1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <cstring>
25 #include <limits.h>
26 
27 using namespace llvm;
28 
29 /// A macro used to combine two fcCategory enums into one key which can be used
30 /// in a switch statement to classify how the interaction of two APFloat's
31 /// categories affects an operation.
32 ///
33 /// TODO: If clang source code is ever allowed to use constexpr in its own
34 /// codebase, change this into a static inline function.
35 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
36 
37 /* Assumed in hexadecimal significand parsing, and conversion to
38    hexadecimal strings.  */
39 static_assert(integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
40 
41 namespace llvm {
42 
43   /* Represents floating point arithmetic semantics.  */
44   struct fltSemantics {
45     /* The largest E such that 2^E is representable; this matches the
46        definition of IEEE 754.  */
47     APFloat::ExponentType maxExponent;
48 
49     /* The smallest E such that 2^E is a normalized number; this
50        matches the definition of IEEE 754.  */
51     APFloat::ExponentType minExponent;
52 
53     /* Number of bits in the significand.  This includes the integer
54        bit.  */
55     unsigned int precision;
56 
57     /* Number of bits actually used in the semantics. */
58     unsigned int sizeInBits;
59   };
60 
61   const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, 16 };
62   const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, 32 };
63   const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, 64 };
64   const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, 128 };
65   const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, 80 };
66   const fltSemantics APFloat::Bogus = { 0, 0, 0, 0 };
67 
68   /* The PowerPC format consists of two doubles.  It does not map cleanly
69      onto the usual format above.  It is approximated using twice the
70      mantissa bits.  Note that for exponents near the double minimum,
71      we no longer can represent the full 106 mantissa bits, so those
72      will be treated as denormal numbers.
73 
74      FIXME: While this approximation is equivalent to what GCC uses for
75      compile-time arithmetic on PPC double-double numbers, it is not able
76      to represent all possible values held by a PPC double-double number,
77      for example: (long double) 1.0 + (long double) 0x1p-106
78      Should this be replaced by a full emulation of PPC double-double?  */
79   const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53, 128 };
80 
81   /* A tight upper bound on number of parts required to hold the value
82      pow(5, power) is
83 
84        power * 815 / (351 * integerPartWidth) + 1
85 
86      However, whilst the result may require only this many parts,
87      because we are multiplying two values to get it, the
88      multiplication may require an extra part with the excess part
89      being zero (consider the trivial case of 1 * 1, tcFullMultiply
90      requires two parts to hold the single-part result).  So we add an
91      extra one to guarantee enough space whilst multiplying.  */
92   const unsigned int maxExponent = 16383;
93   const unsigned int maxPrecision = 113;
94   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
95   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
96                                                 / (351 * integerPartWidth));
97 }
98 
99 /* A bunch of private, handy routines.  */
100 
101 static inline unsigned int
partCountForBits(unsigned int bits)102 partCountForBits(unsigned int bits)
103 {
104   return ((bits) + integerPartWidth - 1) / integerPartWidth;
105 }
106 
107 /* Returns 0U-9U.  Return values >= 10U are not digits.  */
108 static inline unsigned int
decDigitValue(unsigned int c)109 decDigitValue(unsigned int c)
110 {
111   return c - '0';
112 }
113 
114 /* Return the value of a decimal exponent of the form
115    [+-]ddddddd.
116 
117    If the exponent overflows, returns a large exponent with the
118    appropriate sign.  */
119 static int
readExponent(StringRef::iterator begin,StringRef::iterator end)120 readExponent(StringRef::iterator begin, StringRef::iterator end)
121 {
122   bool isNegative;
123   unsigned int absExponent;
124   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
125   StringRef::iterator p = begin;
126 
127   assert(p != end && "Exponent has no digits");
128 
129   isNegative = (*p == '-');
130   if (*p == '-' || *p == '+') {
131     p++;
132     assert(p != end && "Exponent has no digits");
133   }
134 
135   absExponent = decDigitValue(*p++);
136   assert(absExponent < 10U && "Invalid character in exponent");
137 
138   for (; p != end; ++p) {
139     unsigned int value;
140 
141     value = decDigitValue(*p);
142     assert(value < 10U && "Invalid character in exponent");
143 
144     value += absExponent * 10;
145     if (absExponent >= overlargeExponent) {
146       absExponent = overlargeExponent;
147       p = end;  /* outwit assert below */
148       break;
149     }
150     absExponent = value;
151   }
152 
153   assert(p == end && "Invalid exponent in exponent");
154 
155   if (isNegative)
156     return -(int) absExponent;
157   else
158     return (int) absExponent;
159 }
160 
161 /* This is ugly and needs cleaning up, but I don't immediately see
162    how whilst remaining safe.  */
163 static int
totalExponent(StringRef::iterator p,StringRef::iterator end,int exponentAdjustment)164 totalExponent(StringRef::iterator p, StringRef::iterator end,
165               int exponentAdjustment)
166 {
167   int unsignedExponent;
168   bool negative, overflow;
169   int exponent = 0;
170 
171   assert(p != end && "Exponent has no digits");
172 
173   negative = *p == '-';
174   if (*p == '-' || *p == '+') {
175     p++;
176     assert(p != end && "Exponent has no digits");
177   }
178 
179   unsignedExponent = 0;
180   overflow = false;
181   for (; p != end; ++p) {
182     unsigned int value;
183 
184     value = decDigitValue(*p);
185     assert(value < 10U && "Invalid character in exponent");
186 
187     unsignedExponent = unsignedExponent * 10 + value;
188     if (unsignedExponent > 32767) {
189       overflow = true;
190       break;
191     }
192   }
193 
194   if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
195     overflow = true;
196 
197   if (!overflow) {
198     exponent = unsignedExponent;
199     if (negative)
200       exponent = -exponent;
201     exponent += exponentAdjustment;
202     if (exponent > 32767 || exponent < -32768)
203       overflow = true;
204   }
205 
206   if (overflow)
207     exponent = negative ? -32768: 32767;
208 
209   return exponent;
210 }
211 
212 static StringRef::iterator
skipLeadingZeroesAndAnyDot(StringRef::iterator begin,StringRef::iterator end,StringRef::iterator * dot)213 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
214                            StringRef::iterator *dot)
215 {
216   StringRef::iterator p = begin;
217   *dot = end;
218   while (p != end && *p == '0')
219     p++;
220 
221   if (p != end && *p == '.') {
222     *dot = p++;
223 
224     assert(end - begin != 1 && "Significand has no digits");
225 
226     while (p != end && *p == '0')
227       p++;
228   }
229 
230   return p;
231 }
232 
233 /* Given a normal decimal floating point number of the form
234 
235      dddd.dddd[eE][+-]ddd
236 
237    where the decimal point and exponent are optional, fill out the
238    structure D.  Exponent is appropriate if the significand is
239    treated as an integer, and normalizedExponent if the significand
240    is taken to have the decimal point after a single leading
241    non-zero digit.
242 
243    If the value is zero, V->firstSigDigit points to a non-digit, and
244    the return exponent is zero.
245 */
246 struct decimalInfo {
247   const char *firstSigDigit;
248   const char *lastSigDigit;
249   int exponent;
250   int normalizedExponent;
251 };
252 
253 static void
interpretDecimal(StringRef::iterator begin,StringRef::iterator end,decimalInfo * D)254 interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
255                  decimalInfo *D)
256 {
257   StringRef::iterator dot = end;
258   StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
259 
260   D->firstSigDigit = p;
261   D->exponent = 0;
262   D->normalizedExponent = 0;
263 
264   for (; p != end; ++p) {
265     if (*p == '.') {
266       assert(dot == end && "String contains multiple dots");
267       dot = p++;
268       if (p == end)
269         break;
270     }
271     if (decDigitValue(*p) >= 10U)
272       break;
273   }
274 
275   if (p != end) {
276     assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
277     assert(p != begin && "Significand has no digits");
278     assert((dot == end || p - begin != 1) && "Significand has no digits");
279 
280     /* p points to the first non-digit in the string */
281     D->exponent = readExponent(p + 1, end);
282 
283     /* Implied decimal point?  */
284     if (dot == end)
285       dot = p;
286   }
287 
288   /* If number is all zeroes accept any exponent.  */
289   if (p != D->firstSigDigit) {
290     /* Drop insignificant trailing zeroes.  */
291     if (p != begin) {
292       do
293         do
294           p--;
295         while (p != begin && *p == '0');
296       while (p != begin && *p == '.');
297     }
298 
299     /* Adjust the exponents for any decimal point.  */
300     D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
301     D->normalizedExponent = (D->exponent +
302               static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
303                                       - (dot > D->firstSigDigit && dot < p)));
304   }
305 
306   D->lastSigDigit = p;
307 }
308 
309 /* Return the trailing fraction of a hexadecimal number.
310    DIGITVALUE is the first hex digit of the fraction, P points to
311    the next digit.  */
312 static lostFraction
trailingHexadecimalFraction(StringRef::iterator p,StringRef::iterator end,unsigned int digitValue)313 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
314                             unsigned int digitValue)
315 {
316   unsigned int hexDigit;
317 
318   /* If the first trailing digit isn't 0 or 8 we can work out the
319      fraction immediately.  */
320   if (digitValue > 8)
321     return lfMoreThanHalf;
322   else if (digitValue < 8 && digitValue > 0)
323     return lfLessThanHalf;
324 
325   // Otherwise we need to find the first non-zero digit.
326   while (p != end && (*p == '0' || *p == '.'))
327     p++;
328 
329   assert(p != end && "Invalid trailing hexadecimal fraction!");
330 
331   hexDigit = hexDigitValue(*p);
332 
333   /* If we ran off the end it is exactly zero or one-half, otherwise
334      a little more.  */
335   if (hexDigit == -1U)
336     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
337   else
338     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
339 }
340 
341 /* Return the fraction lost were a bignum truncated losing the least
342    significant BITS bits.  */
343 static lostFraction
lostFractionThroughTruncation(const integerPart * parts,unsigned int partCount,unsigned int bits)344 lostFractionThroughTruncation(const integerPart *parts,
345                               unsigned int partCount,
346                               unsigned int bits)
347 {
348   unsigned int lsb;
349 
350   lsb = APInt::tcLSB(parts, partCount);
351 
352   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
353   if (bits <= lsb)
354     return lfExactlyZero;
355   if (bits == lsb + 1)
356     return lfExactlyHalf;
357   if (bits <= partCount * integerPartWidth &&
358       APInt::tcExtractBit(parts, bits - 1))
359     return lfMoreThanHalf;
360 
361   return lfLessThanHalf;
362 }
363 
364 /* Shift DST right BITS bits noting lost fraction.  */
365 static lostFraction
shiftRight(integerPart * dst,unsigned int parts,unsigned int bits)366 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
367 {
368   lostFraction lost_fraction;
369 
370   lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
371 
372   APInt::tcShiftRight(dst, parts, bits);
373 
374   return lost_fraction;
375 }
376 
377 /* Combine the effect of two lost fractions.  */
378 static lostFraction
combineLostFractions(lostFraction moreSignificant,lostFraction lessSignificant)379 combineLostFractions(lostFraction moreSignificant,
380                      lostFraction lessSignificant)
381 {
382   if (lessSignificant != lfExactlyZero) {
383     if (moreSignificant == lfExactlyZero)
384       moreSignificant = lfLessThanHalf;
385     else if (moreSignificant == lfExactlyHalf)
386       moreSignificant = lfMoreThanHalf;
387   }
388 
389   return moreSignificant;
390 }
391 
392 /* The error from the true value, in half-ulps, on multiplying two
393    floating point numbers, which differ from the value they
394    approximate by at most HUE1 and HUE2 half-ulps, is strictly less
395    than the returned value.
396 
397    See "How to Read Floating Point Numbers Accurately" by William D
398    Clinger.  */
399 static unsigned int
HUerrBound(bool inexactMultiply,unsigned int HUerr1,unsigned int HUerr2)400 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
401 {
402   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
403 
404   if (HUerr1 + HUerr2 == 0)
405     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
406   else
407     return inexactMultiply + 2 * (HUerr1 + HUerr2);
408 }
409 
410 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
411    when the least significant BITS are truncated.  BITS cannot be
412    zero.  */
413 static integerPart
ulpsFromBoundary(const integerPart * parts,unsigned int bits,bool isNearest)414 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
415 {
416   unsigned int count, partBits;
417   integerPart part, boundary;
418 
419   assert(bits != 0);
420 
421   bits--;
422   count = bits / integerPartWidth;
423   partBits = bits % integerPartWidth + 1;
424 
425   part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
426 
427   if (isNearest)
428     boundary = (integerPart) 1 << (partBits - 1);
429   else
430     boundary = 0;
431 
432   if (count == 0) {
433     if (part - boundary <= boundary - part)
434       return part - boundary;
435     else
436       return boundary - part;
437   }
438 
439   if (part == boundary) {
440     while (--count)
441       if (parts[count])
442         return ~(integerPart) 0; /* A lot.  */
443 
444     return parts[0];
445   } else if (part == boundary - 1) {
446     while (--count)
447       if (~parts[count])
448         return ~(integerPart) 0; /* A lot.  */
449 
450     return -parts[0];
451   }
452 
453   return ~(integerPart) 0; /* A lot.  */
454 }
455 
456 /* Place pow(5, power) in DST, and return the number of parts used.
457    DST must be at least one part larger than size of the answer.  */
458 static unsigned int
powerOf5(integerPart * dst,unsigned int power)459 powerOf5(integerPart *dst, unsigned int power)
460 {
461   static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
462                                                   15625, 78125 };
463   integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
464   pow5s[0] = 78125 * 5;
465 
466   unsigned int partsCount[16] = { 1 };
467   integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
468   unsigned int result;
469   assert(power <= maxExponent);
470 
471   p1 = dst;
472   p2 = scratch;
473 
474   *p1 = firstEightPowers[power & 7];
475   power >>= 3;
476 
477   result = 1;
478   pow5 = pow5s;
479 
480   for (unsigned int n = 0; power; power >>= 1, n++) {
481     unsigned int pc;
482 
483     pc = partsCount[n];
484 
485     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
486     if (pc == 0) {
487       pc = partsCount[n - 1];
488       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
489       pc *= 2;
490       if (pow5[pc - 1] == 0)
491         pc--;
492       partsCount[n] = pc;
493     }
494 
495     if (power & 1) {
496       integerPart *tmp;
497 
498       APInt::tcFullMultiply(p2, p1, pow5, result, pc);
499       result += pc;
500       if (p2[result - 1] == 0)
501         result--;
502 
503       /* Now result is in p1 with partsCount parts and p2 is scratch
504          space.  */
505       tmp = p1;
506       p1 = p2;
507       p2 = tmp;
508     }
509 
510     pow5 += pc;
511   }
512 
513   if (p1 != dst)
514     APInt::tcAssign(dst, p1, result);
515 
516   return result;
517 }
518 
519 /* Zero at the end to avoid modular arithmetic when adding one; used
520    when rounding up during hexadecimal output.  */
521 static const char hexDigitsLower[] = "0123456789abcdef0";
522 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
523 static const char infinityL[] = "infinity";
524 static const char infinityU[] = "INFINITY";
525 static const char NaNL[] = "nan";
526 static const char NaNU[] = "NAN";
527 
528 /* Write out an integerPart in hexadecimal, starting with the most
529    significant nibble.  Write out exactly COUNT hexdigits, return
530    COUNT.  */
531 static unsigned int
partAsHex(char * dst,integerPart part,unsigned int count,const char * hexDigitChars)532 partAsHex (char *dst, integerPart part, unsigned int count,
533            const char *hexDigitChars)
534 {
535   unsigned int result = count;
536 
537   assert(count != 0 && count <= integerPartWidth / 4);
538 
539   part >>= (integerPartWidth - 4 * count);
540   while (count--) {
541     dst[count] = hexDigitChars[part & 0xf];
542     part >>= 4;
543   }
544 
545   return result;
546 }
547 
548 /* Write out an unsigned decimal integer.  */
549 static char *
writeUnsignedDecimal(char * dst,unsigned int n)550 writeUnsignedDecimal (char *dst, unsigned int n)
551 {
552   char buff[40], *p;
553 
554   p = buff;
555   do
556     *p++ = '0' + n % 10;
557   while (n /= 10);
558 
559   do
560     *dst++ = *--p;
561   while (p != buff);
562 
563   return dst;
564 }
565 
566 /* Write out a signed decimal integer.  */
567 static char *
writeSignedDecimal(char * dst,int value)568 writeSignedDecimal (char *dst, int value)
569 {
570   if (value < 0) {
571     *dst++ = '-';
572     dst = writeUnsignedDecimal(dst, -(unsigned) value);
573   } else
574     dst = writeUnsignedDecimal(dst, value);
575 
576   return dst;
577 }
578 
579 /* Constructors.  */
580 void
initialize(const fltSemantics * ourSemantics)581 APFloat::initialize(const fltSemantics *ourSemantics)
582 {
583   unsigned int count;
584 
585   semantics = ourSemantics;
586   count = partCount();
587   if (count > 1)
588     significand.parts = new integerPart[count];
589 }
590 
591 void
freeSignificand()592 APFloat::freeSignificand()
593 {
594   if (needsCleanup())
595     delete [] significand.parts;
596 }
597 
598 void
assign(const APFloat & rhs)599 APFloat::assign(const APFloat &rhs)
600 {
601   assert(semantics == rhs.semantics);
602 
603   sign = rhs.sign;
604   category = rhs.category;
605   exponent = rhs.exponent;
606   if (isFiniteNonZero() || category == fcNaN)
607     copySignificand(rhs);
608 }
609 
610 void
copySignificand(const APFloat & rhs)611 APFloat::copySignificand(const APFloat &rhs)
612 {
613   assert(isFiniteNonZero() || category == fcNaN);
614   assert(rhs.partCount() >= partCount());
615 
616   APInt::tcAssign(significandParts(), rhs.significandParts(),
617                   partCount());
618 }
619 
620 /* Make this number a NaN, with an arbitrary but deterministic value
621    for the significand.  If double or longer, this is a signalling NaN,
622    which may not be ideal.  If float, this is QNaN(0).  */
makeNaN(bool SNaN,bool Negative,const APInt * fill)623 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
624 {
625   category = fcNaN;
626   sign = Negative;
627 
628   integerPart *significand = significandParts();
629   unsigned numParts = partCount();
630 
631   // Set the significand bits to the fill.
