1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LanaiTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LanaiISelLowering.h"
15
16 #include "Lanai.h"
17 #include "LanaiMachineFunctionInfo.h"
18 #include "LanaiSubtarget.h"
19 #include "LanaiTargetMachine.h"
20 #include "LanaiTargetObjectFile.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39
40 #define DEBUG_TYPE "lanai-lower"
41
42 using namespace llvm;
43
44 // Limit on number of instructions the lowered multiplication may have before a
45 // call to the library function should be generated instead. The threshold is
46 // currently set to 14 as this was the smallest threshold that resulted in all
47 // constant multiplications being lowered. A threshold of 5 covered all cases
48 // except for one multiplication which required 14. mulsi3 requires 16
49 // instructions (including the prologue and epilogue but excluding instructions
50 // at call site). Until we can inline mulsi3, generating at most 14 instructions
51 // will be faster than invoking mulsi3.
52 static cl::opt<int> LanaiLowerConstantMulThreshold(
53 "lanai-constant-mul-threshold", cl::Hidden,
54 cl::desc("Maximum number of instruction to generate when lowering constant "
55 "multiplication instead of calling library function [default=14]"),
56 cl::init(14));
57
LanaiTargetLowering(const TargetMachine & TM,const LanaiSubtarget & STI)58 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
59 const LanaiSubtarget &STI)
60 : TargetLowering(TM) {
61 // Set up the register classes.
62 addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
63
64 // Compute derived properties from the register classes
65 TRI = STI.getRegisterInfo();
66 computeRegisterProperties(TRI);
67
68 setStackPointerRegisterToSaveRestore(Lanai::SP);
69
70 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
71 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
72 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
73 setOperationAction(ISD::SETCC, MVT::i32, Custom);
74 setOperationAction(ISD::SETCCE, MVT::i32, Custom);
75 setOperationAction(ISD::SELECT, MVT::i32, Expand);
76 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
77
78 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
79 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
80 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
81 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
82
83 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
84 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
85 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
86
87 setOperationAction(ISD::VASTART, MVT::Other, Custom);
88 setOperationAction(ISD::VAARG, MVT::Other, Expand);
89 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
90 setOperationAction(ISD::VAEND, MVT::Other, Expand);
91
92 setOperationAction(ISD::SDIV, MVT::i32, Expand);
93 setOperationAction(ISD::UDIV, MVT::i32, Expand);
94 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
95 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
96 setOperationAction(ISD::SREM, MVT::i32, Expand);
97 setOperationAction(ISD::UREM, MVT::i32, Expand);
98
99 setOperationAction(ISD::MUL, MVT::i32, Custom);
100 setOperationAction(ISD::MULHU, MVT::i32, Expand);
101 setOperationAction(ISD::MULHS, MVT::i32, Expand);
102 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
103 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
104
105 setOperationAction(ISD::ROTR, MVT::i32, Expand);
106 setOperationAction(ISD::ROTL, MVT::i32, Expand);
107 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
108 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
109 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
110
111 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
112 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
113 setOperationAction(ISD::CTLZ, MVT::i32, Legal);
114 setOperationAction(ISD::CTTZ, MVT::i32, Legal);
115
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
119
120 // Extended load operations for i1 types must be promoted
121 for (MVT VT : MVT::integer_valuetypes()) {
122 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
125 }
126
127 setTargetDAGCombine(ISD::ADD);
128 setTargetDAGCombine(ISD::SUB);
129 setTargetDAGCombine(ISD::AND);
130 setTargetDAGCombine(ISD::OR);
131 setTargetDAGCombine(ISD::XOR);
132
133 // Function alignments (log2)
134 setMinFunctionAlignment(2);
135 setPrefFunctionAlignment(2);
136
137 setJumpIsExpensive(true);
138
139 // TODO: Setting the minimum jump table entries needed before a
140 // switch is transformed to a jump table to 100 to avoid creating jump tables
141 // as this was causing bad performance compared to a large group of if
142 // statements. Re-evaluate this on new benchmarks.
143 setMinimumJumpTableEntries(100);
144
145 // Use fast calling convention for library functions.
