1 //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of some scaled number algorithms.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/ScaledNumber.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19 
20 using namespace llvm;
21 using namespace llvm::ScaledNumbers;
22 
multiply64(uint64_t LHS,uint64_t RHS)23 std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
24                                                        uint64_t RHS) {
25   // Separate into two 32-bit digits (U.L).
26   auto getU = [](uint64_t N) { return N >> 32; };
27   auto getL = [](uint64_t N) { return N & UINT32_MAX; };
28   uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
29 
30   // Compute cross products.
31   uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
32 
33   // Sum into two 64-bit digits.
34   uint64_t Upper = P1, Lower = P4;
35   auto addWithCarry = [&](uint64_t N) {
36     uint64_t NewLower = Lower + (getL(N) << 32);
37     Upper += getU(N) + (NewLower < Lower);
38     Lower = NewLower;
39   };
40   addWithCarry(P2);
41   addWithCarry(P3);
42 
43   // Check whether the upper digit is empty.
44   if (!Upper)
45     return std::make_pair(Lower, 0);
46 
47   // Shift as little as possible to maximize precision.
48   unsigned LeadingZeros = countLeadingZeros(Upper);
49   int Shift = 64 - LeadingZeros;
50   if (LeadingZeros)
51     Upper = Upper << LeadingZeros | Lower >> Shift;
52   return getRounded(Upper, Shift,
53                     Shift && (Lower & UINT64_C(1) << (Shift - 1)));
54 }
55 
getHalf(uint64_t N)56 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
57 
divide32(uint32_t Dividend,uint32_t Divisor)58 std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
59                                                      uint32_t Divisor) {
60   assert(Dividend && "expected non-zero dividend");
61   assert(Divisor && "expected non-zero divisor");
62 
63   // Use 64-bit math and canonicalize the dividend to gain precision.
64   uint64_t Dividend64 = Dividend;
65   int Shift = 0;
66   if (int Zeros = countLeadingZeros(Dividend64)) {
67     Shift -= Zeros;
68     Dividend64 <<= Zeros;
69   }
70   uint64_t Quotient = Dividend64 / Divisor;
71   uint64_t Remainder = Dividend64 % Divisor;
72 
73   // If Quotient needs to be shifted, leave the rounding to getAdjusted().
74   if (Quotient > UINT32_MAX)
75     return getAdjusted<uint32_t>(Quotient, Shift);
76 
77   // Round based on the value of the next bit.
78   return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
79 }
80 
divide64(uint64_t Dividend,uint64_t Divisor)81 std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
82                                                      uint64_t Divisor) {
83   assert(Dividend && "expected non-zero dividend");
84   assert(Divisor && "expected non-zero divisor");
85 
86   // Minimize size of divisor.
87   int Shift = 0;
88   if (int Zeros = countTrailingZeros(Divisor)) {
89     Shift -= Zeros;
90     Divisor >>= Zeros;
91   }
92 
93   // Check for powers of two.
94   if (Divisor == 1)
95     return std::make_pair(Dividend, Shift);
96 
97   // Maximize size of dividend.
98   if (int Zeros = countLeadingZeros(Dividend)) {
99     Shift -= Zeros;
100     Dividend <<= Zeros;
101   }
102 
103   // Start with the result of a divide.
104   uint64_t Quotient = Dividend / Divisor;
105   Dividend %= Divisor;
106 
107   // Continue building the quotient with long division.
108   while (!(Quotient >> 63) && Dividend) {
109     // Shift Dividend and check for overflow.
110     bool IsOverflow = Dividend >> 63;
111     Dividend <<= 1;
112     --Shift;
113 
114     // Get the next bit of Quotient.
115     Quotient <<= 1;
116     if (IsOverflow || Divisor <= Dividend) {
117       Quotient |= 1;
118       Dividend -= Divisor;
119     }
120   }
121 
122   return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
123 }
124 
compareImpl(uint64_t L,uint64_t R,int ScaleDiff)125 int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
126   assert(ScaleDiff >= 0 && "wrong argument order");
127   assert(ScaleDiff < 64 && "numbers too far apart");
128 
129   uint64_t L_adjusted = L >> ScaleDiff;
130   if (L_adjusted < R)
131     return -1;
132   if (L_adjusted > R)
133     return 1;
134 
135   return L > L_adjusted << ScaleDiff ? 1 : 0;
136 }
137 
appendDigit(std::string & Str,unsigned D)138 static void appendDigit(std::string &Str, unsigned D) {
139   assert(D < 10);
140   Str += '0' + D % 10;
141 }
142 
appendNumber(std::string & Str,uint64_t N)143 static void appendNumber(std::string &Str, uint64_t N) {
144   while (N) {
145     appendDigit(Str, N % 10);
146     N /= 10;
147   }
148 }
149 
doesRoundUp(char Digit)150 static bool doesRoundUp(char Digit) {
151   switch (Digit) {
152   case '5':
153   case '6':
154   case '7':
155   case '8':
156   case '9':
157     return true;
158   default:
159     return false;
160   }
161 }
162 
toStringAPFloat(uint64_t D,int E,unsigned Precision)163 static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
164   assert(E >= ScaledNumbers::MinScale);
165   assert(E <= ScaledNumbers::MaxScale);
166 
167   // Find a new E, but don't let it increase past MaxScale.