632   if (!fill || fill->getNumWords() < numParts)
633     APInt::tcSet(significand, 0, numParts);
634   if (fill) {
635     APInt::tcAssign(significand, fill->getRawData(),
636                     std::min(fill->getNumWords(), numParts));
637 
638     // Zero out the excess bits of the significand.
639     unsigned bitsToPreserve = semantics->precision - 1;
640     unsigned part = bitsToPreserve / 64;
641     bitsToPreserve %= 64;
642     significand[part] &= ((1ULL << bitsToPreserve) - 1);
643     for (part++; part != numParts; ++part)
644       significand[part] = 0;
645   }
646 
647   unsigned QNaNBit = semantics->precision - 2;
648 
649   if (SNaN) {
650     // We always have to clear the QNaN bit to make it an SNaN.
651     APInt::tcClearBit(significand, QNaNBit);
652 
653     // If there are no bits set in the payload, we have to set
654     // *something* to make it a NaN instead of an infinity;
655     // conventionally, this is the next bit down from the QNaN bit.
656     if (APInt::tcIsZero(significand, numParts))
657       APInt::tcSetBit(significand, QNaNBit - 1);
658   } else {
659     // We always have to set the QNaN bit to make it a QNaN.
660     APInt::tcSetBit(significand, QNaNBit);
661   }
662 
663   // For x87 extended precision, we want to make a NaN, not a
664   // pseudo-NaN.  Maybe we should expose the ability to make
665   // pseudo-NaNs?
666   if (semantics == &APFloat::x87DoubleExtended)
667     APInt::tcSetBit(significand, QNaNBit + 1);
668 }
669 
makeNaN(const fltSemantics & Sem,bool SNaN,bool Negative,const APInt * fill)670 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
671                          const APInt *fill) {
672   APFloat value(Sem, uninitialized);
673   value.makeNaN(SNaN, Negative, fill);
674   return value;
675 }
676 
677 APFloat &
operator =(const APFloat & rhs)678 APFloat::operator=(const APFloat &rhs)
679 {
680   if (this != &rhs) {
681     if (semantics != rhs.semantics) {
682       freeSignificand();
683       initialize(rhs.semantics);
684     }
685     assign(rhs);
686   }
687 
688   return *this;
689 }
690 
691 APFloat &
operator =(APFloat && rhs)692 APFloat::operator=(APFloat &&rhs) {
693   freeSignificand();
694 
695   semantics = rhs.semantics;
696   significand = rhs.significand;
697   exponent = rhs.exponent;
698   category = rhs.category;
699   sign = rhs.sign;
700 
701   rhs.semantics = &Bogus;
702   return *this;
703 }
704 
705 bool
isDenormal() const706 APFloat::isDenormal() const {
707   return isFiniteNonZero() && (exponent == semantics->minExponent) &&
708          (APInt::tcExtractBit(significandParts(),
709                               semantics->precision - 1) == 0);
710 }
711 
712 bool
isSmallest() const713 APFloat::isSmallest() const {
714   // The smallest number by magnitude in our format will be the smallest
715   // denormal, i.e. the floating point number with exponent being minimum
716   // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
717   return isFiniteNonZero() && exponent == semantics->minExponent &&
718     significandMSB() == 0;
719 }
720 
isSignificandAllOnes() const721 bool APFloat::isSignificandAllOnes() const {
722   // Test if the significand excluding the integral bit is all ones. This allows
723   // us to test for binade boundaries.
724   const integerPart *Parts = significandParts();
725   const unsigned PartCount = partCount();
726   for (unsigned i = 0; i < PartCount - 1; i++)
727     if (~Parts[i])
728       return false;
729 
730   // Set the unused high bits to all ones when we compare.
731   const unsigned NumHighBits =
732     PartCount*integerPartWidth - semantics->precision + 1;
733   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
734          "fill than integerPartWidth");
735   const integerPart HighBitFill =
736     ~integerPart(0) << (integerPartWidth - NumHighBits);
737   if (~(Parts[PartCount - 1] | HighBitFill))
738     return false;
739 
740   return true;
741 }
742 
isSignificandAllZeros() const743 bool APFloat::isSignificandAllZeros() const {
744   // Test if the significand excluding the integral bit is all zeros. This
745   // allows us to test for binade boundaries.
746   const integerPart *Parts = significandParts();
747   const unsigned PartCount = partCount();
748 
749   for (unsigned i = 0; i < PartCount - 1; i++)
750     if (Parts[i])
751       return false;
752 
753   const unsigned NumHighBits =
754     PartCount*integerPartWidth - semantics->precision + 1;
755   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
756          "clear than integerPartWidth");
757   const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
758 
759   if (Parts[PartCount - 1] & HighBitMask)
760     return false;
761 
762   return true;
763 }
764 
765 bool
isLargest() const766 APFloat::isLargest() const {
767   // The largest number by magnitude in our format will be the floating point
768   // number with maximum exponent and with significand that is all ones.
769   return isFiniteNonZero() && exponent == semantics->maxExponent
770     && isSignificandAllOnes();
771 }
772 
773 bool
isInteger() const774 APFloat::isInteger() const {
775   // This could be made more efficient; I'm going for obviously correct.
776   if (!isFinite()) return false;
777   APFloat truncated = *this;
778   truncated.roundToIntegral(rmTowardZero);
779   return compare(truncated) == cmpEqual;
780 }
781 
782 bool
bitwiseIsEqual(const APFloat & rhs) const783 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
784   if (this == &rhs)
785     return true;
786   if (semantics != rhs.semantics ||
787       category != rhs.category ||
788       sign != rhs.sign)
789     return false;
790   if (category==fcZero || category==fcInfinity)
791     return true;
792 
793   if (isFiniteNonZero() && exponent != rhs.exponent)
794     return false;
795 
796   return std::equal(significandParts(), significandParts() + partCount(),
797                     rhs.significandParts());
798 }
799 
APFloat(const fltSemantics & ourSemantics,integerPart value)800 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
801   initialize(&ourSemantics);
802   sign = 0;
803   category = fcNormal;
804   zeroSignificand();
805   exponent = ourSemantics.precision - 1;
806   significandParts()[0] = value;
807   normalize(rmNearestTiesToEven, lfExactlyZero);
808 }
809 
APFloat(const fltSemantics & ourSemantics)810 APFloat::APFloat(const fltSemantics &ourSemantics) {
811   initialize(&ourSemantics);
812   category = fcZero;
813   sign = false;
814 }
815 
APFloat(const fltSemantics & ourSemantics,uninitializedTag tag)816 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
817   // Allocates storage if necessary but does not initialize it.
818   initialize(&ourSemantics);
819 }
820 
APFloat(const fltSemantics & ourSemantics,StringRef text)821 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
822   initialize(&ourSemantics);
823   convertFromString(text, rmNearestTiesToEven);
824 }
825 
APFloat(const APFloat & rhs)826 APFloat::APFloat(const APFloat &rhs) {
827   initialize(rhs.semantics);
828   assign(rhs);
829 }
830 
APFloat(APFloat && rhs)831 APFloat::APFloat(APFloat &&rhs) : semantics(&Bogus) {
832   *this = std::move(rhs);
833 }
834 
~APFloat()835 APFloat::~APFloat()
836 {
837   freeSignificand();
838 }
839 
840 // Profile - This method 'profiles' an APFloat for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const841 void APFloat::Profile(FoldingSetNodeID& ID) const {
842   ID.Add(bitcastToAPInt());
843 }
844 
845 unsigned int
partCount() const846 APFloat::partCount() const
847 {
848   return partCountForBits(semantics->precision + 1);
849 }
850 
851 unsigned int
semanticsPrecision(const fltSemantics & semantics)852 APFloat::semanticsPrecision(const fltSemantics &semantics)
853 {
854   return semantics.precision;
855 }
856 APFloat::ExponentType
semanticsMaxExponent(const fltSemantics & semantics)857 APFloat::semanticsMaxExponent(const fltSemantics &semantics)
858 {
859   return semantics.maxExponent;
860 }
861 APFloat::ExponentType
semanticsMinExponent(const fltSemantics & semantics)862 APFloat::semanticsMinExponent(const fltSemantics &semantics)
863 {
864   return semantics.minExponent;
865 }
866 unsigned int
semanticsSizeInBits(const fltSemantics & semantics)867 APFloat::semanticsSizeInBits(const fltSemantics &semantics)
868 {
869   return semantics.sizeInBits;
870 }
871 
872 const integerPart *
significandParts() const873 APFloat::significandParts() const
874 {
875   return const_cast<APFloat *>(this)->significandParts();
876 }
877 
878 integerPart *
significandParts()879 APFloat::significandParts()
880 {
881   if (partCount() > 1)
882     return significand.parts;
883   else
884     return &significand.part;
885 }
886 
887 void
zeroSignificand()888 APFloat::zeroSignificand()
889 {
890   APInt::tcSet(significandParts(), 0, partCount());
891 }
892 
893 /* Increment an fcNormal floating point number's significand.  */
894 void
incrementSignificand()895 APFloat::incrementSignificand()
896 {
897   integerPart carry;
898 
899   carry = APInt::tcIncrement(significandParts(), partCount());
900 
901   /* Our callers should never cause us to overflow.  */
902   assert(carry == 0);
903   (void)carry;
904 }
905 
906 /* Add the significand of the RHS.  Returns the carry flag.  */
907 integerPart
addSignificand(const APFloat & rhs)908 APFloat::addSignificand(const APFloat &rhs)
909 {
910   integerPart *parts;
911 
912   parts = significandParts();
913 
914   assert(semantics == rhs.semantics);
915   assert(exponent == rhs.exponent);
916 
917   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
918 }
919 
920 /* Subtract the significand of the RHS with a borrow flag.  Returns
921    the borrow flag.  */
922 integerPart
subtractSignificand(const APFloat & rhs,integerPart borrow)923 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
924 {
925   integerPart *parts;
926 
927   parts = significandParts();
928 
929   assert(semantics == rhs.semantics);
930   assert(exponent == rhs.exponent);
931 
932   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
933                            partCount());
934 }
935 
936 /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
937    on to the full-precision result of the multiplication.  Returns the
938    lost fraction.  */
939 lostFraction
multiplySignificand(const APFloat & rhs,const APFloat * addend)940 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
941 {
942   unsigned int omsb;        // One, not zero, based MSB.
943   unsigned int partsCount, newPartsCount, precision;
944   integerPart *lhsSignificand;
945   integerPart scratch[4];
946   integerPart *fullSignificand;
947   lostFraction lost_fraction;
948   bool ignored;
949 
950   assert(semantics == rhs.semantics);
951 
952   precision = semantics->precision;
953 
954   // Allocate space for twice as many bits as the original significand, plus one
955   // extra bit for the addition to overflow into.
956   newPartsCount = partCountForBits(precision * 2 + 1);
957 
958   if (newPartsCount > 4)
959     fullSignificand = new integerPart[newPartsCount];
960   else
961     fullSignificand = scratch;
962 
963   lhsSignificand = significandParts();
964   partsCount = partCount();
965 
966   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
967                         rhs.significandParts(), partsCount, partsCount);
968 
969   lost_fraction = lfExactlyZero;
970   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
971   exponent += rhs.exponent;
972 
973   // Assume the operands involved in the multiplication are single-precision
974   // FP, and the two multiplicants are:
975   //   *this = a23 . a22 ... a0 * 2^e1
976   //     rhs = b23 . b22 ... b0 * 2^e2
977   // the result of multiplication is:
978   //   *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
979   // Note that there are three significant bits at the left-hand side of the
980   // radix point: two for the multiplication, and an overflow bit for the
981   // addition (that will always be zero at this point). Move the radix point
982   // toward left by two bits, and adjust exponent accordingly.
983   exponent += 2;
984 
985   if (addend && addend->isNonZero()) {
986     // The intermediate result of the multiplication has "2 * precision"
987     // signicant bit; adjust the addend to be consistent with mul result.
988     //
989     Significand savedSignificand = significand;
990     const fltSemantics *savedSemantics = semantics;
991     fltSemantics extendedSemantics;
992     opStatus status;
993     unsigned int extendedPrecision;
994 
995     // Normalize our MSB to one below the top bit to allow for overflow.
996     extendedPrecision = 2 * precision + 1;
997     if (omsb != extendedPrecision - 1) {
998       assert(extendedPrecision > omsb);
999       APInt::tcShiftLeft(fullSignificand, newPartsCount,
1000                          (extendedPrecision - 1) - omsb);
1001       exponent -= (extendedPrecision - 1) - omsb;
1002     }
1003 
1004     /* Create new semantics.  */
1005     extendedSemantics = *semantics;
1006     extendedSemantics.precision = extendedPrecision;
1007 
1008     if (newPartsCount == 1)
1009       significand.part = fullSignificand[0];
1010     else
1011       significand.parts = fullSignificand;
1012     semantics = &extendedSemantics;
1013 
1014     APFloat extendedAddend(*addend);
1015     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
1016     assert(status == opOK);
1017     (void)status;
1018 
1019     // Shift the significand of the addend right by one bit. This guarantees
1020     // that the high bit of the significand is zero (same as fullSignificand),
1021     // so the addition will overflow (if it does overflow at all) into the top bit.
1022     lost_fraction = extendedAddend.shiftSignificandRight(1);
1023     assert(lost_fraction == lfExactlyZero &&
1024            "Lost precision while shifting addend for fused-multiply-add.");
1025 
1026     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
1027 
1028     /* Restore our state.  */
1029     if (newPartsCount == 1)
1030       fullSignificand[0] = significand.part;
1031     significand = savedSignificand;
1032     semantics = savedSemantics;
1033 
1034     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1035   }
1036 
1037   // Convert the result having "2 * precision" significant-bits back to the one
1038   // having "precision" significant-bits. First, move the radix point from
1039   // poision "2*precision - 1" to "precision - 1". The exponent need to be
1040   // adjusted by "2*precision - 1" - "precision - 1" = "precision".
1041   exponent -= precision + 1;
1042 
1043   // In case MSB resides at the left-hand side of radix point, shift the
1044   // mantissa right by some amount to make sure the MSB reside right before
1045   // the radix point (i.e. "MSB . rest-significant-bits").
1046   //
1047   // Note that the result is not normalized when "omsb < precision". So, the
1048   // caller needs to call APFloat::normalize() if normalized value is expected.
1049   if (omsb > precision) {
1050     unsigned int bits, significantParts;
1051     lostFraction lf;
1052 
1053     bits = omsb - precision;
1054     significantParts = partCountForBits(omsb);
1055     lf = shiftRight(fullSignificand, significantParts, bits);
1056     lost_fraction = combineLostFractions(lf, lost_fraction);
1057     exponent += bits;
1058   }
1059 
1060   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
1061 
1062   if (newPartsCount > 4)
1063     delete [] fullSignificand;
1064 
1065   return lost_fraction;
1066 }
1067 
1068 /* Multiply the significands of LHS and RHS to DST.  */
1069 lostFraction
divideSignificand(const APFloat & rhs)1070 APFloat::divideSignificand(const APFloat &rhs)
1071 {
1072   unsigned int bit, i, partsCount;
1073   const integerPart *rhsSignificand;
1074   integerPart *lhsSignificand, *dividend, *divisor;
1075   integerPart scratch[4];
1076   lostFraction lost_fraction;
1077 
1078   assert(semantics == rhs.semantics);
1079 
1080   lhsSignificand = significandParts();
1081   rhsSignificand = rhs.significandParts();
1082   partsCount = partCount();
1083 
1084   if (partsCount > 2)
1085     dividend = new integerPart[partsCount * 2];
1086   else
1087     dividend = scratch;
1088 
1089   divisor = dividend + partsCount;
1090 
1091   /* Copy the dividend and divisor as they will be modified in-place.  */
1092   for (i = 0; i < partsCount; i++) {
1093     dividend[i] = lhsSignificand[i];
1094     divisor[i] = rhsSignificand[i];
1095     lhsSignificand[i] = 0;
1096   }
1097 
1098   exponent -= rhs.exponent;
1099 
1100   unsigned int precision = semantics->precision;
1101 
1102   /* Normalize the divisor.  */
1103   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
1104   if (bit) {
1105     exponent += bit;
1106     APInt::tcShiftLeft(divisor, partsCount, bit);
1107   }
1108 
1109   /* Normalize the dividend.  */
1110   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1111   if (bit) {
1112     exponent -= bit;
1113     APInt::tcShiftLeft(dividend, partsCount, bit);
1114   }
1115 
1116   /* Ensure the dividend >= divisor initially for the loop below.