146 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
147 setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
148 }
149
150 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
151 MaxStoresPerMemsetOptSize = 8;
152 MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
153 MaxStoresPerMemcpyOptSize = 8;
154 MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
155 MaxStoresPerMemmoveOptSize = 8;
156
157 // Booleans always contain 0 or 1.
158 setBooleanContents(ZeroOrOneBooleanContent);
159 }
160
LowerOperation(SDValue Op,SelectionDAG & DAG) const161 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
162 SelectionDAG &DAG) const {
163 switch (Op.getOpcode()) {
164 case ISD::MUL:
165 return LowerMUL(Op, DAG);
166 case ISD::BR_CC:
167 return LowerBR_CC(Op, DAG);
168 case ISD::ConstantPool:
169 return LowerConstantPool(Op, DAG);
170 case ISD::GlobalAddress:
171 return LowerGlobalAddress(Op, DAG);
172 case ISD::BlockAddress:
173 return LowerBlockAddress(Op, DAG);
174 case ISD::JumpTable:
175 return LowerJumpTable(Op, DAG);
176 case ISD::SELECT_CC:
177 return LowerSELECT_CC(Op, DAG);
178 case ISD::SETCC:
179 return LowerSETCC(Op, DAG);
180 case ISD::SETCCE:
181 return LowerSETCCE(Op, DAG);
182 case ISD::SRL_PARTS:
183 return LowerSRL_PARTS(Op, DAG);
184 case ISD::VASTART:
185 return LowerVASTART(Op, DAG);
186 case ISD::DYNAMIC_STACKALLOC:
187 return LowerDYNAMIC_STACKALLOC(Op, DAG);
188 case ISD::RETURNADDR:
189 return LowerRETURNADDR(Op, DAG);
190 case ISD::FRAMEADDR:
191 return LowerFRAMEADDR(Op, DAG);
192 default:
193 llvm_unreachable("unimplemented operand");
194 }
195 }
196 //===----------------------------------------------------------------------===//
197 // Lanai Inline Assembly Support
198 //===----------------------------------------------------------------------===//
199
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const200 unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT VT,
201 SelectionDAG &DAG) const {
202 // Only unallocatable registers should be matched here.
203 unsigned Reg = StringSwitch<unsigned>(RegName)
204 .Case("pc", Lanai::PC)
205 .Case("sp", Lanai::SP)
206 .Case("fp", Lanai::FP)
207 .Case("rr1", Lanai::RR1)
208 .Case("r10", Lanai::R10)
209 .Case("rr2", Lanai::RR2)
210 .Case("r11", Lanai::R11)
211 .Case("rca", Lanai::RCA)
212 .Default(0);
213
214 if (Reg)
215 return Reg;
216 report_fatal_error("Invalid register name global variable");
217 }
218
219 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const220 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
221 StringRef Constraint,
222 MVT VT) const {
223 if (Constraint.size() == 1)
224 // GCC Constraint Letters
225 switch (Constraint[0]) {
226 case 'r': // GENERAL_REGS
227 return std::make_pair(0U, &Lanai::GPRRegClass);
228 default:
229 break;
230 }
231
232 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
233 }
234
235 // Examine constraint type and operand type and determine a weight value.
236 // This object must already have been set up with the operand type
237 // and the current alternative constraint selected.
238 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & Info,const char * Constraint) const239 LanaiTargetLowering::getSingleConstraintMatchWeight(
240 AsmOperandInfo &Info, const char *Constraint) const {
241 ConstraintWeight Weight = CW_Invalid;
242 Value *CallOperandVal = Info.CallOperandVal;
243 // If we don't have a value, we can't do a match,
244 // but allow it at the lowest weight.
245 if (CallOperandVal == NULL)
246 return CW_Default;
247 // Look at the constraint type.
248 switch (*Constraint) {
249 case 'I': // signed 16 bit immediate
250 case 'J': // integer zero
251 case 'K': // unsigned 16 bit immediate
252 case 'L': // immediate in the range 0 to 31
253 case 'M': // signed 32 bit immediate where lower 16 bits are 0
254 case 'N': // signed 26 bit immediate
255 case 'O': // integer zero
256 if (isa<ConstantInt>(CallOperandVal))
257 Weight = CW_Constant;
258 break;
259 default:
260 Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
261 break;
262 }
263 return Weight;
264 }
265
266 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
267 // vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const268 void LanaiTargetLowering::LowerAsmOperandForConstraint(
269 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
270 SelectionDAG &DAG) const {
271 SDValue Result(0, 0);
272
273 // Only support length 1 constraints for now.
