
2099 // array or vector. Doing otherwise could trick us if we evaluated such a
2100 // GEP as part of a load.
2101 //
2102 // e.g. Consider if the original GEP was:
2103 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2104 // i32 0, i32 0, i64 0)
2105 //
2106 // If we then tried to offset it by '8' to get to the third element,
2107 // an i8, we should *not* get:
2108 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2109 // i32 0, i32 0, i64 8)
2110 //
2111 // This GEP tries to index array element '8 which runs out-of-bounds.
2112 // Subsequent evaluation would get confused and produce erroneous results.
2113 //
2114 // The following prohibits such a GEP from being formed by checking to see
2115 // if the index is in-range with respect to an array or vector.
2116 bool PerformFold = false;
2117 if (Idx0->isNullValue())
2118 PerformFold = true;
2119 else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
2120 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2121 PerformFold = isIndexInRangeOfSequentialType(STy, CI);
2122
2123 if (PerformFold) {
2124 SmallVector<Value*, 16> NewIndices;
2125 NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2126 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2127
2128 // Add the last index of the source with the first index of the new GEP.
2129 // Make sure to handle the case when they are actually different types.
2130 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2131 // Otherwise it must be an array.
2132 if (!Idx0->isNullValue()) {
2133 Type *IdxTy = Combined->getType();
2134 if (IdxTy != Idx0->getType()) {
2135 unsigned CommonExtendedWidth =
2136 std::max(IdxTy->getIntegerBitWidth(),
2137 Idx0->getType()->getIntegerBitWidth());
2138 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2139
2140 Type *CommonTy =
2141 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2142 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2143 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2144 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2145 } else {
2146 Combined =
2147 ConstantExpr::get(Instruction::Add, Idx0, Combined);
2148 }
2149 }
2150
2151 NewIndices.push_back(Combined);
2152 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2153 return ConstantExpr::getGetElementPtr(
2154 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2155 NewIndices, inBounds && cast<GEPOperator>(CE)->isInBounds());
2156 }
2157 }
2158
2159 // Attempt to fold casts to the same type away. For example, folding:
2160 //
2161 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2162 // i64 0, i64 0)
2163 // into:
2164 //
2165 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2166 //
2167 // Don't fold if the cast is changing address spaces.
2168 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2169 PointerType *SrcPtrTy =
2170 dyn_cast<PointerType>(CE->getOperand(0)->getType());
2171 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2172 if (SrcPtrTy && DstPtrTy) {
2173 ArrayType *SrcArrayTy =
2174 dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2175 ArrayType *DstArrayTy =
2176 dyn_cast<ArrayType>(DstPtrTy->getElementType());
2177 if (SrcArrayTy && DstArrayTy
2178 && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2179 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2180 return ConstantExpr::getGetElementPtr(
2181 SrcArrayTy, (Constant *)CE->getOperand(0), Idxs, inBounds);
2182 }
2183 }
2184 }
2185
2186 // Check to see if any array indices are not within the corresponding
2187 // notional array or vector bounds. If so, try to determine if they can be
2188 // factored out into preceding dimensions.
2189 SmallVector<Constant *, 8> NewIdxs;
2190 Type *Ty = PointeeTy;
2191 Type *Prev = C->getType();
2192 bool Unknown = !isa<ConstantInt>(Idxs[0]);
2193 for (unsigned i = 1, e = Idxs.size(); i != e;
2194 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2195 auto *CI = dyn_cast<ConstantInt>(Idxs[i]);
2196 if (!CI) {
2197 // We don't know if it's in range or not.
2198 Unknown = true;
2199 continue;
2200 }
2201 if (isa<StructType>(Ty)) {
2202 // The verify makes sure that GEPs into a struct are in range.
2203 continue;
2204 }
2205 auto *STy = cast<SequentialType>(Ty);
2206 if (isa<PointerType>(STy)) {
2207 // We don't know if it's in range or not.
2208 Unknown = true;
2209 continue;
2210 }
2211 if (isa<VectorType>(STy)) {
2212 // There can be awkward padding in after a non-power of two vector.
2213 Unknown = true;
2214 continue;
2215 }
2216 if (isIndexInRangeOfSequentialType(STy, CI))
2217 // It's in range, skip to the next index.
2218 continue;
2219 if (!isa<SequentialType>(Prev)) {
2220 // It's out of range, but the prior dimension is a struct
2221 // so we can't do anything about it.
2222 Unknown = true;
2223 continue;
2224 }
2225 if (CI->getSExtValue() < 0) {
2226 // It's out of range and negative, don't try to factor it.
2227 Unknown = true;
2228 continue;
2229 }
2230 // It's out of range, but we can factor it into the prior
2231 // dimension.
2232 NewIdxs.resize(Idxs.size());
2233 // Determine the number of elements in our sequential type.
2234 uint64_t NumElements = STy->getArrayNumElements();
2235
2236 ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
2237 NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2238
2239 Constant *PrevIdx = cast<Constant>(Idxs[i - 1]);
2240 Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2241
2242 unsigned CommonExtendedWidth =
2243 std::max(PrevIdx->getType()->getIntegerBitWidth(),
2244 Div->getType()->getIntegerBitWidth());
2245 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2246
2247 // Before adding, extend both operands to i64 to avoid
2248 // overflow trouble.
2249 if (!PrevIdx->getType()->isIntegerTy(CommonExtendedWidth))
2250 PrevIdx = ConstantExpr::getSExt(
2251 PrevIdx, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
2252 if (!Div->getType()->isIntegerTy(CommonExtendedWidth))
2253 Div = ConstantExpr::getSExt(
2254 Div, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
2255
2256 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2257 }
2258
2259 // If we did any factoring, start over with the adjusted indices.
2260 if (!NewIdxs.empty()) {
2261 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2262 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2263 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, inBounds);
2264 }
2265
2266 // If all indices are known integers and normalized, we can do a simple
2267 // check for the "inbounds" property.
2268 if (!Unknown && !inBounds)
2269 if (auto *GV = dyn_cast<GlobalVariable>(C))
2270 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2271 return ConstantExpr::getInBoundsGetElementPtr(PointeeTy, C, Idxs);
2272
2273 return nullptr;
2274 }
2275
ConstantFoldGetElementPtr(Type * Ty,Constant * C,bool inBounds,ArrayRef<Constant * > Idxs)2276 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
2277 bool inBounds,
2278 ArrayRef<Constant *> Idxs) {
2279 return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
2280 }
2281
ConstantFoldGetElementPtr(Type * Ty,Constant * C,bool inBounds,ArrayRef<Value * > Idxs)2282 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
2283 bool inBounds,
2284 ArrayRef<Value *> Idxs) {
2285 return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
2286 }
2287