1117      Incidentally, this means that the division loop below is
1118      guaranteed to set the integer bit to one.  */
1119   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1120     exponent--;
1121     APInt::tcShiftLeft(dividend, partsCount, 1);
1122     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1123   }
1124 
1125   /* Long division.  */
1126   for (bit = precision; bit; bit -= 1) {
1127     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1128       APInt::tcSubtract(dividend, divisor, 0, partsCount);
1129       APInt::tcSetBit(lhsSignificand, bit - 1);
1130     }
1131 
1132     APInt::tcShiftLeft(dividend, partsCount, 1);
1133   }
1134 
1135   /* Figure out the lost fraction.  */
1136   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1137 
1138   if (cmp > 0)
1139     lost_fraction = lfMoreThanHalf;
1140   else if (cmp == 0)
1141     lost_fraction = lfExactlyHalf;
1142   else if (APInt::tcIsZero(dividend, partsCount))
1143     lost_fraction = lfExactlyZero;
1144   else
1145     lost_fraction = lfLessThanHalf;
1146 
1147   if (partsCount > 2)
1148     delete [] dividend;
1149 
1150   return lost_fraction;
1151 }
1152 
1153 unsigned int
significandMSB() const1154 APFloat::significandMSB() const
1155 {
1156   return APInt::tcMSB(significandParts(), partCount());
1157 }
1158 
1159 unsigned int
significandLSB() const1160 APFloat::significandLSB() const
1161 {
1162   return APInt::tcLSB(significandParts(), partCount());
1163 }
1164 
1165 /* Note that a zero result is NOT normalized to fcZero.  */
1166 lostFraction
shiftSignificandRight(unsigned int bits)1167 APFloat::shiftSignificandRight(unsigned int bits)
1168 {
1169   /* Our exponent should not overflow.  */
1170   assert((ExponentType) (exponent + bits) >= exponent);
1171 
1172   exponent += bits;
1173 
1174   return shiftRight(significandParts(), partCount(), bits);
1175 }
1176 
1177 /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
1178 void
shiftSignificandLeft(unsigned int bits)1179 APFloat::shiftSignificandLeft(unsigned int bits)
1180 {
1181   assert(bits < semantics->precision);
1182 
1183   if (bits) {
1184     unsigned int partsCount = partCount();
1185 
1186     APInt::tcShiftLeft(significandParts(), partsCount, bits);
1187     exponent -= bits;
1188 
1189     assert(!APInt::tcIsZero(significandParts(), partsCount));
1190   }
1191 }
1192 
1193 APFloat::cmpResult
compareAbsoluteValue(const APFloat & rhs) const1194 APFloat::compareAbsoluteValue(const APFloat &rhs) const
1195 {
1196   int compare;
1197 
1198   assert(semantics == rhs.semantics);
1199   assert(isFiniteNonZero());
1200   assert(rhs.isFiniteNonZero());
1201 
1202   compare = exponent - rhs.exponent;
1203 
1204   /* If exponents are equal, do an unsigned bignum comparison of the
1205      significands.  */
1206   if (compare == 0)
1207     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1208                                partCount());
1209 
1210   if (compare > 0)
1211     return cmpGreaterThan;
1212   else if (compare < 0)
1213     return cmpLessThan;
1214   else
1215     return cmpEqual;
1216 }
1217 
1218 /* Handle overflow.  Sign is preserved.  We either become infinity or
1219    the largest finite number.  */
1220 APFloat::opStatus
handleOverflow(roundingMode rounding_mode)1221 APFloat::handleOverflow(roundingMode rounding_mode)
1222 {
1223   /* Infinity?  */
1224   if (rounding_mode == rmNearestTiesToEven ||
1225       rounding_mode == rmNearestTiesToAway ||
1226       (rounding_mode == rmTowardPositive && !sign) ||
1227       (rounding_mode == rmTowardNegative && sign)) {
1228     category = fcInfinity;
1229     return (opStatus) (opOverflow | opInexact);
1230   }
1231 
1232   /* Otherwise we become the largest finite number.  */
1233   category = fcNormal;
1234   exponent = semantics->maxExponent;
1235   APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
1236                                    semantics->precision);
1237 
1238   return opInexact;
1239 }
1240 
1241 /* Returns TRUE if, when truncating the current number, with BIT the
1242    new LSB, with the given lost fraction and rounding mode, the result
1243    would need to be rounded away from zero (i.e., by increasing the
1244    signficand).  This routine must work for fcZero of both signs, and
1245    fcNormal numbers.  */
1246 bool
roundAwayFromZero(roundingMode rounding_mode,lostFraction lost_fraction,unsigned int bit) const1247 APFloat::roundAwayFromZero(roundingMode rounding_mode,
1248                            lostFraction lost_fraction,
1249                            unsigned int bit) const
1250 {
1251   /* NaNs and infinities should not have lost fractions.  */
1252   assert(isFiniteNonZero() || category == fcZero);
1253 
1254   /* Current callers never pass this so we don't handle it.  */
1255   assert(lost_fraction != lfExactlyZero);
1256 
1257   switch (rounding_mode) {
1258   case rmNearestTiesToAway:
1259     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1260 
1261   case rmNearestTiesToEven:
1262     if (lost_fraction == lfMoreThanHalf)
1263       return true;
1264 
1265     /* Our zeroes don't have a significand to test.  */
1266     if (lost_fraction == lfExactlyHalf && category != fcZero)
1267       return APInt::tcExtractBit(significandParts(), bit);
1268 
1269     return false;
1270 
1271   case rmTowardZero:
1272     return false;
1273 
1274   case rmTowardPositive:
1275     return !sign;
1276 
1277   case rmTowardNegative:
1278     return sign;
1279   }
1280   llvm_unreachable("Invalid rounding mode found");
1281 }
1282 
1283 APFloat::opStatus
normalize(roundingMode rounding_mode,lostFraction lost_fraction)1284 APFloat::normalize(roundingMode rounding_mode,
1285                    lostFraction lost_fraction)
1286 {
1287   unsigned int omsb;                /* One, not zero, based MSB.  */
1288   int exponentChange;
1289 
1290   if (!isFiniteNonZero())
1291     return opOK;
1292 
1293   /* Before rounding normalize the exponent of fcNormal numbers.  */
1294   omsb = significandMSB() + 1;
1295 
1296   if (omsb) {
1297     /* OMSB is numbered from 1.  We want to place it in the integer
1298        bit numbered PRECISION if possible, with a compensating change in
1299        the exponent.  */
1300     exponentChange = omsb - semantics->precision;
1301 
1302     /* If the resulting exponent is too high, overflow according to
1303        the rounding mode.  */
1304     if (exponent + exponentChange > semantics->maxExponent)
1305       return handleOverflow(rounding_mode);
1306 
1307     /* Subnormal numbers have exponent minExponent, and their MSB
1308        is forced based on that.  */
1309     if (exponent + exponentChange < semantics->minExponent)
1310       exponentChange = semantics->minExponent - exponent;
1311 
1312     /* Shifting left is easy as we don't lose precision.  */
1313     if (exponentChange < 0) {
1314       assert(lost_fraction == lfExactlyZero);
1315 
1316       shiftSignificandLeft(-exponentChange);
1317 
1318       return opOK;
1319     }
1320 
1321     if (exponentChange > 0) {
1322       lostFraction lf;
1323 
1324       /* Shift right and capture any new lost fraction.  */
1325       lf = shiftSignificandRight(exponentChange);
1326 
1327       lost_fraction = combineLostFractions(lf, lost_fraction);
1328 
1329       /* Keep OMSB up-to-date.  */
1330       if (omsb > (unsigned) exponentChange)
1331         omsb -= exponentChange;
1332       else
1333         omsb = 0;
1334     }
1335   }
1336 
1337   /* Now round the number according to rounding_mode given the lost
1338      fraction.  */
1339 
1340   /* As specified in IEEE 754, since we do not trap we do not report
1341      underflow for exact results.  */
1342   if (lost_fraction == lfExactlyZero) {
1343     /* Canonicalize zeroes.  */
1344     if (omsb == 0)
1345       category = fcZero;
1346 
1347     return opOK;
1348   }
1349 
1350   /* Increment the significand if we're rounding away from zero.  */
1351   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1352     if (omsb == 0)
1353       exponent = semantics->minExponent;
1354 
1355     incrementSignificand();
1356     omsb = significandMSB() + 1;
1357 
1358     /* Did the significand increment overflow?  */
1359     if (omsb == (unsigned) semantics->precision + 1) {
1360       /* Renormalize by incrementing the exponent and shifting our
1361          significand right one.  However if we already have the
1362          maximum exponent we overflow to infinity.  */
1363       if (exponent == semantics->maxExponent) {
1364         category = fcInfinity;
1365 
1366         return (opStatus) (opOverflow | opInexact);
1367       }
1368 
1369       shiftSignificandRight(1);
1370 
1371       return opInexact;
1372     }
1373   }
1374 
1375   /* The normal case - we were and are not denormal, and any
1376      significand increment above didn't overflow.  */
1377   if (omsb == semantics->precision)
1378     return opInexact;
1379 
1380   /* We have a non-zero denormal.  */
1381   assert(omsb < semantics->precision);
1382 
1383   /* Canonicalize zeroes.  */
1384   if (omsb == 0)
1385     category = fcZero;
1386 
1387   /* The fcZero case is a denormal that underflowed to zero.  */
1388   return (opStatus) (opUnderflow | opInexact);
1389 }
1390 
1391 APFloat::opStatus
addOrSubtractSpecials(const APFloat & rhs,bool subtract)1392 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1393 {
1394   switch (PackCategoriesIntoKey(category, rhs.category)) {
1395   default:
1396     llvm_unreachable(nullptr);
1397 
1398   case PackCategoriesIntoKey(fcNaN, fcZero):
1399   case PackCategoriesIntoKey(fcNaN, fcNormal):
1400   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1401   case PackCategoriesIntoKey(fcNaN, fcNaN):
1402   case PackCategoriesIntoKey(fcNormal, fcZero):
1403   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1404   case PackCategoriesIntoKey(fcInfinity, fcZero):
1405     return opOK;
1406 
1407   case PackCategoriesIntoKey(fcZero, fcNaN):
1408   case PackCategoriesIntoKey(fcNormal, fcNaN):
1409   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1410     // We need to be sure to flip the sign here for subtraction because we
1411     // don't have a separate negate operation so -NaN becomes 0 - NaN here.
1412     sign = rhs.sign ^ subtract;
1413     category = fcNaN;
1414     copySignificand(rhs);
1415     return opOK;
1416 
1417   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1418   case PackCategoriesIntoKey(fcZero, fcInfinity):
1419     category = fcInfinity;
1420     sign = rhs.sign ^ subtract;
1421     return opOK;
1422 
1423   case PackCategoriesIntoKey(fcZero, fcNormal):
1424     assign(rhs);
1425     sign = rhs.sign ^ subtract;
1426     return opOK;
1427 
1428   case PackCategoriesIntoKey(fcZero, fcZero):
1429     /* Sign depends on rounding mode; handled by caller.  */
1430     return opOK;
1431 
1432   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1433     /* Differently signed infinities can only be validly
1434        subtracted.  */
1435     if (((sign ^ rhs.sign)!=0) != subtract) {
1436       makeNaN();
1437       return opInvalidOp;
1438     }
1439 
1440     return opOK;
1441 
1442   case PackCategoriesIntoKey(fcNormal, fcNormal):
1443     return opDivByZero;
1444   }
1445 }
1446 
1447 /* Add or subtract two normal numbers.  */
1448 lostFraction
addOrSubtractSignificand(const APFloat & rhs,bool subtract)1449 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1450 {
1451   integerPart carry;
1452   lostFraction lost_fraction;
1453   int bits;
1454 
1455   /* Determine if the operation on the absolute values is effectively
1456      an addition or subtraction.  */
1457   subtract ^= static_cast<bool>(sign ^ rhs.sign);
1458 
1459   /* Are we bigger exponent-wise than the RHS?  */
1460   bits = exponent - rhs.exponent;
1461 
1462   /* Subtraction is more subtle than one might naively expect.  */
1463   if (subtract) {
1464     APFloat temp_rhs(rhs);
1465     bool reverse;
1466 
1467     if (bits == 0) {
1468       reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1469       lost_fraction = lfExactlyZero;
1470     } else if (bits > 0) {
1471       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1472       shiftSignificandLeft(1);
1473       reverse = false;
1474     } else {
1475       lost_fraction = shiftSignificandRight(-bits - 1);
1476       temp_rhs.shiftSignificandLeft(1);
1477       reverse = true;
1478     }
1479 
1480     if (reverse) {
1481       carry = temp_rhs.subtractSignificand
1482         (*this, lost_fraction != lfExactlyZero);
1483       copySignificand(temp_rhs);
1484       sign = !sign;
1485     } else {
1486       carry = subtractSignificand
1487         (temp_rhs, lost_fraction != lfExactlyZero);
1488     }
1489 
1490     /* Invert the lost fraction - it was on the RHS and
1491        subtracted.  */
1492     if (lost_fraction == lfLessThanHalf)
1493       lost_fraction = lfMoreThanHalf;
1494     else if (lost_fraction == lfMoreThanHalf)
1495       lost_fraction = lfLessThanHalf;
1496 
1497     /* The code above is intended to ensure that no borrow is
1498        necessary.  */
1499     assert(!carry);
1500     (void)carry;
1501   } else {
1502     if (bits > 0) {
1503       APFloat temp_rhs(rhs);
1504 
1505       lost_fraction = temp_rhs.shiftSignificandRight(bits);
1506       carry = addSignificand(temp_rhs);
1507     } else {
1508       lost_fraction = shiftSignificandRight(-bits);
1509       carry = addSignificand(rhs);
1510     }
1511 
1512     /* We have a guard bit; generating a carry cannot happen.  */
1513     assert(!carry);
1514     (void)carry;
1515   }
1516 
1517   return lost_fraction;
1518 }
1519 
1520 APFloat::opStatus
multiplySpecials(const APFloat & rhs)1521 APFloat::multiplySpecials(const APFloat &rhs)
1522 {
1523   switch (PackCategoriesIntoKey(category, rhs.category)) {
1524   default:
1525     llvm_unreachable(nullptr);
1526 
1527   case PackCategoriesIntoKey(fcNaN, fcZero):
1528   case PackCategoriesIntoKey(fcNaN, fcNormal):
1529   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1530   case PackCategoriesIntoKey(fcNaN, fcNaN):
1531     sign = false;
1532     return opOK;
1533 
1534   case PackCategoriesIntoKey(fcZero, fcNaN):
1535   case PackCategoriesIntoKey(fcNormal, fcNaN):
1536   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1537     sign = false;
1538     category = fcNaN;
1539     copySignificand(rhs);
1540     return opOK;
1541 
1542   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1543   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1544   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1545     category = fcInfinity;
1546     return opOK;
1547 
1548   case PackCategoriesIntoKey(fcZero, fcNormal):
1549   case PackCategoriesIntoKey(fcNormal, fcZero):
1550   case PackCategoriesIntoKey(fcZero, fcZero):
1551     category = fcZero;
1552     return opOK;
1553 
1554   case PackCategoriesIntoKey(fcZero, fcInfinity):
1555   case PackCategoriesIntoKey(fcInfinity, fcZero):
1556     makeNaN();
1557     return opInvalidOp;
1558 
1559   case PackCategoriesIntoKey(fcNormal, fcNormal):
1560     return opOK;
1561   }
1562 }
1563 
1564 APFloat::opStatus
divideSpecials(const APFloat & rhs)1565 APFloat::divideSpecials(const APFloat &rhs)
1566 {
1567   switch (PackCategoriesIntoKey(category, rhs.category)) {
1568   default:
1569     llvm_unreachable(nullptr);
1570 
1571   case PackCategoriesIntoKey(fcZero, fcNaN):
1572   case PackCategoriesIntoKey(fcNormal, fcNaN):
1573   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1574     category = fcNaN;
1575     copySignificand(rhs);
1576   case PackCategoriesIntoKey(fcNaN, fcZero):
1577   case PackCategoriesIntoKey(fcNaN, fcNormal):
1578   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1579   case PackCategoriesIntoKey(fcNaN, fcNaN):
1580     sign = false;
1581   case PackCategoriesIntoKey(fcInfinity, fcZero):
1582   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1583   case PackCategoriesIntoKey(fcZero, fcInfinity):
1584   case PackCategoriesIntoKey(fcZero, fcNormal):
1585     return opOK;
1586 
1587   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1588     category = fcZero;
1589     return opOK;
1590 
1591   case PackCategoriesIntoKey(fcNormal, fcZero):
1592     category = fcInfinity;
1593     return opDivByZero;
1594 
1595   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1596   case PackCategoriesIntoKey(fcZero, fcZero):
1597     makeNaN();
1598     return opInvalidOp;