274 if (Constraint.length() > 1)
275 return;
276
277 char ConstraintLetter = Constraint[0];
278 switch (ConstraintLetter) {
279 case 'I': // Signed 16 bit constant
280 // If this fails, the parent routine will give an error
281 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
282 if (isInt<16>(C->getSExtValue())) {
283 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
284 Op.getValueType());
285 break;
286 }
287 }
288 return;
289 case 'J': // integer zero
290 case 'O':
291 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
292 if (C->getZExtValue() == 0) {
293 Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
294 break;
295 }
296 }
297 return;
298 case 'K': // unsigned 16 bit immediate
299 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
300 if (isUInt<16>(C->getZExtValue())) {
301 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
302 Op.getValueType());
303 break;
304 }
305 }
306 return;
307 case 'L': // immediate in the range 0 to 31
308 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
309 if (C->getZExtValue() <= 31) {
310 Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
311 Op.getValueType());
312 break;
313 }
314 }
315 return;
316 case 'M': // signed 32 bit immediate where lower 16 bits are 0
317 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
318 int64_t Val = C->getSExtValue();
319 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
320 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
321 break;
322 }
323 }
324 return;
325 case 'N': // signed 26 bit immediate
326 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
327 int64_t Val = C->getSExtValue();
328 if ((Val >= -33554432) && (Val <= 33554431)) {
329 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
330 break;
331 }
332 }
333 return;
334 default:
335 break; // This will fall through to the generic implementation
336 }
337
338 if (Result.getNode()) {
339 Ops.push_back(Result);
340 return;
341 }
342
343 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
344 }
345
346 //===----------------------------------------------------------------------===//
347 // Calling Convention Implementation
348 //===----------------------------------------------------------------------===//
349
350 #include "LanaiGenCallingConv.inc"
351
352 static unsigned NumFixedArgs;
CC_Lanai32_VarArg(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)353 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
354 CCValAssign::LocInfo LocInfo,
355 ISD::ArgFlagsTy ArgFlags, CCState &State) {
356 // Handle fixed arguments with default CC.
357 // Note: Both the default and fast CC handle VarArg the same and hence the
358 // calling convention of the function is not considered here.
359 if (ValNo < NumFixedArgs) {
360 return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
361 }
362
363 // Promote i8/i16 args to i32
364 if (LocVT == MVT::i8 || LocVT == MVT::i16) {
365 LocVT = MVT::i32;
366 if (ArgFlags.isSExt())
367 LocInfo = CCValAssign::SExt;
368 else if (ArgFlags.isZExt())
369 LocInfo = CCValAssign::ZExt;
370 else
371 LocInfo = CCValAssign::AExt;
372 }
373
374 // VarArgs get passed on stack
375 unsigned Offset = State.AllocateStack(4, 4);
376 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
377 return false;
378 }
379
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const380 SDValue LanaiTargetLowering::LowerFormalArguments(
381 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
382 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
383 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
384 switch (CallConv) {
385 case CallingConv::C:
386 case CallingConv::Fast:
387 return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
388 default:
389 llvm_unreachable("Unsupported calling convention");
390 }
391 }
392
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const393 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
394 SmallVectorImpl<SDValue> &InVals) const {
395 SelectionDAG &DAG = CLI.DAG;
396 SDLoc &DL = CLI.DL;
397 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
398 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
399 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
400 SDValue Chain = CLI.Chain;
401 SDValue Callee = CLI.Callee;
402 bool &IsTailCall = CLI.IsTailCall;
403 CallingConv::ID CallConv = CLI.CallConv;
404 bool IsVarArg = CLI.IsVarArg;
405
406 // Lanai target does not yet support tail call optimization.
407 IsTailCall = false;
408
409 switch (CallConv) {
410 case CallingConv::Fast:
411 case CallingConv::C:
412 return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
413 OutVals, Ins, DL, DAG, InVals);
414 default:
415 llvm_unreachable("Unsupported calling convention");
416 }
417 }
418
419 // LowerCCCArguments - transform physical registers into virtual registers and
420 // generate load operations for arguments places on the stack.