168   int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
169   int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
170   int Shift = 63 - (NewE - E);
171   assert(Shift <= LeadingZeros);
172   assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
173   assert(Shift >= 0 && Shift < 64 && "undefined behavior");
174   D <<= Shift;
175   E = NewE;
176 
177   // Check for a denormal.
178   unsigned AdjustedE = E + 16383;
179   if (!(D >> 63)) {
180     assert(E == ScaledNumbers::MaxScale);
181     AdjustedE = 0;
182   }
183 
184   // Build the float and print it.
185   uint64_t RawBits[2] = {D, AdjustedE};
186   APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
187   SmallVector<char, 24> Chars;
188   Float.toString(Chars, Precision, 0);
189   return std::string(Chars.begin(), Chars.end());
190 }
191 
stripTrailingZeros(const std::string & Float)192 static std::string stripTrailingZeros(const std::string &Float) {
193   size_t NonZero = Float.find_last_not_of('0');
194   assert(NonZero != std::string::npos && "no . in floating point string");
195 
196   if (Float[NonZero] == '.')
197     ++NonZero;
198 
199   return Float.substr(0, NonZero + 1);
200 }
201 
toString(uint64_t D,int16_t E,int Width,unsigned Precision)202 std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
203                                        unsigned Precision) {
204   if (!D)
205     return "0.0";
206 
207   // Canonicalize exponent and digits.
208   uint64_t Above0 = 0;
209   uint64_t Below0 = 0;
210   uint64_t Extra = 0;
211   int ExtraShift = 0;
212   if (E == 0) {
213     Above0 = D;
214   } else if (E > 0) {
215     if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
216       D <<= Shift;
217       E -= Shift;
218 
219       if (!E)
220         Above0 = D;
221     }
222   } else if (E > -64) {
223     Above0 = D >> -E;
224     Below0 = D << (64 + E);
225   } else if (E == -64) {
226     // Special case: shift by 64 bits is undefined behavior.
227     Below0 = D;
228   } else if (E > -120) {
229     Below0 = D >> (-E - 64);
230     Extra = D << (128 + E);
231     ExtraShift = -64 - E;
232   }
233 
234   // Fall back on APFloat for very small and very large numbers.
235   if (!Above0 && !Below0)
236     return toStringAPFloat(D, E, Precision);
237 
238   // Append the digits before the decimal.
239   std::string Str;
240   size_t DigitsOut = 0;
241   if (Above0) {
242     appendNumber(Str, Above0);
243     DigitsOut = Str.size();
244   } else
245     appendDigit(Str, 0);
246   std::reverse(Str.begin(), Str.end());
247 
248   // Return early if there's nothing after the decimal.
249   if (!Below0)
250     return Str + ".0";
251 
252   // Append the decimal and beyond.
253   Str += '.';
254   uint64_t Error = UINT64_C(1) << (64 - Width);
255 
256   // We need to shift Below0 to the right to make space for calculating
257   // digits.  Save the precision we're losing in Extra.
258   Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
259   Below0 >>= 4;
260   size_t SinceDot = 0;
261   size_t AfterDot = Str.size();
262   do {
263     if (ExtraShift) {
264       --ExtraShift;
265       Error *= 5;
266     } else
267       Error *= 10;
268 
269     Below0 *= 10;
270     Extra *= 10;
271     Below0 += (Extra >> 60);
272     Extra = Extra & (UINT64_MAX >> 4);
273     appendDigit(Str, Below0 >> 60);
274     Below0 = Below0 & (UINT64_MAX >> 4);
275     if (DigitsOut || Str.back() != '0')
276       ++DigitsOut;
277     ++SinceDot;
278   } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
279            (!Precision || DigitsOut <= Precision || SinceDot < 2));
280 
281   // Return early for maximum precision.
282   if (!Precision || DigitsOut <= Precision)
283     return stripTrailingZeros(Str);
284 
285   // Find where to truncate.
286   size_t Truncate =
287       std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
288 
289   // Check if there's anything to truncate.
290   if (Truncate >= Str.size())
291     return stripTrailingZeros(Str);
292 
293   bool Carry = doesRoundUp(Str[Truncate]);
294   if (!Carry)
295     return stripTrailingZeros(Str.substr(0, Truncate));
296 
297   // Round with the first truncated digit.
298   for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
299        I != E; ++I) {
300     if (*I == '.')
301       continue;
302     if (*I == '9') {
303       *I = '0';
304       continue;
305     }
306 
307     ++*I;
308     Carry = false;
309     break;
310   }
311 
312   // Add "1" in front if we still need to carry.
313   return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
314 }
315 
print(raw_ostream & OS,uint64_t D,int16_t E,int Width,unsigned Precision)316 raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
317                                      int Width, unsigned Precision) {
318   return OS << toString(D, E, Width, Precision);
319 }
320 
dump(uint64_t D,int16_t E,int Width)321 void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
322   print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
323                                 << "]";
324 }
325