1599 
1600   case PackCategoriesIntoKey(fcNormal, fcNormal):
1601     return opOK;
1602   }
1603 }
1604 
1605 APFloat::opStatus
modSpecials(const APFloat & rhs)1606 APFloat::modSpecials(const APFloat &rhs)
1607 {
1608   switch (PackCategoriesIntoKey(category, rhs.category)) {
1609   default:
1610     llvm_unreachable(nullptr);
1611 
1612   case PackCategoriesIntoKey(fcNaN, fcZero):
1613   case PackCategoriesIntoKey(fcNaN, fcNormal):
1614   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1615   case PackCategoriesIntoKey(fcNaN, fcNaN):
1616   case PackCategoriesIntoKey(fcZero, fcInfinity):
1617   case PackCategoriesIntoKey(fcZero, fcNormal):
1618   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1619     return opOK;
1620 
1621   case PackCategoriesIntoKey(fcZero, fcNaN):
1622   case PackCategoriesIntoKey(fcNormal, fcNaN):
1623   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1624     sign = false;
1625     category = fcNaN;
1626     copySignificand(rhs);
1627     return opOK;
1628 
1629   case PackCategoriesIntoKey(fcNormal, fcZero):
1630   case PackCategoriesIntoKey(fcInfinity, fcZero):
1631   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1632   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1633   case PackCategoriesIntoKey(fcZero, fcZero):
1634     makeNaN();
1635     return opInvalidOp;
1636 
1637   case PackCategoriesIntoKey(fcNormal, fcNormal):
1638     return opOK;
1639   }
1640 }
1641 
1642 /* Change sign.  */
1643 void
changeSign()1644 APFloat::changeSign()
1645 {
1646   /* Look mummy, this one's easy.  */
1647   sign = !sign;
1648 }
1649 
1650 void
clearSign()1651 APFloat::clearSign()
1652 {
1653   /* So is this one. */
1654   sign = 0;
1655 }
1656 
1657 void
copySign(const APFloat & rhs)1658 APFloat::copySign(const APFloat &rhs)
1659 {
1660   /* And this one. */
1661   sign = rhs.sign;
1662 }
1663 
1664 /* Normalized addition or subtraction.  */
1665 APFloat::opStatus
addOrSubtract(const APFloat & rhs,roundingMode rounding_mode,bool subtract)1666 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1667                        bool subtract)
1668 {
1669   opStatus fs;
1670 
1671   fs = addOrSubtractSpecials(rhs, subtract);
1672 
1673   /* This return code means it was not a simple case.  */
1674   if (fs == opDivByZero) {
1675     lostFraction lost_fraction;
1676 
1677     lost_fraction = addOrSubtractSignificand(rhs, subtract);
1678     fs = normalize(rounding_mode, lost_fraction);
1679 
1680     /* Can only be zero if we lost no fraction.  */
1681     assert(category != fcZero || lost_fraction == lfExactlyZero);
1682   }
1683 
1684   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1685      positive zero unless rounding to minus infinity, except that
1686      adding two like-signed zeroes gives that zero.  */
1687   if (category == fcZero) {
1688     if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1689       sign = (rounding_mode == rmTowardNegative);
1690   }
1691 
1692   return fs;
1693 }
1694 
1695 /* Normalized addition.  */
1696 APFloat::opStatus
add(const APFloat & rhs,roundingMode rounding_mode)1697 APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1698 {
1699   return addOrSubtract(rhs, rounding_mode, false);
1700 }
1701 
1702 /* Normalized subtraction.  */
1703 APFloat::opStatus
subtract(const APFloat & rhs,roundingMode rounding_mode)1704 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1705 {
1706   return addOrSubtract(rhs, rounding_mode, true);
1707 }
1708 
1709 /* Normalized multiply.  */
1710 APFloat::opStatus
multiply(const APFloat & rhs,roundingMode rounding_mode)1711 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1712 {
1713   opStatus fs;
1714 
1715   sign ^= rhs.sign;
1716   fs = multiplySpecials(rhs);
1717 
1718   if (isFiniteNonZero()) {
1719     lostFraction lost_fraction = multiplySignificand(rhs, nullptr);
1720     fs = normalize(rounding_mode, lost_fraction);
1721     if (lost_fraction != lfExactlyZero)
1722       fs = (opStatus) (fs | opInexact);
1723   }
1724 
1725   return fs;
1726 }
1727 
1728 /* Normalized divide.  */
1729 APFloat::opStatus
divide(const APFloat & rhs,roundingMode rounding_mode)1730 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1731 {
1732   opStatus fs;
1733 
1734   sign ^= rhs.sign;
1735   fs = divideSpecials(rhs);
1736 
1737   if (isFiniteNonZero()) {
1738     lostFraction lost_fraction = divideSignificand(rhs);
1739     fs = normalize(rounding_mode, lost_fraction);
1740     if (lost_fraction != lfExactlyZero)
1741       fs = (opStatus) (fs | opInexact);
1742   }
1743 
1744   return fs;
1745 }
1746 
1747 /* Normalized remainder.  This is not currently correct in all cases.  */
1748 APFloat::opStatus
remainder(const APFloat & rhs)1749 APFloat::remainder(const APFloat &rhs)
1750 {
1751   opStatus fs;
1752   APFloat V = *this;
1753   unsigned int origSign = sign;
1754 
1755   fs = V.divide(rhs, rmNearestTiesToEven);
1756   if (fs == opDivByZero)
1757     return fs;
1758 
1759   int parts = partCount();
1760   integerPart *x = new integerPart[parts];
1761   bool ignored;
1762   fs = V.convertToInteger(x, parts * integerPartWidth, true,
1763                           rmNearestTiesToEven, &ignored);
1764   if (fs==opInvalidOp)
1765     return fs;
1766 
1767   fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1768                                         rmNearestTiesToEven);
1769   assert(fs==opOK);   // should always work
1770 
1771   fs = V.multiply(rhs, rmNearestTiesToEven);
1772   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1773 
1774   fs = subtract(V, rmNearestTiesToEven);
1775   assert(fs==opOK || fs==opInexact);   // likewise
1776 
1777   if (isZero())
1778     sign = origSign;    // IEEE754 requires this
1779   delete[] x;
1780   return fs;
1781 }
1782 
1783 /* Normalized llvm frem (C fmod).
1784    This is not currently correct in all cases.  */
1785 APFloat::opStatus
mod(const APFloat & rhs)1786 APFloat::mod(const APFloat &rhs)
1787 {
1788   opStatus fs;
1789   fs = modSpecials(rhs);
1790 
1791   if (isFiniteNonZero() && rhs.isFiniteNonZero()) {
1792     APFloat V = *this;
1793     unsigned int origSign = sign;
1794 
1795     fs = V.divide(rhs, rmNearestTiesToEven);
1796     if (fs == opDivByZero)
1797       return fs;
1798 
1799     int parts = partCount();
1800     integerPart *x = new integerPart[parts];
1801     bool ignored;
1802     fs = V.convertToInteger(x, parts * integerPartWidth, true,
1803                             rmTowardZero, &ignored);
1804     if (fs==opInvalidOp)
1805       return fs;
1806 
1807     fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1808                                           rmNearestTiesToEven);
1809     assert(fs==opOK);   // should always work
1810 
1811     fs = V.multiply(rhs, rmNearestTiesToEven);
1812     assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1813 
1814     fs = subtract(V, rmNearestTiesToEven);
1815     assert(fs==opOK || fs==opInexact);   // likewise
1816 
1817     if (isZero())
1818       sign = origSign;    // IEEE754 requires this
1819     delete[] x;
1820   }
1821   return fs;
1822 }
1823 
1824 /* Normalized fused-multiply-add.  */
1825 APFloat::opStatus
fusedMultiplyAdd(const APFloat & multiplicand,const APFloat & addend,roundingMode rounding_mode)1826 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1827                           const APFloat &addend,
1828                           roundingMode rounding_mode)
1829 {
1830   opStatus fs;
1831 
1832   /* Post-multiplication sign, before addition.  */
1833   sign ^= multiplicand.sign;
1834 
1835   /* If and only if all arguments are normal do we need to do an
1836      extended-precision calculation.  */
1837   if (isFiniteNonZero() &&
1838       multiplicand.isFiniteNonZero() &&
1839       addend.isFinite()) {
1840     lostFraction lost_fraction;
1841 
1842     lost_fraction = multiplySignificand(multiplicand, &addend);
1843     fs = normalize(rounding_mode, lost_fraction);
1844     if (lost_fraction != lfExactlyZero)
1845       fs = (opStatus) (fs | opInexact);
1846 
1847     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1848        positive zero unless rounding to minus infinity, except that
1849        adding two like-signed zeroes gives that zero.  */
1850     if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
1851       sign = (rounding_mode == rmTowardNegative);
1852   } else {
1853     fs = multiplySpecials(multiplicand);
1854 
1855     /* FS can only be opOK or opInvalidOp.  There is no more work
1856        to do in the latter case.  The IEEE-754R standard says it is
1857        implementation-defined in this case whether, if ADDEND is a
1858        quiet NaN, we raise invalid op; this implementation does so.
1859 
1860        If we need to do the addition we can do so with normal
1861        precision.  */
1862     if (fs == opOK)
1863       fs = addOrSubtract(addend, rounding_mode, false);
1864   }
1865 
1866   return fs;
1867 }
1868 
1869 /* Rounding-mode corrrect round to integral value.  */
roundToIntegral(roundingMode rounding_mode)1870 APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
1871   opStatus fs;
1872 
1873   // If the exponent is large enough, we know that this value is already
1874   // integral, and the arithmetic below would potentially cause it to saturate
1875   // to +/-Inf.  Bail out early instead.
1876   if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
1877     return opOK;
1878 
1879   // The algorithm here is quite simple: we add 2^(p-1), where p is the
1880   // precision of our format, and then subtract it back off again.  The choice
1881   // of rounding modes for the addition/subtraction determines the rounding mode
1882   // for our integral rounding as well.
1883   // NOTE: When the input value is negative, we do subtraction followed by
1884   // addition instead.
1885   APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
1886   IntegerConstant <<= semanticsPrecision(*semantics)-1;
1887   APFloat MagicConstant(*semantics);
1888   fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
1889                                       rmNearestTiesToEven);
1890   MagicConstant.copySign(*this);
1891 
1892   if (fs != opOK)
1893     return fs;
1894 
1895   // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
1896   bool inputSign = isNegative();
1897 
1898   fs = add(MagicConstant, rounding_mode);
1899   if (fs != opOK && fs != opInexact)
1900     return fs;
1901 
1902   fs = subtract(MagicConstant, rounding_mode);
1903 
1904   // Restore the input sign.
1905   if (inputSign != isNegative())
1906     changeSign();
1907 
1908   return fs;
1909 }
1910 
1911 
1912 /* Comparison requires normalized numbers.  */
1913 APFloat::cmpResult
compare(const APFloat & rhs) const1914 APFloat::compare(const APFloat &rhs) const
1915 {
1916   cmpResult result;
1917 
1918   assert(semantics == rhs.semantics);
1919 
1920   switch (PackCategoriesIntoKey(category, rhs.category)) {
1921   default:
1922     llvm_unreachable(nullptr);
1923 
1924   case PackCategoriesIntoKey(fcNaN, fcZero):
1925   case PackCategoriesIntoKey(fcNaN, fcNormal):
1926   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1927   case PackCategoriesIntoKey(fcNaN, fcNaN):
1928   case PackCategoriesIntoKey(fcZero, fcNaN):
1929   case PackCategoriesIntoKey(fcNormal, fcNaN):
1930   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1931     return cmpUnordered;
1932 
1933   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1934   case PackCategoriesIntoKey(fcInfinity, fcZero):
1935   case PackCategoriesIntoKey(fcNormal, fcZero):
1936     if (sign)
1937       return cmpLessThan;
1938     else
1939       return cmpGreaterThan;
1940 
1941   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1942   case PackCategoriesIntoKey(fcZero, fcInfinity):
1943   case PackCategoriesIntoKey(fcZero, fcNormal):
1944     if (rhs.sign)
1945       return cmpGreaterThan;
1946     else
1947       return cmpLessThan;
1948 
1949   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1950     if (sign == rhs.sign)
1951       return cmpEqual;
1952     else if (sign)
1953       return cmpLessThan;
1954     else
1955       return cmpGreaterThan;
1956 
1957   case PackCategoriesIntoKey(fcZero, fcZero):
1958     return cmpEqual;
1959 
1960   case PackCategoriesIntoKey(fcNormal, fcNormal):
1961     break;
1962   }
1963 
1964   /* Two normal numbers.  Do they have the same sign?  */
1965   if (sign != rhs.sign) {
1966     if (sign)
1967       result = cmpLessThan;
1968     else
1969       result = cmpGreaterThan;
1970   } else {
1971     /* Compare absolute values; invert result if negative.  */
1972     result = compareAbsoluteValue(rhs);
1973 
1974     if (sign) {
1975       if (result == cmpLessThan)
1976         result = cmpGreaterThan;
1977       else if (result == cmpGreaterThan)
1978         result = cmpLessThan;
1979     }
1980   }
1981 
1982   return result;
1983 }
1984 
1985 /// APFloat::convert - convert a value of one floating point type to another.
1986 /// The return value corresponds to the IEEE754 exceptions.  *losesInfo
1987 /// records whether the transformation lost information, i.e. whether
1988 /// converting the result back to the original type will produce the
1989 /// original value (this is almost the same as return value==fsOK, but there
1990 /// are edge cases where this is not so).
1991 
1992 APFloat::opStatus
convert(const fltSemantics & toSemantics,roundingMode rounding_mode,bool * losesInfo)1993 APFloat::convert(const fltSemantics &toSemantics,
1994                  roundingMode rounding_mode, bool *losesInfo)
1995 {
1996   lostFraction lostFraction;
1997   unsigned int newPartCount, oldPartCount;
1998   opStatus fs;
1999   int shift;
2000   const fltSemantics &fromSemantics = *semantics;
2001 
2002   lostFraction = lfExactlyZero;
2003   newPartCount = partCountForBits(toSemantics.precision + 1);
2004   oldPartCount = partCount();
2005   shift = toSemantics.precision - fromSemantics.precision;
2006 
2007   bool X86SpecialNan = false;
2008   if (&fromSemantics == &APFloat::x87DoubleExtended &&
2009       &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
2010       (!(*significandParts() & 0x8000000000000000ULL) ||
2011        !(*significandParts() & 0x4000000000000000ULL))) {
2012     // x86 has some unusual NaNs which cannot be represented in any other
2013     // format; note them here.
2014     X86SpecialNan = true;
2015   }
2016 
2017   // If this is a truncation of a denormal number, and the target semantics
2018   // has larger exponent range than the source semantics (this can happen
2019   // when truncating from PowerPC double-double to double format), the
2020   // right shift could lose result mantissa bits.  Adjust exponent instead
2021   // of performing excessive shift.
2022   if (shift < 0 && isFiniteNonZero()) {
2023     int exponentChange = significandMSB() + 1 - fromSemantics.precision;
2024     if (exponent + exponentChange < toSemantics.minExponent)
2025       exponentChange = toSemantics.minExponent - exponent;
2026     if (exponentChange < shift)
2027       exponentChange = shift;
2028     if (exponentChange < 0) {
2029       shift -= exponentChange;
2030       exponent += exponentChange;
2031     }
2032   }
2033 
2034   // If this is a truncation, perform the shift before we narrow the storage.
2035   if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
2036     lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
2037 
2038   // Fix the storage so it can hold to new value.
2039   if (newPartCount > oldPartCount) {
2040     // The new type requires more storage; make it available.
2041     integerPart *newParts;
2042     newParts = new integerPart[newPartCount];
2043     APInt::tcSet(newParts, 0, newPartCount);
2044     if (isFiniteNonZero() || category==fcNaN)
2045       APInt::tcAssign(newParts, significandParts(), oldPartCount);
2046     freeSignificand();
2047     significand.parts = newParts;
2048   } else if (newPartCount == 1 && oldPartCount != 1) {
2049     // Switch to built-in storage for a single part.
2050     integerPart newPart = 0;
2051     if (isFiniteNonZero() || category==fcNaN)
2052       newPart = significandParts()[0];
2053     freeSignificand();
2054     significand.part = newPart;
2055   }
2056 
2057   // Now that we have the right storage, switch the semantics.
2058   semantics = &toSemantics;
2059 
2060   // If this is an extension, perform the shift now that the storage is
2061   // available.