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const421 SDValue LanaiTargetLowering::LowerCCCArguments(
422 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
423 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
424 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
425 MachineFunction &MF = DAG.getMachineFunction();
426 MachineFrameInfo *MFI = MF.getFrameInfo();
427 MachineRegisterInfo &RegInfo = MF.getRegInfo();
428 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
429
430 // Assign locations to all of the incoming arguments.
431 SmallVector<CCValAssign, 16> ArgLocs;
432 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
433 *DAG.getContext());
434 if (CallConv == CallingConv::Fast) {
435 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
436 } else {
437 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
438 }
439
440 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
441 CCValAssign &VA = ArgLocs[i];
442 if (VA.isRegLoc()) {
443 // Arguments passed in registers
444 EVT RegVT = VA.getLocVT();
445 switch (RegVT.getSimpleVT().SimpleTy) {
446 case MVT::i32: {
447 unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
448 RegInfo.addLiveIn(VA.getLocReg(), VReg);
449 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
450
451 // If this is an 8/16-bit value, it is really passed promoted to 32
452 // bits. Insert an assert[sz]ext to capture this, then truncate to the
453 // right size.
454 if (VA.getLocInfo() == CCValAssign::SExt)
455 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
456 DAG.getValueType(VA.getValVT()));
457 else if (VA.getLocInfo() == CCValAssign::ZExt)
458 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
459 DAG.getValueType(VA.getValVT()));
460
461 if (VA.getLocInfo() != CCValAssign::Full)
462 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
463
464 InVals.push_back(ArgValue);
465 break;
466 }
467 default:
468 DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
469 << RegVT.getEVTString() << "\n");
470 llvm_unreachable("unhandled argument type");
471 }
472 } else {
473 // Sanity check
474 assert(VA.isMemLoc());
475 // Load the argument to a virtual register
476 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
477 // Check that the argument fits in stack slot
478 if (ObjSize > 4) {
479 errs() << "LowerFormalArguments Unhandled argument type: "
480 << EVT(VA.getLocVT()).getEVTString() << "\n";
481 }
482 // Create the frame index object for this incoming parameter...
483 int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
484
485 // Create the SelectionDAG nodes corresponding to a load
486 // from this parameter
487 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
488 InVals.push_back(DAG.getLoad(
489 VA.getLocVT(), DL, Chain, FIN,
490 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
491 false, false, false, 0));
492 }
493 }
494
495 // The Lanai ABI for returning structs by value requires that we copy
496 // the sret argument into rv for the return. Save the argument into
497 // a virtual register so that we can access it from the return points.
498 if (MF.getFunction()->hasStructRetAttr()) {
499 unsigned Reg = LanaiMFI->getSRetReturnReg();
500 if (!Reg) {
501 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
502 LanaiMFI->setSRetReturnReg(Reg);
503 }
504 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
505 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
506 }
507
508 if (IsVarArg) {
509 // Record the frame index of the first variable argument
510 // which is a value necessary to VASTART.
511 int FI = MFI->CreateFixedObject(4, CCInfo.getNextStackOffset(), true);
512 LanaiMFI->setVarArgsFrameIndex(FI);
513 }
514
515 return Chain;
516 }
517
518 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const519 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
520 bool IsVarArg,
521 const SmallVectorImpl<ISD::OutputArg> &Outs,
522 const SmallVectorImpl<SDValue> &OutVals,
523 const SDLoc &DL, SelectionDAG &DAG) const {
524 // CCValAssign - represent the assignment of the return value to a location
525 SmallVector<CCValAssign, 16> RVLocs;
526
527 // CCState - Info about the registers and stack slot.
528 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
529 *DAG.getContext());
530
531 // Analize return values.
532 CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
533
534 SDValue Flag;
535 SmallVector<SDValue, 4> RetOps(1, Chain);
536
537 // Copy the result values into the output registers.
538 for (unsigned i = 0; i != RVLocs.size(); ++i) {
539 CCValAssign &VA = RVLocs[i];
540 assert(VA.isRegLoc() && "Can only return in registers!");
541
542 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
543
544 // Guarantee that all emitted copies are stuck together with flags.
545 Flag = Chain.getValue(1);
546 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
547 }
548
549 // The Lanai ABI for returning structs by value requires that we copy
550 // the sret argument into rv for the return. We saved the argument into
551 // a virtual register in the entry block, so now we copy the value out
552 // and into rv.
553 if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
554 MachineFunction &MF = DAG.getMachineFunction();
555 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
556 unsigned Reg = LanaiMFI->getSRetReturnReg();
557 assert(Reg &&
558 "SRetReturnReg should have been set in LowerFormalArguments().");
559 SDValue Val =
560 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
561
562 Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag);
563 Flag = Chain.getValue(1);
564 RetOps.push_back(
565 DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
566 }
567
568 RetOps[0] = Chain; // Update chain
569
570 unsigned Opc = LanaiISD::RET_FLAG;
571 if (Flag.getNode())
572 RetOps.push_back(Flag);
573
574 // Return Void
575 return DAG.getNode(Opc, DL, MVT::Other,
576 ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
577 }
578
579 // LowerCCCCallTo - functions arguments are copied from virtual regs to
580 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool IsVarArg,bool IsTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const581 SDValue LanaiTargetLowering::LowerCCCCallTo(
582 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
583 bool IsTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
584 const SmallVectorImpl<SDValue> &OutVals,
585 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
586 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
587 // Analyze operands of the call, assigning locations to each operand.
588 SmallVector<CCValAssign, 16> ArgLocs;
589 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
590 *DAG.getContext());
591 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
592 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
593
594 NumFixedArgs = 0;
595 if (IsVarArg && G) {
596 const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
597 if (CalleeFn)
598 NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
599 }
600 if (NumFixedArgs)
601 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
602 else {
603 if (CallConv == CallingConv::Fast)
604 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
605 else
606 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
607 }
608
609 // Get a count of how many bytes are to be pushed on the stack.
610 unsigned NumBytes = CCInfo.getNextStackOffset();
611
612 // Create local copies for byval args.
613 SmallVector<SDValue, 8> ByValArgs;
614 for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
615 ISD::ArgFlagsTy Flags = Outs[I].Flags;
616 if (!Flags.isByVal())
617 continue;
618
619 SDValue Arg = OutVals[I];
620 unsigned Size = Flags.getByValSize();
621 unsigned Align = Flags.getByValAlign();
622
623 int FI = MFI->CreateStackObject(Size, Align, false);
624 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
625 SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
626
627 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
628 /*IsVolatile=*/false,
629 /*AlwaysInline=*/false,
630 /*IsTailCall=*/false, MachinePointerInfo(),
631 MachinePointerInfo());
632 ByValArgs.push_back(FIPtr);
633 }
634
635 Chain = DAG.getCALLSEQ_START(
636 Chain,
637 DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
638 DL);
639
640 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
641 SmallVector<SDValue, 12> MemOpChains;
642 SDValue StackPtr;
643
644 // Walk the register/memloc assignments, inserting copies/loads.
645 for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
646 CCValAssign &VA = ArgLocs[I];
647 SDValue Arg = OutVals[I];
648 ISD::ArgFlagsTy Flags = Outs[I].Flags;
649
650 // Promote the value if needed.
651 switch (VA.getLocInfo()) {
652 case CCValAssign::Full:
653 break;
654 case CCValAssign::SExt:
655 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
656 break;
657 case CCValAssign::ZExt:
658 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
659 break;
660 case CCValAssign::AExt:
661 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
662 break;
663 default:
664 llvm_unreachable("Unknown loc info!");
665 }
666
667 // Use local copy if it is a byval arg.
668 if (Flags.isByVal())
669 Arg = ByValArgs[J++];
670
671 // Arguments that can be passed on register must be kept at RegsToPass
672 // vector
673 if (VA.isRegLoc()) {
674 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
675 } else {
676 assert(VA.isMemLoc());
677
678 if (StackPtr.getNode() == 0)
679 StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
680 getPointerTy(DAG.getDataLayout()));
681
682 SDValue PtrOff =
683 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
684 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
685
686 MemOpChains.push_back(DAG.getStore(
687 Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, false, 0));
688 }
689 }
690
691 // Transform all store nodes into one single node because all store nodes are
692 // independent of each other.