2062   if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
2063     APInt::tcShiftLeft(significandParts(), newPartCount, shift);
2064 
2065   if (isFiniteNonZero()) {
2066     fs = normalize(rounding_mode, lostFraction);
2067     *losesInfo = (fs != opOK);
2068   } else if (category == fcNaN) {
2069     *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
2070 
2071     // For x87 extended precision, we want to make a NaN, not a special NaN if
2072     // the input wasn't special either.
2073     if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended)
2074       APInt::tcSetBit(significandParts(), semantics->precision - 1);
2075 
2076     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
2077     // does not give you back the same bits.  This is dubious, and we
2078     // don't currently do it.  You're really supposed to get
2079     // an invalid operation signal at runtime, but nobody does that.
2080     fs = opOK;
2081   } else {
2082     *losesInfo = false;
2083     fs = opOK;
2084   }
2085 
2086   return fs;
2087 }
2088 
2089 /* Convert a floating point number to an integer according to the
2090    rounding mode.  If the rounded integer value is out of range this
2091    returns an invalid operation exception and the contents of the
2092    destination parts are unspecified.  If the rounded value is in
2093    range but the floating point number is not the exact integer, the C
2094    standard doesn't require an inexact exception to be raised.  IEEE
2095    854 does require it so we do that.
2096 
2097    Note that for conversions to integer type the C standard requires
2098    round-to-zero to always be used.  */
2099 APFloat::opStatus
convertToSignExtendedInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2100 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
2101                                       bool isSigned,
2102                                       roundingMode rounding_mode,
2103                                       bool *isExact) const
2104 {
2105   lostFraction lost_fraction;
2106   const integerPart *src;
2107   unsigned int dstPartsCount, truncatedBits;
2108 
2109   *isExact = false;
2110 
2111   /* Handle the three special cases first.  */
2112   if (category == fcInfinity || category == fcNaN)
2113     return opInvalidOp;
2114 
2115   dstPartsCount = partCountForBits(width);
2116 
2117   if (category == fcZero) {
2118     APInt::tcSet(parts, 0, dstPartsCount);
2119     // Negative zero can't be represented as an int.
2120     *isExact = !sign;
2121     return opOK;
2122   }
2123 
2124   src = significandParts();
2125 
2126   /* Step 1: place our absolute value, with any fraction truncated, in
2127      the destination.  */
2128   if (exponent < 0) {
2129     /* Our absolute value is less than one; truncate everything.  */
2130     APInt::tcSet(parts, 0, dstPartsCount);
2131     /* For exponent -1 the integer bit represents .5, look at that.
2132        For smaller exponents leftmost truncated bit is 0. */
2133     truncatedBits = semantics->precision -1U - exponent;
2134   } else {
2135     /* We want the most significant (exponent + 1) bits; the rest are
2136        truncated.  */
2137     unsigned int bits = exponent + 1U;
2138 
2139     /* Hopelessly large in magnitude?  */
2140     if (bits > width)
2141       return opInvalidOp;
2142 
2143     if (bits < semantics->precision) {
2144       /* We truncate (semantics->precision - bits) bits.  */
2145       truncatedBits = semantics->precision - bits;
2146       APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
2147     } else {
2148       /* We want at least as many bits as are available.  */
2149       APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
2150       APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
2151       truncatedBits = 0;
2152     }
2153   }
2154 
2155   /* Step 2: work out any lost fraction, and increment the absolute
2156      value if we would round away from zero.  */
2157   if (truncatedBits) {
2158     lost_fraction = lostFractionThroughTruncation(src, partCount(),
2159                                                   truncatedBits);
2160     if (lost_fraction != lfExactlyZero &&
2161         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2162       if (APInt::tcIncrement(parts, dstPartsCount))
2163         return opInvalidOp;     /* Overflow.  */
2164     }
2165   } else {
2166     lost_fraction = lfExactlyZero;
2167   }
2168 
2169   /* Step 3: check if we fit in the destination.  */
2170   unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2171 
2172   if (sign) {
2173     if (!isSigned) {
2174       /* Negative numbers cannot be represented as unsigned.  */
2175       if (omsb != 0)
2176         return opInvalidOp;
2177     } else {
2178       /* It takes omsb bits to represent the unsigned integer value.
2179          We lose a bit for the sign, but care is needed as the
2180          maximally negative integer is a special case.  */
2181       if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2182         return opInvalidOp;
2183 
2184       /* This case can happen because of rounding.  */
2185       if (omsb > width)
2186         return opInvalidOp;
2187     }
2188 
2189     APInt::tcNegate (parts, dstPartsCount);
2190   } else {
2191     if (omsb >= width + !isSigned)
2192       return opInvalidOp;
2193   }
2194 
2195   if (lost_fraction == lfExactlyZero) {
2196     *isExact = true;
2197     return opOK;
2198   } else
2199     return opInexact;
2200 }
2201 
2202 /* Same as convertToSignExtendedInteger, except we provide
2203    deterministic values in case of an invalid operation exception,
2204    namely zero for NaNs and the minimal or maximal value respectively
2205    for underflow or overflow.
2206    The *isExact output tells whether the result is exact, in the sense
2207    that converting it back to the original floating point type produces
2208    the original value.  This is almost equivalent to result==opOK,
2209    except for negative zeroes.
2210 */
2211 APFloat::opStatus
convertToInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2212 APFloat::convertToInteger(integerPart *parts, unsigned int width,
2213                           bool isSigned,
2214                           roundingMode rounding_mode, bool *isExact) const
2215 {
2216   opStatus fs;
2217 
2218   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2219                                     isExact);
2220 
2221   if (fs == opInvalidOp) {
2222     unsigned int bits, dstPartsCount;
2223 
2224     dstPartsCount = partCountForBits(width);
2225 
2226     if (category == fcNaN)
2227       bits = 0;
2228     else if (sign)
2229       bits = isSigned;
2230     else
2231       bits = width - isSigned;
2232 
2233     APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2234     if (sign && isSigned)
2235       APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
2236   }
2237 
2238   return fs;
2239 }
2240 
2241 /* Same as convertToInteger(integerPart*, ...), except the result is returned in
2242    an APSInt, whose initial bit-width and signed-ness are used to determine the
2243    precision of the conversion.
2244  */
2245 APFloat::opStatus
convertToInteger(APSInt & result,roundingMode rounding_mode,bool * isExact) const2246 APFloat::convertToInteger(APSInt &result,
2247                           roundingMode rounding_mode, bool *isExact) const
2248 {
2249   unsigned bitWidth = result.getBitWidth();
2250   SmallVector<uint64_t, 4> parts(result.getNumWords());
2251   opStatus status = convertToInteger(
2252     parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
2253   // Keeps the original signed-ness.
2254   result = APInt(bitWidth, parts);
2255   return status;
2256 }
2257 
2258 /* Convert an unsigned integer SRC to a floating point number,
2259    rounding according to ROUNDING_MODE.  The sign of the floating
2260    point number is not modified.  */
2261 APFloat::opStatus
convertFromUnsignedParts(const integerPart * src,unsigned int srcCount,roundingMode rounding_mode)2262 APFloat::convertFromUnsignedParts(const integerPart *src,
2263                                   unsigned int srcCount,
2264                                   roundingMode rounding_mode)
2265 {
2266   unsigned int omsb, precision, dstCount;
2267   integerPart *dst;
2268   lostFraction lost_fraction;
2269 
2270   category = fcNormal;
2271   omsb = APInt::tcMSB(src, srcCount) + 1;
2272   dst = significandParts();
2273   dstCount = partCount();
2274   precision = semantics->precision;
2275 
2276   /* We want the most significant PRECISION bits of SRC.  There may not
2277      be that many; extract what we can.  */
2278   if (precision <= omsb) {
2279     exponent = omsb - 1;
2280     lost_fraction = lostFractionThroughTruncation(src, srcCount,
2281                                                   omsb - precision);
2282     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2283   } else {
2284     exponent = precision - 1;
2285     lost_fraction = lfExactlyZero;
2286     APInt::tcExtract(dst, dstCount, src, omsb, 0);
2287   }
2288 
2289   return normalize(rounding_mode, lost_fraction);
2290 }
2291 
2292 APFloat::opStatus
convertFromAPInt(const APInt & Val,bool isSigned,roundingMode rounding_mode)2293 APFloat::convertFromAPInt(const APInt &Val,
2294                           bool isSigned,
2295                           roundingMode rounding_mode)
2296 {
2297   unsigned int partCount = Val.getNumWords();
2298   APInt api = Val;
2299 
2300   sign = false;
2301   if (isSigned && api.isNegative()) {
2302     sign = true;
2303     api = -api;
2304   }
2305 
2306   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2307 }
2308 
2309 /* Convert a two's complement integer SRC to a floating point number,
2310    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
2311    integer is signed, in which case it must be sign-extended.  */
2312 APFloat::opStatus
convertFromSignExtendedInteger(const integerPart * src,unsigned int srcCount,bool isSigned,roundingMode rounding_mode)2313 APFloat::convertFromSignExtendedInteger(const integerPart *src,
2314                                         unsigned int srcCount,
2315                                         bool isSigned,
2316                                         roundingMode rounding_mode)
2317 {
2318   opStatus status;
2319 
2320   if (isSigned &&
2321       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2322     integerPart *copy;
2323 
2324     /* If we're signed and negative negate a copy.  */
2325     sign = true;
2326     copy = new integerPart[srcCount];
2327     APInt::tcAssign(copy, src, srcCount);
2328     APInt::tcNegate(copy, srcCount);
2329     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2330     delete [] copy;
2331   } else {
2332     sign = false;
2333     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2334   }
2335 
2336   return status;
2337 }
2338 
2339 /* FIXME: should this just take a const APInt reference?  */
2340 APFloat::opStatus
convertFromZeroExtendedInteger(const integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode)2341 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2342                                         unsigned int width, bool isSigned,
2343                                         roundingMode rounding_mode)
2344 {
2345   unsigned int partCount = partCountForBits(width);
2346   APInt api = APInt(width, makeArrayRef(parts, partCount));
2347 
2348   sign = false;
2349   if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2350     sign = true;
2351     api = -api;
2352   }
2353 
2354   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2355 }
2356 
2357 APFloat::opStatus
convertFromHexadecimalString(StringRef s,roundingMode rounding_mode)2358 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
2359 {
2360   lostFraction lost_fraction = lfExactlyZero;
2361 
2362   category = fcNormal;
2363   zeroSignificand();
2364   exponent = 0;
2365 
2366   integerPart *significand = significandParts();
2367   unsigned partsCount = partCount();
2368   unsigned bitPos = partsCount * integerPartWidth;
2369   bool computedTrailingFraction = false;
2370 
2371   // Skip leading zeroes and any (hexa)decimal point.
2372   StringRef::iterator begin = s.begin();
2373   StringRef::iterator end = s.end();
2374   StringRef::iterator dot;
2375   StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2376   StringRef::iterator firstSignificantDigit = p;
2377 
2378   while (p != end) {
2379     integerPart hex_value;
2380 
2381     if (*p == '.') {
2382       assert(dot == end && "String contains multiple dots");
2383       dot = p++;
2384       continue;
2385     }
2386 
2387     hex_value = hexDigitValue(*p);
2388     if (hex_value == -1U)
2389       break;
2390 
2391     p++;
2392 
2393     // Store the number while we have space.
2394     if (bitPos) {
2395       bitPos -= 4;
2396       hex_value <<= bitPos % integerPartWidth;
2397       significand[bitPos / integerPartWidth] |= hex_value;
2398     } else if (!computedTrailingFraction) {
2399       lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
2400       computedTrailingFraction = true;
2401     }
2402   }
2403 
2404   /* Hex floats require an exponent but not a hexadecimal point.  */
2405   assert(p != end && "Hex strings require an exponent");
2406   assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2407   assert(p != begin && "Significand has no digits");
2408   assert((dot == end || p - begin != 1) && "Significand has no digits");
2409 
2410   /* Ignore the exponent if we are zero.  */
2411   if (p != firstSignificantDigit) {
2412     int expAdjustment;
2413 
2414     /* Implicit hexadecimal point?  */
2415     if (dot == end)
2416       dot = p;
2417 
2418     /* Calculate the exponent adjustment implicit in the number of
2419        significant digits.  */
2420     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2421     if (expAdjustment < 0)
2422       expAdjustment++;
2423     expAdjustment = expAdjustment * 4 - 1;
2424 
2425     /* Adjust for writing the significand starting at the most
2426        significant nibble.  */
2427     expAdjustment += semantics->precision;
2428     expAdjustment -= partsCount * integerPartWidth;
2429 
2430     /* Adjust for the given exponent.  */
2431     exponent = totalExponent(p + 1, end, expAdjustment);
2432   }
2433 
2434   return normalize(rounding_mode, lost_fraction);
2435 }
2436 
2437 APFloat::opStatus
roundSignificandWithExponent(const integerPart * decSigParts,unsigned sigPartCount,int exp,roundingMode rounding_mode)2438 APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2439                                       unsigned sigPartCount, int exp,
2440                                       roundingMode rounding_mode)
2441 {
2442   unsigned int parts, pow5PartCount;
2443   fltSemantics calcSemantics = { 32767, -32767, 0, 0 };
2444   integerPart pow5Parts[maxPowerOfFiveParts];
2445   bool isNearest;
2446 
2447   isNearest = (rounding_mode == rmNearestTiesToEven ||
2448                rounding_mode == rmNearestTiesToAway);
2449 
2450   parts = partCountForBits(semantics->precision + 11);
2451 
2452   /* Calculate pow(5, abs(exp)).  */
2453   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2454 
2455   for (;; parts *= 2) {
2456     opStatus sigStatus, powStatus;
2457     unsigned int excessPrecision, truncatedBits;
2458 
2459     calcSemantics.precision = parts * integerPartWidth - 1;
2460     excessPrecision = calcSemantics.precision - semantics->precision;
2461     truncatedBits = excessPrecision;
2462 
2463     APFloat decSig = APFloat::getZero(calcSemantics, sign);
2464     APFloat pow5(calcSemantics);
2465 
2466     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2467                                                 rmNearestTiesToEven);
2468     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2469                                               rmNearestTiesToEven);
2470     /* Add exp, as 10^n = 5^n * 2^n.  */
2471     decSig.exponent += exp;
2472 
2473     lostFraction calcLostFraction;
2474     integerPart HUerr, HUdistance;
2475     unsigned int powHUerr;
2476 
2477     if (exp >= 0) {
2478       /* multiplySignificand leaves the precision-th bit set to 1.  */
2479       calcLostFraction = decSig.multiplySignificand(pow5, nullptr);
2480       powHUerr = powStatus != opOK;
2481     } else {
2482       calcLostFraction = decSig.divideSignificand(pow5);
2483       /* Denormal numbers have less precision.  */
2484       if (decSig.exponent < semantics->minExponent) {
2485         excessPrecision += (semantics->minExponent - decSig.exponent);
2486         truncatedBits = excessPrecision;
2487         if (excessPrecision > calcSemantics.precision)
2488           excessPrecision = calcSemantics.precision;
2489       }
2490       /* Extra half-ulp lost in reciprocal of exponent.  */
2491       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2492     }
2493 
2494     /* Both multiplySignificand and divideSignificand return the
2495        result with the integer bit set.  */
2496     assert(APInt::tcExtractBit
2497            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2498 
2499     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2500                        powHUerr);
2501     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2502                                       excessPrecision, isNearest);
2503 
2504     /* Are we guaranteed to round correctly if we truncate?  */
2505     if (HUdistance >= HUerr) {
2506       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2507                        calcSemantics.precision - excessPrecision,
2508                        excessPrecision);
2509       /* Take the exponent of decSig.  If we tcExtract-ed less bits
2510          above we must adjust our exponent to compensate for the
2511          implicit right shift.  */
2512       exponent = (decSig.exponent + semantics->precision
2513                   - (calcSemantics.precision - excessPrecision));
2514       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2515                                                        decSig.partCount(),
2516                                                        truncatedBits);
2517       return normalize(rounding_mode, calcLostFraction);
2518     }
2519   }
2520 }
2521 
2522 APFloat::opStatus
convertFromDecimalString(StringRef str,roundingMode rounding_mode)2523 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
2524 {
2525   decimalInfo D;
2526   opStatus fs;
2527 
2528   /* Scan the text.  */
2529   StringRef::iterator p = str.begin();
2530   interpretDecimal(p, str.end(), &D);
2531 
2532   /* Handle the quick cases.  First the case of no significant digits,
2533      i.e. zero, and then exponents that are obviously too large or too
2534      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
2535      definitely overflows if
2536 
2537            (exp - 1) * L >= maxExponent
2538 
2539      and definitely underflows to zero where
2540 
2541            (exp + 1) * L <= minExponent - precision
2542 
2543      With integer arithmetic the tightest bounds for L are
2544 
2545            93/28 < L < 196/59            [ numerator <= 256 ]
2546            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
2547   */
2548 
2549   // Test if we have a zero number allowing for strings with no null terminators
2550   // and zero decimals with non-zero exponents.
2551   //
2552   // We computed firstSigDigit by ignoring all zeros and dots. Thus if
2553   // D->firstSigDigit equals str.end(), every digit must be a zero and there can
2554   // be at most one dot. On the other hand, if we have a zero with a non-zero
2555   // exponent, then we know that D.firstSigDigit will be non-numeric.
2556   if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
2557     category = fcZero;
2558     fs = opOK;
2559 
2560   /* Check whether the normalized exponent is high enough to overflow
2561      max during the log-rebasing in the max-exponent check below. */
2562   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2563     fs = handleOverflow(rounding_mode);
2564 
2565   /* If it wasn't, then it also wasn't high enough to overflow max
2566      during the log-rebasing in the min-exponent check.  Check that it
2567      won't overflow min in either check, then perform the min-exponent
2568      check. */
2569   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2570              (D.normalizedExponent + 1) * 28738 <=
2571                8651 * (semantics->minExponent - (int) semantics->precision)) {
2572     /* Underflow to zero and round.  */
2573     category = fcNormal;
2574     zeroSignificand();
2575     fs = normalize(rounding_mode, lfLessThanHalf);
2576 
2577   /* We can finally safely perform the max-exponent check. */
2578   } else if ((D.normalizedExponent - 1) * 42039
2579              >= 12655 * semantics->maxExponent) {
2580     /* Overflow and round.  */
2581     fs = handleOverflow(rounding_mode);
2582   } else {
2583     integerPart *decSignificand;
2584     unsigned int partCount;
2585 
2586     /* A tight upper bound on number of bits required to hold an
2587        N-digit decimal integer is N * 196 / 59.  Allocate enough space
2588        to hold the full significand, and an extra part required by
2589        tcMultiplyPart.  */
2590     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2591     partCount = partCountForBits(1 + 196 * partCount / 59);
2592     decSignificand = new integerPart[partCount + 1];
2593     partCount = 0;
2594 
2595     /* Convert to binary efficiently - we do almost all multiplication
2596        in an integerPart.  When this would overflow do we do a single
2597        bignum multiplication, and then revert again to multiplication
2598        in an integerPart.  */
2599     do {
2600       integerPart decValue, val, multiplier;
2601 
2602       val = 0;
2603       multiplier = 1;
2604 
2605       do {
2606         if (*p == '.') {
2607           p++;
2608           if (p == str.end()) {
2609             break;
2610           }
2611         }
2612         decValue = decDigitValue(*p++);
2613         assert(decValue < 10U && "Invalid character in significand");
2614         multiplier *= 10;
2615         val = val * 10 + decValue;
2616         /* The maximum number that can be multiplied by ten with any
2617            digit added without overflowing an integerPart.  */
2618       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2619 
2620       /* Multiply out the current part.  */
2621       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2622                             partCount, partCount + 1, false);
2623 
2624       /* If we used another part (likely but not guaranteed), increase
2625          the count.  */
2626       if (decSignificand[partCount])
2627         partCount++;
2628     } while (p <= D.lastSigDigit);
2629 
2630     category = fcNormal;
2631     fs = roundSignificandWithExponent(decSignificand, partCount,
2632                                       D.exponent, rounding_mode);
2633 
2634     delete [] decSignificand;
2635   }
2636 
2637   return fs;
2638 }
2639 
2640 bool
convertFromStringSpecials(StringRef str)2641 APFloat::convertFromStringSpecials(StringRef str) {
2642   if (str.equals("inf") || str.equals("INFINITY")) {
2643     makeInf(false);
2644     return true;
2645   }
2646 
2647   if (str.equals("-inf") || str.equals("-INFINITY")) {
2648     makeInf(true);
2649     return true;
2650   }
2651 
2652   if (str.equals("nan") || str.equals("NaN")) {
2653     makeNaN(false, false);
2654     return true;
2655   }
2656 
2657   if (str.equals("-nan") || str.equals("-NaN")) {
2658     makeNaN(false, true);
2659     return true;
2660   }
2661 
2662   return false;
2663 }
2664 
2665 APFloat::opStatus
convertFromString(StringRef str,roundingMode rounding_mode)2666 APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
2667 {
2668   assert(!str.empty() && "Invalid string length");
2669 
2670   // Handle special cases.
2671   if (convertFromStringSpecials(str))
2672     return opOK;
2673 
2674   /* Handle a leading minus sign.  */
2675   StringRef::iterator p = str.begin();
2676   size_t slen = str.size();
2677   sign = *p == '-' ? 1 : 0;
2678   if (*p == '-' || *p == '+') {
2679     p++;
2680     slen--;
2681     assert(slen && "String has no digits");
2682   }
2683 
2684   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2685     assert(slen - 2 && "Invalid string");
2686     return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2687                                         rounding_mode);
2688   }
2689 
2690   return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2691 }
2692 
2693 /* Write out a hexadecimal representation of the floating point value
2694    to DST, which must be of sufficient size, in the C99 form
2695    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
2696    excluding the terminating NUL.
2697 
2698    If UPPERCASE, the output is in upper case, otherwise in lower case.
2699 
2700    HEXDIGITS digits appear altogether, rounding the value if
2701    necessary.  If HEXDIGITS is 0, the minimal precision to display the
2702    number precisely is used instead.  If nothing would appear after
2703    the decimal point it is suppressed.
2704 
2705    The decimal exponent is always printed and has at least one digit.
2706    Zero values display an exponent of zero.  Infinities and NaNs
2707    appear as "infinity" or "nan" respectively.
2708 
2709    The above rules are as specified by C99.  There is ambiguity about
2710    what the leading hexadecimal digit should be.  This implementation
2711    uses whatever is necessary so that the exponent is displayed as
2712    stored.  This implies the exponent will fall within the IEEE format
2713    range, and the leading hexadecimal digit will be 0 (for denormals),
2714    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2715    any other digits zero).
2716 */
2717 unsigned int
convertToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2718 APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2719                             bool upperCase, roundingMode rounding_mode) const
2720 {
2721   char *p;
2722 
2723   p = dst;
2724   if (sign)
2725     *dst++ = '-';
2726 
2727   switch (category) {
2728   case fcInfinity:
2729     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2730     dst += sizeof infinityL - 1;
2731     break;
2732 
2733   case fcNaN:
2734     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2735     dst += sizeof NaNU - 1;
2736     break;
2737 
2738   case fcZero:
2739     *dst++ = '0';
2740     *dst++ = upperCase ? 'X': 'x';
2741     *dst++ = '0';
2742     if (hexDigits > 1) {
2743       *dst++ = '.';
2744       memset (dst, '0', hexDigits - 1);
2745       dst += hexDigits - 1;
2746     }
2747     *dst++ = upperCase ? 'P': 'p';
2748     *dst++ = '0';
2749     break;
2750 
2751   case fcNormal:
2752     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2753     break;
2754   }
2755 
2756   *dst = 0;
2757 
2758   return static_cast<unsigned int>(dst - p);
2759 }
2760 
2761 /* Does the hard work of outputting the correctly rounded hexadecimal
2762    form of a normal floating point number with the specified number of
2763    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
2764    digits necessary to print the value precisely is output.  */
2765 char *
convertNormalToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2766 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2767                                   bool upperCase,
2768                                   roundingMode rounding_mode) const
2769 {
2770   unsigned int count, valueBits, shift, partsCount, outputDigits;
2771   const char *hexDigitChars;
2772   const integerPart *significand;
2773   char *p;
2774   bool roundUp;
2775 
2776   *dst++ = '0';
2777   *dst++ = upperCase ? 'X': 'x';
2778 
2779   roundUp = false;
2780   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2781 
2782   significand = significandParts();
2783   partsCount = partCount();
2784 
2785   /* +3 because the first digit only uses the single integer bit, so
2786      we have 3 virtual zero most-significant-bits.  */
2787   valueBits = semantics->precision + 3;
2788   shift = integerPartWidth - valueBits % integerPartWidth;
2789 
2790   /* The natural number of digits required ignoring trailing
2791      insignificant zeroes.  */
2792   outputDigits = (valueBits - significandLSB () + 3) / 4;
2793 
2794   /* hexDigits of zero means use the required number for the
2795      precision.  Otherwise, see if we are truncating.  If we are,
2796      find out if we need to round away from zero.  */
2797   if (hexDigits) {
2798     if (hexDigits < outputDigits) {
2799       /* We are dropping non-zero bits, so need to check how to round.
2800          "bits" is the number of dropped bits.  */
2801       unsigned int bits;
2802       lostFraction fraction;
2803 
2804       bits = valueBits - hexDigits * 4;
2805       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2806       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2807     }
2808     outputDigits = hexDigits;
2809   }
2810 
2811   /* Write the digits consecutively, and start writing in the location
2812      of the hexadecimal point.  We move the most significant digit
2813      left and add the hexadecimal point later.  */
2814   p = ++dst;
2815 
2816   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2817 
2818   while (outputDigits && count) {
2819     integerPart part;
2820 
2821     /* Put the most significant integerPartWidth bits in "part".  */
2822     if (--count == partsCount)
2823       part = 0;  /* An imaginary higher zero part.  */
2824     else
2825       part = significand[count] << shift;
2826 
2827     if (count && shift)
2828       part |= significand[count - 1] >> (integerPartWidth - shift);
2829 
2830     /* Convert as much of "part" to hexdigits as we can.  */
2831     unsigned int curDigits = integerPartWidth / 4;
2832 
2833     if (curDigits > outputDigits)
2834       curDigits = outputDigits;
2835     dst += partAsHex (dst, part, curDigits, hexDigitChars);
2836     outputDigits -= curDigits;
2837   }
2838 
2839   if (roundUp) {
2840     char *q = dst;
2841 
2842     /* Note that hexDigitChars has a trailing '0'.  */
2843     do {
2844       q--;
2845       *q = hexDigitChars[hexDigitValue (*q) + 1];
2846     } while (*q == '0');
2847     assert(q >= p);
2848   } else {
2849     /* Add trailing zeroes.  */
2850     memset (dst, '0', outputDigits);
2851     dst += outputDigits;
2852   }
2853 
2854   /* Move the most significant digit to before the point, and if there
2855      is something after the decimal point add it.  This must come
2856      after rounding above.  */
2857   p[-1] = p[0];
2858   if (dst -1 == p)
2859     dst--;
2860   else
2861     p[0] = '.';
2862 
2863   /* Finally output the exponent.  */
2864   *dst++ = upperCase ? 'P': 'p';
2865 
2866   return writeSignedDecimal (dst, exponent);
2867 }
2868 
hash_value(const APFloat & Arg)2869 hash_code llvm::hash_value(const APFloat &Arg) {
2870   if (!Arg.isFiniteNonZero())
2871     return hash_combine((uint8_t)Arg.category,
2872                         // NaN has no sign, fix it at zero.
2873                         Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
2874                         Arg.semantics->precision);
2875 
2876   // Normal floats need their exponent and significand hashed.
2877   return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
2878                       Arg.semantics->precision, Arg.exponent,
2879                       hash_combine_range(
2880                         Arg.significandParts(),
2881                         Arg.significandParts() + Arg.partCount()));
2882 }
2883 
2884 // Conversion from APFloat to/from host float/double.  It may eventually be
2885 // possible to eliminate these and have everybody deal with APFloats, but that
2886 // will take a while.  This approach will not easily extend to long double.
2887 // Current implementation requires integerPartWidth==64, which is correct at
2888 // the moment but could be made more general.
2889 
2890 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
2891 // the actual IEEE respresentations.  We compensate for that here.
2892 
2893 APInt
convertF80LongDoubleAPFloatToAPInt() const2894 APFloat::convertF80LongDoubleAPFloatToAPInt() const
2895 {
2896   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
2897   assert(partCount()==2);
2898 
2899   uint64_t myexponent, mysignificand;
2900 
2901   if (isFiniteNonZero()) {
2902     myexponent = exponent+16383; //bias
2903     mysignificand = significandParts()[0];
2904     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2905       myexponent = 0;   // denormal
2906   } else if (category==fcZero) {
2907     myexponent = 0;
2908     mysignificand = 0;
2909   } else if (category==fcInfinity) {
2910     myexponent = 0x7fff;
2911     mysignificand = 0x8000000000000000ULL;
2912   } else {
2913     assert(category == fcNaN && "Unknown category");
2914     myexponent = 0x7fff;
2915     mysignificand = significandParts()[0];
2916   }
2917 
2918   uint64_t words[2];
2919   words[0] = mysignificand;
2920   words[1] =  ((uint64_t)(sign & 1) << 15) |
2921               (myexponent & 0x7fffLL);
2922   return APInt(80, words);
2923 }
2924 
2925 APInt
convertPPCDoubleDoubleAPFloatToAPInt() const2926 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2927 {
2928   assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
2929   assert(partCount()==2);
2930 
2931   uint64_t words[2];
2932   opStatus fs;
2933   bool losesInfo;
2934 
2935   // Convert number to double.  To avoid spurious underflows, we re-
2936   // normalize against the "double" minExponent first, and only *then*
2937   // truncate the mantissa.  The result of that second conversion
2938   // may be inexact, but should never underflow.
2939   // Declare fltSemantics before APFloat that uses it (and
2940   // saves pointer to it) to ensure correct destruction order.
2941   fltSemantics extendedSemantics = *semantics;
2942   extendedSemantics.minExponent = IEEEdouble.minExponent;
2943   APFloat extended(*this);
2944   fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2945   assert(fs == opOK && !losesInfo);
2946   (void)fs;
2947 
2948   APFloat u(extended);
2949   fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2950   assert(fs == opOK || fs == opInexact);
2951   (void)fs;
2952   words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
2953 
2954   // If conversion was exact or resulted in a special case, we're done;
2955   // just set the second double to zero.  Otherwise, re-convert back to
2956   // the extended format and compute the difference.  This now should
2957   // convert exactly to double.
2958   if (u.isFiniteNonZero() && losesInfo) {
2959     fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2960     assert(fs == opOK && !losesInfo);
2961     (void)fs;
2962 
2963     APFloat v(extended);
2964     v.subtract(u, rmNearestTiesToEven);
2965     fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2966     assert(fs == opOK && !losesInfo);
2967     (void)fs;
2968     words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
2969   } else {
2970     words[1] = 0;
2971   }
2972 
2973   return APInt(128, words);
2974 }
2975 
2976 APInt
convertQuadrupleAPFloatToAPInt() const2977 APFloat::convertQuadrupleAPFloatToAPInt() const
2978 {
2979   assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
2980   assert(partCount()==2);
2981 
2982   uint64_t myexponent, mysignificand, mysignificand2;
2983 
2984   if (isFiniteNonZero()) {
2985     myexponent = exponent+16383; //bias
2986     mysignificand = significandParts()[0];
2987     mysignificand2 = significandParts()[1];
2988     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2989       myexponent = 0;   // denormal
2990   } else if (category==fcZero) {
2991     myexponent = 0;
2992     mysignificand = mysignificand2 = 0;
2993   } else if (category==fcInfinity) {
2994     myexponent = 0x7fff;
2995     mysignificand = mysignificand2 = 0;
2996   } else {
2997     assert(category == fcNaN && "Unknown category!");
2998     myexponent = 0x7fff;
2999     mysignificand = significandParts()[0];
3000     mysignificand2 = significandParts()[1];
3001   }
3002 
3003   uint64_t words[2];
3004   words[0] = mysignificand;
3005   words[1] = ((uint64_t)(sign & 1) << 63) |
3006              ((myexponent & 0x7fff) << 48) |
3007              (mysignificand2 & 0xffffffffffffLL);
3008 
3009   return APInt(128, words);
3010 }
3011 
3012 APInt
convertDoubleAPFloatToAPInt() const3013 APFloat::convertDoubleAPFloatToAPInt() const
3014 {
3015   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
3016   assert(partCount()==1);
3017 
3018   uint64_t myexponent, mysignificand;
3019 
3020   if (isFiniteNonZero()) {
3021     myexponent = exponent+1023; //bias
3022     mysignificand = *significandParts();
3023     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
3024       myexponent = 0;   // denormal
3025   } else if (category==fcZero) {
3026     myexponent = 0;
3027     mysignificand = 0;
3028   } else if (category==fcInfinity) {
3029     myexponent = 0x7ff;
3030     mysignificand = 0;
3031   } else {
3032     assert(category == fcNaN && "Unknown category!");
3033     myexponent = 0x7ff;
3034     mysignificand = *significandParts();
3035   }
3036 
3037   return APInt(64, ((((uint64_t)(sign & 1) << 63) |
3038                      ((myexponent & 0x7ff) <<  52) |
3039                      (mysignificand & 0xfffffffffffffLL))));
3040 }
3041 
3042 APInt
convertFloatAPFloatToAPInt() const3043 APFloat::convertFloatAPFloatToAPInt() const
3044 {
3045   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
3046   assert(partCount()==1);
3047 
3048   uint32_t myexponent, mysignificand;
3049 
3050   if (isFiniteNonZero()) {
3051     myexponent = exponent+127; //bias
3052     mysignificand = (uint32_t)*significandParts();
3053     if (myexponent == 1 && !(mysignificand & 0x800000))
3054       myexponent = 0;   // denormal
3055   } else if (category==fcZero) {
3056     myexponent = 0;
3057     mysignificand = 0;
3058   } else if (category==fcInfinity) {
3059     myexponent = 0xff;
3060     mysignificand = 0;
3061   } else {
3062     assert(category == fcNaN && "Unknown category!");
3063     myexponent = 0xff;
3064     mysignificand = (uint32_t)*significandParts();
3065   }
3066 
3067   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
3068                     (mysignificand & 0x7fffff)));
3069 }
3070 
3071 APInt
convertHalfAPFloatToAPInt() const3072 APFloat::convertHalfAPFloatToAPInt() const
3073 {
3074   assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
3075   assert(partCount()==1);
3076 
3077   uint32_t myexponent, mysignificand;
3078 
3079   if (isFiniteNonZero()) {
3080     myexponent = exponent+15; //bias
3081     mysignificand = (uint32_t)*significandParts();
3082     if (myexponent == 1 && !(mysignificand & 0x400))
3083       myexponent = 0;   // denormal
3084   } else if (category==fcZero) {
3085     myexponent = 0;
3086     mysignificand = 0;
3087   } else if (category==fcInfinity) {
3088     myexponent = 0x1f;
3089     mysignificand = 0;
3090   } else {
3091     assert(category == fcNaN && "Unknown category!");
3092     myexponent = 0x1f;
3093     mysignificand = (uint32_t)*significandParts();
3094   }
3095 
3096   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
3097                     (mysignificand & 0x3ff)));
3098 }
3099 
3100 // This function creates an APInt that is just a bit map of the floating
3101 // point constant as it would appear in memory.  It is not a conversion,
3102 // and treating the result as a normal integer is unlikely to be useful.
3103 
3104 APInt
bitcastToAPInt() const3105 APFloat::bitcastToAPInt() const
3106 {
3107   if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
3108     return convertHalfAPFloatToAPInt();
3109 
3110   if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
3111     return convertFloatAPFloatToAPInt();
3112 
3113   if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
3114     return convertDoubleAPFloatToAPInt();
3115 
3116   if (semantics == (const llvm::fltSemantics*)&IEEEquad)
3117     return convertQuadrupleAPFloatToAPInt();
3118 
3119   if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
3120     return convertPPCDoubleDoubleAPFloatToAPInt();
3121 
3122   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
3123          "unknown format!");
3124   return convertF80LongDoubleAPFloatToAPInt();
3125 }
3126 
3127 float
convertToFloat() const3128 APFloat::convertToFloat() const
3129 {
3130   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
3131          "Float semantics are not IEEEsingle");
3132   APInt api = bitcastToAPInt();
3133   return api.bitsToFloat();
3134 }
3135 
3136 double
convertToDouble() const3137 APFloat::convertToDouble() const
3138 {
3139   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
3140          "Float semantics are not IEEEdouble");
3141   APInt api = bitcastToAPInt();
3142   return api.bitsToDouble();
3143 }
3144 
3145 /// Integer bit is explicit in this format.  Intel hardware (387 and later)
3146 /// does not support these bit patterns:
3147 ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
3148 ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
3149 ///  exponent = 0, integer bit 1 ("pseudodenormal")
3150 ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
3151 /// At the moment, the first two are treated as NaNs, the second two as Normal.
3152 void
initFromF80LongDoubleAPInt(const APInt & api)3153 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
3154 {
3155   assert(api.getBitWidth()==80);
3156   uint64_t i1 = api.getRawData()[0];
3157   uint64_t i2 = api.getRawData()[1];
3158   uint64_t myexponent = (i2 & 0x7fff);
3159   uint64_t mysignificand = i1;
3160 
3161   initialize(&APFloat::x87DoubleExtended);
3162   assert(partCount()==2);
3163 
3164   sign = static_cast<unsigned int>(i2>>15);
3165   if (myexponent==0 && mysignificand==0) {
3166     // exponent, significand meaningless
3167     category = fcZero;
3168   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
3169     // exponent, significand meaningless
3170     category = fcInfinity;
3171   } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
3172     // exponent meaningless
3173     category = fcNaN;
3174     significandParts()[0] = mysignificand;
3175     significandParts()[1] = 0;
3176   } else {
3177     category = fcNormal;
3178     exponent = myexponent - 16383;
3179     significandParts()[0] = mysignificand;
3180     significandParts()[1] = 0;
3181     if (myexponent==0)          // denormal
3182       exponent = -16382;
3183   }
3184 }
3185 
3186 void
initFromPPCDoubleDoubleAPInt(const APInt & api)3187 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
3188 {
3189   assert(api.getBitWidth()==128);
3190   uint64_t i1 = api.getRawData()[0];
3191   uint64_t i2 = api.getRawData()[1];
3192   opStatus fs;
3193   bool losesInfo;
3194 
3195   // Get the first double and convert to our format.
3196   initFromDoubleAPInt(APInt(64, i1));
3197   fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3198   assert(fs == opOK && !losesInfo);
3199   (void)fs;
3200 
3201   // Unless we have a special case, add in second double.
3202   if (isFiniteNonZero()) {
3203     APFloat v(IEEEdouble, APInt(64, i2));
3204     fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3205     assert(fs == opOK && !losesInfo);
3206     (void)fs;
3207 
3208     add(v, rmNearestTiesToEven);
3209   }
3210 }
3211 
3212 void
initFromQuadrupleAPInt(const APInt & api)3213 APFloat::initFromQuadrupleAPInt(const APInt &api)
3214 {
3215   assert(api.getBitWidth()==128);
3216   uint64_t i1 = api.getRawData()[0];
3217   uint64_t i2 = api.getRawData()[1];
3218   uint64_t myexponent = (i2 >> 48) & 0x7fff;
3219   uint64_t mysignificand  = i1;
3220   uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3221 
3222   initialize(&APFloat::IEEEquad);
3223   assert(partCount()==2);
3224 
3225   sign = static_cast<unsigned int>(i2>>63);
3226   if (myexponent==0 &&
3227       (mysignificand==0 && mysignificand2==0)) {
3228     // exponent, significand meaningless
3229     category = fcZero;
3230   } else if (myexponent==0x7fff &&
3231              (mysignificand==0 && mysignificand2==0)) {
3232     // exponent, significand meaningless
3233     category = fcInfinity;
3234   } else if (myexponent==0x7fff &&
3235              (mysignificand!=0 || mysignificand2 !=0)) {
3236     // exponent meaningless
3237     category = fcNaN;
3238     significandParts()[0] = mysignificand;
3239     significandParts()[1] = mysignificand2;
3240   } else {
3241     category = fcNormal;
3242     exponent = myexponent - 16383;
3243     significandParts()[0] = mysignificand;
3244     significandParts()[1] = mysignificand2;
3245     if (myexponent==0)          // denormal
3246       exponent = -16382;
3247     else
3248       significandParts()[1] |= 0x1000000000000LL;  // integer bit
3249   }
3250 }
3251 
3252 void
initFromDoubleAPInt(const APInt & api)3253 APFloat::initFromDoubleAPInt(const APInt &api)
3254 {
3255   assert(api.getBitWidth()==64);
3256   uint64_t i = *api.getRawData();
3257   uint64_t myexponent = (i >> 52) & 0x7ff;
3258   uint64_t mysignificand = i & 0xfffffffffffffLL;
3259 
3260   initialize(&APFloat::IEEEdouble);
3261   assert(partCount()==1);
3262 
3263   sign = static_cast<unsigned int>(i>>63);
3264   if (myexponent==0 && mysignificand==0) {
3265     // exponent, significand meaningless
3266     category = fcZero;
3267   } else if (myexponent==0x7ff && mysignificand==0) {
3268     // exponent, significand meaningless
3269     category = fcInfinity;
3270   } else if (myexponent==0x7ff && mysignificand!=0) {
3271     // exponent meaningless
3272     category = fcNaN;
3273     *significandParts() = mysignificand;
3274   } else {
3275     category = fcNormal;
3276     exponent = myexponent - 1023;
3277     *significandParts() = mysignificand;
3278     if (myexponent==0)          // denormal
3279       exponent = -1022;
3280     else
3281       *significandParts() |= 0x10000000000000LL;  // integer bit
3282   }
3283 }
3284 
3285 void
initFromFloatAPInt(const APInt & api)3286 APFloat::initFromFloatAPInt(const APInt & api)
3287 {
3288   assert(api.getBitWidth()==32);
3289   uint32_t i = (uint32_t)*api.getRawData();
3290   uint32_t myexponent = (i >> 23) & 0xff;
3291   uint32_t mysignificand = i & 0x7fffff;
3292 
3293   initialize(&APFloat::IEEEsingle);
3294   assert(partCount()==1);
3295 
3296   sign = i >> 31;
3297   if (myexponent==0 && mysignificand==0) {
3298     // exponent, significand meaningless
3299     category = fcZero;
3300   } else if (myexponent==0xff && mysignificand==0) {
3301     // exponent, significand meaningless
3302     category = fcInfinity;
3303   } else if (myexponent==0xff && mysignificand!=0) {
3304     // sign, exponent, significand meaningless
3305     category = fcNaN;
3306     *significandParts() = mysignificand;
3307   } else {
3308     category = fcNormal;
3309     exponent = myexponent - 127;  //bias
3310     *significandParts() = mysignificand;
3311     if (myexponent==0)    // denormal
3312       exponent = -126;
3313     else
3314       *significandParts() |= 0x800000; // integer bit
3315   }
3316 }
3317 
3318 void
initFromHalfAPInt(const APInt & api)3319 APFloat::initFromHalfAPInt(const APInt & api)
3320 {
3321   assert(api.getBitWidth()==16);
3322   uint32_t i = (uint32_t)*api.getRawData();
3323   uint32_t myexponent = (i >> 10) & 0x1f;
3324   uint32_t mysignificand = i & 0x3ff;
3325 
3326   initialize(&APFloat::IEEEhalf);
3327   assert(partCount()==1);
3328 
3329   sign = i >> 15;
3330   if (myexponent==0 && mysignificand==0) {
3331     // exponent, significand meaningless
3332     category = fcZero;
3333   } else if (myexponent==0x1f && mysignificand==0) {
3334     // exponent, significand meaningless
3335     category = fcInfinity;
3336   } else if (myexponent==0x1f && mysignificand!=0) {
3337     // sign, exponent, significand meaningless
3338     category = fcNaN;
3339     *significandParts() = mysignificand;
3340   } else {
3341     category = fcNormal;
3342     exponent = myexponent - 15;  //bias
3343     *significandParts() = mysignificand;
3344     if (myexponent==0)    // denormal
3345       exponent = -14;
3346     else
3347       *significandParts() |= 0x400; // integer bit
3348   }
3349 }
3350 
3351 /// Treat api as containing the bits of a floating point number.  Currently
3352 /// we infer the floating point type from the size of the APInt.  The
3353 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3354 /// when the size is anything else).
3355 void
initFromAPInt(const fltSemantics * Sem,const APInt & api)3356 APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
3357 {
3358   if (Sem == &IEEEhalf)
3359     return initFromHalfAPInt(api);
3360   if (Sem == &IEEEsingle)
3361     return initFromFloatAPInt(api);
3362   if (Sem == &IEEEdouble)
3363     return initFromDoubleAPInt(api);
3364   if (Sem == &x87DoubleExtended)
3365     return initFromF80LongDoubleAPInt(api);
3366   if (Sem == &IEEEquad)
3367     return initFromQuadrupleAPInt(api);
3368   if (Sem == &PPCDoubleDouble)
3369     return initFromPPCDoubleDoubleAPInt(api);
3370 
3371   llvm_unreachable(nullptr);
3372 }
3373 
3374 APFloat
getAllOnesValue(unsigned BitWidth,bool isIEEE)3375 APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
3376 {
3377   switch (BitWidth) {
3378   case 16:
3379     return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
3380   case 32:
3381     return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
3382   case 64:
3383     return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
3384   case 80:
3385     return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
3386   case 128:
3387     if (isIEEE)
3388       return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
3389     return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
3390   default:
3391     llvm_unreachable("Unknown floating bit width");
3392   }
3393 }
3394 
getSizeInBits(const fltSemantics & Sem)3395 unsigned APFloat::getSizeInBits(const fltSemantics &Sem) {
3396   return Sem.sizeInBits;
3397 }
3398 
3399 /// Make this number the largest magnitude normal number in the given
3400 /// semantics.
makeLargest(bool Negative)3401 void APFloat::makeLargest(bool Negative) {
3402   // We want (in interchange format):
3403   //   sign = {Negative}
3404   //   exponent = 1..10
3405   //   significand = 1..1
3406   category = fcNormal;
3407   sign = Negative;
3408   exponent = semantics->maxExponent;
3409 
3410   // Use memset to set all but the highest integerPart to all ones.
3411   integerPart *significand = significandParts();
3412   unsigned PartCount = partCount();
3413   memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
3414 
3415   // Set the high integerPart especially setting all unused top bits for
3416   // internal consistency.
3417   const unsigned NumUnusedHighBits =
3418     PartCount*integerPartWidth - semantics->precision;
3419   significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
3420                                    ? (~integerPart(0) >> NumUnusedHighBits)
3421                                    : 0;
3422 }
3423 
3424 /// Make this number the smallest magnitude denormal number in the given
3425 /// semantics.
makeSmallest(bool Negative)3426 void APFloat::makeSmallest(bool Negative) {
3427   // We want (in interchange format):
3428   //   sign = {Negative}
3429   //   exponent = 0..0
3430   //   significand = 0..01
3431   category = fcNormal;
3432   sign = Negative;
3433   exponent = semantics->minExponent;
3434   APInt::tcSet(significandParts(), 1, partCount());
3435 }
3436 
3437 
getLargest(const fltSemantics & Sem,bool Negative)3438 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3439   // We want (in interchange format):
3440   //   sign = {Negative}
3441   //   exponent = 1..10
3442   //   significand = 1..1
3443   APFloat Val(Sem, uninitialized);
3444   Val.makeLargest(Negative);
3445   return Val;
3446 }
3447 
getSmallest(const fltSemantics & Sem,bool Negative)3448 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3449   // We want (in interchange format):
3450   //   sign = {Negative}
3451   //   exponent = 0..0
3452   //   significand = 0..01
3453   APFloat Val(Sem, uninitialized);
3454   Val.makeSmallest(Negative);
3455   return Val;
3456 }
3457 
getSmallestNormalized(const fltSemantics & Sem,bool Negative)3458 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3459   APFloat Val(Sem, uninitialized);
3460 
3461   // We want (in interchange format):
3462   //   sign = {Negative}
3463   //   exponent = 0..0
3464   //   significand = 10..0
3465 
3466   Val.category = fcNormal;
3467   Val.zeroSignificand();
3468   Val.sign = Negative;
3469   Val.exponent = Sem.minExponent;
3470   Val.significandParts()[partCountForBits(Sem.precision)-1] |=
3471     (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
3472 
3473   return Val;
3474 }
3475 
APFloat(const fltSemantics & Sem,const APInt & API)3476 APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
3477   initFromAPInt(&Sem, API);
3478 }
3479 
APFloat(float f)3480 APFloat::APFloat(float f) {
3481   initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
3482 }
3483 
APFloat(double d)3484 APFloat::APFloat(double d) {
3485   initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
3486 }
3487 
3488 namespace {
append(SmallVectorImpl<char> & Buffer,StringRef Str)3489   void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3490     Buffer.append(Str.begin(), Str.end());
3491   }
3492 
3493   /// Removes data from the given significand until it is no more
3494   /// precise than is required for the desired precision.
AdjustToPrecision(APInt & significand,int & exp,unsigned FormatPrecision)3495   void AdjustToPrecision(APInt &significand,
3496                          int &exp, unsigned FormatPrecision) {
3497     unsigned bits = significand.getActiveBits();
3498 
3499     // 196/59 is a very slight overestimate of lg_2(10).
3500     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3501 
3502     if (bits <= bitsRequired) return;
3503 
3504     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3505     if (!tensRemovable) return;
3506 
3507     exp += tensRemovable;
3508 
3509     APInt divisor(significand.getBitWidth(), 1);
3510     APInt powten(significand.getBitWidth(), 10);
3511     while (true) {
3512       if (tensRemovable & 1)
3513         divisor *= powten;
3514       tensRemovable >>= 1;
3515       if (!tensRemovable) break;
3516       powten *= powten;
3517     }
3518 
3519     significand = significand.udiv(divisor);
3520 
3521     // Truncate the significand down to its active bit count.
3522     significand = significand.trunc(significand.getActiveBits());
3523   }
3524 
3525 
AdjustToPrecision(SmallVectorImpl<char> & buffer,int & exp,unsigned FormatPrecision)3526   void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3527                          int &exp, unsigned FormatPrecision) {
3528     unsigned N = buffer.size();
3529     if (N <= FormatPrecision) return;
3530 
3531     // The most significant figures are the last ones in the buffer.
3532     unsigned FirstSignificant = N - FormatPrecision;
3533 
3534     // Round.
3535     // FIXME: this probably shouldn't use 'round half up'.
3536 
3537     // Rounding down is just a truncation, except we also want to drop
3538     // trailing zeros from the new result.
3539     if (buffer[FirstSignificant - 1] < '5') {
3540       while (FirstSignificant < N && buffer[FirstSignificant] == '0')
3541         FirstSignificant++;
3542 
3543       exp += FirstSignificant;
3544       buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3545       return;
3546     }
3547 
3548     // Rounding up requires a decimal add-with-carry.  If we continue
3549     // the carry, the newly-introduced zeros will just be truncated.
3550     for (unsigned I = FirstSignificant; I != N; ++I) {
3551       if (buffer[I] == '9') {
3552         FirstSignificant++;
3553       } else {
3554         buffer[I]++;
3555         break;
3556       }
3557     }
3558 
3559     // If we carried through, we have exactly one digit of precision.
3560     if (FirstSignificant == N) {
3561       exp += FirstSignificant;
3562       buffer.clear();
3563       buffer.push_back('1');
3564       return;
3565     }
3566 
3567     exp += FirstSignificant;
3568     buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3569   }
3570 }
3571 
toString(SmallVectorImpl<char> & Str,unsigned FormatPrecision,unsigned FormatMaxPadding) const3572 void APFloat::toString(SmallVectorImpl<char> &Str,
3573                        unsigned FormatPrecision,
3574                        unsigned FormatMaxPadding) const {
3575   switch (category) {
3576   case fcInfinity:
3577     if (isNegative())
3578       return append(Str, "-Inf");
3579     else
3580       return append(Str, "+Inf");
3581 
3582   case fcNaN: return append(Str, "NaN");
3583 
3584   case fcZero:
3585     if (isNegative())
3586       Str.push_back('-');
3587 
3588     if (!FormatMaxPadding)
3589       append(Str, "0.0E+0");
3590     else
3591       Str.push_back('0');
3592     return;
3593 
3594   case fcNormal:
3595     break;
3596   }
3597 
3598   if (isNegative())
3599     Str.push_back('-');
3600 
3601   // Decompose the number into an APInt and an exponent.
3602   int exp = exponent - ((int) semantics->precision - 1);
3603   APInt significand(semantics->precision,
3604                     makeArrayRef(significandParts(),
3605                                  partCountForBits(semantics->precision)));
3606 
3607   // Set FormatPrecision if zero.  We want to do this before we
3608   // truncate trailing zeros, as those are part of the precision.
3609   if (!FormatPrecision) {
3610     // We use enough digits so the number can be round-tripped back to an
3611     // APFloat. The formula comes from "How to Print Floating-Point Numbers
3612     // Accurately" by Steele and White.
3613     // FIXME: Using a formula based purely on the precision is conservative;
3614     // we can print fewer digits depending on the actual value being printed.
3615 
3616     // FormatPrecision = 2 + floor(significandBits / lg_2(10))
3617     FormatPrecision = 2 + semantics->precision * 59 / 196;
3618   }
3619 
3620   // Ignore trailing binary zeros.
3621   int trailingZeros = significand.countTrailingZeros();
3622   exp += trailingZeros;
3623   significand = significand.lshr(trailingZeros);
3624 
3625   // Change the exponent from 2^e to 10^e.
3626   if (exp == 0) {
3627     // Nothing to do.
3628   } else if (exp > 0) {
3629     // Just shift left.
3630     significand = significand.zext(semantics->precision + exp);
3631     significand <<= exp;
3632     exp = 0;
3633   } else { /* exp < 0 */
3634     int texp = -exp;
3635 
3636     // We transform this using the identity:
3637     //   (N)(2^-e) == (N)(5^e)(10^-e)
3638     // This means we have to multiply N (the significand) by 5^e.
3639     // To avoid overflow, we have to operate on numbers large
3640     // enough to store N * 5^e:
3641     //   log2(N * 5^e) == log2(N) + e * log2(5)
3642     //                 <= semantics->precision + e * 137 / 59
3643     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3644 
3645     unsigned precision = semantics->precision + (137 * texp + 136) / 59;
3646 
3647     // Multiply significand by 5^e.
3648     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3649     significand = significand.zext(precision);
3650     APInt five_to_the_i(precision, 5);
3651     while (true) {
3652       if (texp & 1) significand *= five_to_the_i;
3653 
3654       texp >>= 1;
3655       if (!texp) break;
3656       five_to_the_i *= five_to_the_i;
3657     }
3658   }
3659 
3660   AdjustToPrecision(significand, exp, FormatPrecision);
3661 
3662   SmallVector<char, 256> buffer;
3663 
3664   // Fill the buffer.
3665   unsigned precision = significand.getBitWidth();
3666   APInt ten(precision, 10);
3667   APInt digit(precision, 0);
3668 
3669   bool inTrail = true;
3670   while (significand != 0) {
3671     // digit <- significand % 10
3672     // significand <- significand / 10
3673     APInt::udivrem(significand, ten, significand, digit);
3674 
3675     unsigned d = digit.getZExtValue();
3676 
3677     // Drop trailing zeros.
3678     if (inTrail && !d) exp++;
3679     else {
3680       buffer.push_back((char) ('0' + d));
3681       inTrail = false;
3682     }
3683   }
3684 
3685   assert(!buffer.empty() && "no characters in buffer!");
3686 
3687   // Drop down to FormatPrecision.
3688   // TODO: don't do more precise calculations above than are required.
3689   AdjustToPrecision(buffer, exp, FormatPrecision);
3690 
3691   unsigned NDigits = buffer.size();
3692 
3693   // Check whether we should use scientific notation.
3694   bool FormatScientific;
3695   if (!FormatMaxPadding)
3696     FormatScientific = true;
3697   else {
3698     if (exp >= 0) {
3699       // 765e3 --> 765000
3700       //              ^^^
3701       // But we shouldn't make the number look more precise than it is.
3702       FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3703                           NDigits + (unsigned) exp > FormatPrecision);
3704     } else {
3705       // Power of the most significant digit.
3706       int MSD = exp + (int) (NDigits - 1);
3707       if (MSD >= 0) {
3708         // 765e-2 == 7.65
3709         FormatScientific = false;
3710       } else {
3711         // 765e-5 == 0.00765
3712         //           ^ ^^
3713         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3714       }
3715     }
3716   }
3717 
3718   // Scientific formatting is pretty straightforward.
3719   if (FormatScientific) {
3720     exp += (NDigits - 1);
3721 
3722     Str.push_back(buffer[NDigits-1]);
3723     Str.push_back('.');
3724     if (NDigits == 1)
3725       Str.push_back('0');
3726     else
3727       for (unsigned I = 1; I != NDigits; ++I)
3728         Str.push_back(buffer[NDigits-1-I]);
3729     Str.push_back('E');
3730 
3731     Str.push_back(exp >= 0 ? '+' : '-');
3732     if (exp < 0) exp = -exp;
3733     SmallVector<char, 6> expbuf;
3734     do {
3735       expbuf.push_back((char) ('0' + (exp % 10)));
3736       exp /= 10;
3737     } while (exp);
3738     for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3739       Str.push_back(expbuf[E-1-I]);
3740     return;
3741   }
3742 
3743   // Non-scientific, positive exponents.
3744   if (exp >= 0) {
3745     for (unsigned I = 0; I != NDigits; ++I)
3746       Str.push_back(buffer[NDigits-1-I]);
3747     for (unsigned I = 0; I != (unsigned) exp; ++I)
3748       Str.push_back('0');
3749     return;
3750   }
3751 
3752   // Non-scientific, negative exponents.
3753 
3754   // The number of digits to the left of the decimal point.
3755   int NWholeDigits = exp + (int) NDigits;
3756 
3757   unsigned I = 0;
3758   if (NWholeDigits > 0) {
3759     for (; I != (unsigned) NWholeDigits; ++I)
3760       Str.push_back(buffer[NDigits-I-1]);
3761     Str.push_back('.');
3762   } else {
3763     unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3764 
3765     Str.push_back('0');
3766     Str.push_back('.');
3767     for (unsigned Z = 1; Z != NZeros; ++Z)
3768       Str.push_back('0');
3769   }
3770 
3771   for (; I != NDigits; ++I)
3772     Str.push_back(buffer[NDigits-I-1]);
3773 }
3774 
getExactInverse(APFloat * inv) const3775 bool APFloat::getExactInverse(APFloat *inv) const {
3776   // Special floats and denormals have no exact inverse.
3777   if (!isFiniteNonZero())
3778     return false;
3779 
3780   // Check that the number is a power of two by making sure that only the
3781   // integer bit is set in the significand.
3782   if (significandLSB() != semantics->precision - 1)
3783     return false;
3784 
3785   // Get the inverse.
3786   APFloat reciprocal(*semantics, 1ULL);
3787   if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
3788     return false;
3789 
3790   // Avoid multiplication with a denormal, it is not safe on all platforms and
3791   // may be slower than a normal division.
3792   if (reciprocal.isDenormal())
3793     return false;
3794 
3795   assert(reciprocal.isFiniteNonZero() &&
3796          reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
3797 
3798   if (inv)
3799     *inv = reciprocal;
3800 
3801   return true;
3802 }
3803 
isSignaling() const3804 bool APFloat::isSignaling() const {
3805   if (!isNaN())
3806     return false;
3807 
3808   // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
3809   // first bit of the trailing significand being 0.
3810   return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
3811 }
3812 
3813 /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
3814 ///
3815 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
3816 /// appropriate sign switching before/after the computation.
next(bool nextDown)3817 APFloat::opStatus APFloat::next(bool nextDown) {
3818   // If we are performing nextDown, swap sign so we have -x.
3819   if (nextDown)
3820     changeSign();
3821 
3822   // Compute nextUp(x)
3823   opStatus result = opOK;
3824 
3825   // Handle each float category separately.
3826   switch (category) {
3827   case fcInfinity:
3828     // nextUp(+inf) = +inf
3829     if (!isNegative())
3830       break;
3831     // nextUp(-inf) = -getLargest()
3832     makeLargest(true);
3833     break;
3834   case fcNaN:
3835     // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
3836     // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
3837     //                     change the payload.
3838     if (isSignaling()) {
3839       result = opInvalidOp;
3840       // For consistency, propagate the sign of the sNaN to the qNaN.
3841       makeNaN(false, isNegative(), nullptr);
3842     }
3843     break;
3844   case fcZero:
3845     // nextUp(pm 0) = +getSmallest()
3846     makeSmallest(false);
3847     break;
3848   case fcNormal:
3849     // nextUp(-getSmallest()) = -0
3850     if (isSmallest() && isNegative()) {
3851       APInt::tcSet(significandParts(), 0, partCount());
3852       category = fcZero;
3853       exponent = 0;
3854       break;
3855     }
3856 
3857     // nextUp(getLargest()) == INFINITY
3858     if (isLargest() && !isNegative()) {
3859       APInt::tcSet(significandParts(), 0, partCount());
3860       category = fcInfinity;
3861       exponent = semantics->maxExponent + 1;
3862       break;
3863     }
3864 
3865     // nextUp(normal) == normal + inc.
3866     if (isNegative()) {
3867       // If we are negative, we need to decrement the significand.
3868 
3869       // We only cross a binade boundary that requires adjusting the exponent
3870       // if:
3871       //   1. exponent != semantics->minExponent. This implies we are not in the
3872       //   smallest binade or are dealing with denormals.
3873       //   2. Our significand excluding the integral bit is all zeros.
3874       bool WillCrossBinadeBoundary =
3875         exponent != semantics->minExponent && isSignificandAllZeros();
3876 
3877       // Decrement the significand.
3878       //
3879       // We always do this since:
3880       //   1. If we are dealing with a non-binade decrement, by definition we
3881       //   just decrement the significand.
3882       //   2. If we are dealing with a normal -> normal binade decrement, since
3883       //   we have an explicit integral bit the fact that all bits but the
3884       //   integral bit are zero implies that subtracting one will yield a
3885       //   significand with 0 integral bit and 1 in all other spots. Thus we
3886       //   must just adjust the exponent and set the integral bit to 1.
3887       //   3. If we are dealing with a normal -> denormal binade decrement,
3888       //   since we set the integral bit to 0 when we represent denormals, we
3889       //   just decrement the significand.
3890       integerPart *Parts = significandParts();
3891       APInt::tcDecrement(Parts, partCount());
3892 
3893       if (WillCrossBinadeBoundary) {
3894         // Our result is a normal number. Do the following:
3895         // 1. Set the integral bit to 1.
3896         // 2. Decrement the exponent.
3897         APInt::tcSetBit(Parts, semantics->precision - 1);
3898         exponent--;
3899       }
3900     } else {
3901       // If we are positive, we need to increment the significand.
3902 
3903       // We only cross a binade boundary that requires adjusting the exponent if
3904       // the input is not a denormal and all of said input's significand bits
3905       // are set. If all of said conditions are true: clear the significand, set
3906       // the integral bit to 1, and increment the exponent. If we have a
3907       // denormal always increment since moving denormals and the numbers in the
3908       // smallest normal binade have the same exponent in our representation.
3909       bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
3910 
3911       if (WillCrossBinadeBoundary) {
3912         integerPart *Parts = significandParts();
3913         APInt::tcSet(Parts, 0, partCount());
3914         APInt::tcSetBit(Parts, semantics->precision - 1);
3915         assert(exponent != semantics->maxExponent &&
3916                "We can not increment an exponent beyond the maxExponent allowed"
3917                " by the given floating point semantics.");
3918         exponent++;
3919       } else {
3920         incrementSignificand();
3921       }
3922     }
3923     break;
3924   }
3925 
3926   // If we are performing nextDown, swap sign so we have -nextUp(-x)
3927   if (nextDown)
3928     changeSign();
3929 
3930   return result;
3931 }
3932 
3933 void
makeInf(bool Negative)3934 APFloat::makeInf(bool Negative) {
3935   category = fcInfinity;
3936   sign = Negative;
3937   exponent = semantics->maxExponent + 1;
3938   APInt::tcSet(significandParts(), 0, partCount());
3939 }
3940 
3941 void
makeZero(bool Negative)3942 APFloat::makeZero(bool Negative) {
3943   category = fcZero;
3944   sign = Negative;
3945   exponent = semantics->minExponent-1;
3946   APInt::tcSet(significandParts(), 0, partCount());
3947 }
3948 
makeQuiet()3949 void APFloat::makeQuiet() {
3950   assert(isNaN());
3951   APInt::tcSetBit(significandParts(), semantics->precision - 2);
3952 }
3953 
ilogb(const APFloat & Arg)3954 int llvm::ilogb(const APFloat &Arg) {
3955   if (Arg.isNaN())
3956     return APFloat::IEK_NaN;
3957   if (Arg.isZero())
3958     return APFloat::IEK_Zero;
3959   if (Arg.isInfinity())
3960     return APFloat::IEK_Inf;
3961   if (!Arg.isDenormal())
3962     return Arg.exponent;
3963 
3964   APFloat Normalized(Arg);
3965   int SignificandBits = Arg.getSemantics().precision - 1;
3966 
3967   Normalized.exponent += SignificandBits;
3968   Normalized.normalize(APFloat::rmNearestTiesToEven, lfExactlyZero);
3969   return Normalized.exponent - SignificandBits;
3970 }
3971 
scalbn(APFloat X,int Exp,APFloat::roundingMode RoundingMode)3972 APFloat llvm::scalbn(APFloat X, int Exp, APFloat::roundingMode RoundingMode) {
3973   auto MaxExp = X.getSemantics().maxExponent;
3974   auto MinExp = X.getSemantics().minExponent;
3975 
3976   // If Exp is wildly out-of-scale, simply adding it to X.exponent will
3977   // overflow; clamp it to a safe range before adding, but ensure that the range
3978   // is large enough that the clamp does not change the result. The range we
3979   // need to support is the difference between the largest possible exponent and
3980   // the normalized exponent of half the smallest denormal.
3981 
3982   int SignificandBits = X.getSemantics().precision - 1;
3983   int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1;
3984 
3985   // Clamp to one past the range ends to let normalize handle overlflow.
3986   X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement);
3987   X.normalize(RoundingMode, lfExactlyZero);
3988   if (X.isNaN())
3989     X.makeQuiet();
3990   return X;
3991 }
3992 
frexp(const APFloat & Val,int & Exp,APFloat::roundingMode RM)3993 APFloat llvm::frexp(const APFloat &Val, int &Exp, APFloat::roundingMode RM) {
3994   Exp = ilogb(Val);
3995 
3996   // Quiet signalling nans.
3997   if (Exp == APFloat::IEK_NaN) {
3998     APFloat Quiet(Val);
3999     Quiet.makeQuiet();
4000     return Quiet;
4001   }
4002 
4003   if (Exp == APFloat::IEK_Inf)
4004     return Val;
4005 
4006   // 1 is added because frexp is defined to return a normalized fraction in
4007   // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
4008   Exp = Exp == APFloat::IEK_Zero ? 0 : Exp + 1;
4009   return scalbn(Val, -Exp, RM);
4010 }
4011