693 if (!MemOpChains.empty())
694 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
695 ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
696
697 SDValue InFlag;
698
699 // Build a sequence of copy-to-reg nodes chained together with token chain and
700 // flag operands which copy the outgoing args into registers. The InFlag in
701 // necessary since all emitted instructions must be stuck together.
702 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
703 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
704 RegsToPass[I].second, InFlag);
705 InFlag = Chain.getValue(1);
706 }
707
708 // If the callee is a GlobalAddress node (quite common, every direct call is)
709 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
710 // Likewise ExternalSymbol -> TargetExternalSymbol.
711 uint8_t OpFlag = LanaiII::MO_NO_FLAG;
712 if (G) {
713 Callee = DAG.getTargetGlobalAddress(
714 G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
715 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
716 Callee = DAG.getTargetExternalSymbol(
717 E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
718 }
719
720 // Returns a chain & a flag for retval copy to use.
721 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
722 SmallVector<SDValue, 8> Ops;
723 Ops.push_back(Chain);
724 Ops.push_back(Callee);
725
726 // Add a register mask operand representing the call-preserved registers.
727 // TODO: Should return-twice functions be handled?
728 const uint32_t *Mask =
729 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
730 assert(Mask && "Missing call preserved mask for calling convention");
731 Ops.push_back(DAG.getRegisterMask(Mask));
732
733 // Add argument registers to the end of the list so that they are
734 // known live into the call.
735 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
736 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
737 RegsToPass[I].second.getValueType()));
738
739 if (InFlag.getNode())
740 Ops.push_back(InFlag);
741
742 Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
743 ArrayRef<SDValue>(&Ops[0], Ops.size()));
744 InFlag = Chain.getValue(1);
745
746 // Create the CALLSEQ_END node.
747 Chain = DAG.getCALLSEQ_END(
748 Chain,
749 DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
750 DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag,
751 DL);
752 InFlag = Chain.getValue(1);
753
754 // Handle result values, copying them out of physregs into vregs that we
755 // return.
756 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
757 InVals);
758 }
759
760 // LowerCallResult - Lower the result values of a call into the
761 // appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const762 SDValue LanaiTargetLowering::LowerCallResult(
763 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
764 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
765 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
766 // Assign locations to each value returned by this call.
767 SmallVector<CCValAssign, 16> RVLocs;
768 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
769 *DAG.getContext());
770
771 CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
772
773 // Copy all of the result registers out of their specified physreg.
774 for (unsigned I = 0; I != RVLocs.size(); ++I) {
775 Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
776 RVLocs[I].getValVT(), InFlag)
777 .getValue(1);
778 InFlag = Chain.getValue(2);
779 InVals.push_back(Chain.getValue(0));
780 }
781
782 return Chain;
783 }
784
785 //===----------------------------------------------------------------------===//
786 // Custom Lowerings
787 //===----------------------------------------------------------------------===//
788
IntCondCCodeToICC(SDValue CC,const SDLoc & DL,SDValue & LHS,SDValue & RHS,SelectionDAG & DAG)789 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
790 SDValue &LHS, SDValue &RHS,
791 SelectionDAG &DAG) {
792 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
793
794 // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
795 // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
796 // and Lanai only supports integer comparisons, so only provide definitions
797 // for them.
798 switch (SetCCOpcode) {
799 case ISD::SETEQ:
800 return LPCC::ICC_EQ;
801 case ISD::SETGT:
802 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
803 if (RHSC->getZExtValue() == 0xFFFFFFFF) {
804 // X > -1 -> X >= 0 -> is_plus(X)
805 RHS = DAG.getConstant(0, DL, RHS.getValueType());
806 return LPCC::ICC_PL;
807 }
808 return LPCC::ICC_GT;
809 case ISD::SETUGT:
810 return LPCC::ICC_UGT;
811 case ISD::SETLT:
812 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
813 if (RHSC->getZExtValue() == 0)
814 // X < 0 -> is_minus(X)
815 return LPCC::ICC_MI;
816 return LPCC::ICC_LT;
817 case ISD::SETULT:
818 return LPCC::ICC_ULT;
819 case ISD::SETLE:
820 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
821 if (RHSC->getZExtValue() == 0xFFFFFFFF) {
822 // X <= -1 -> X < 0 -> is_minus(X)
823 RHS = DAG.getConstant(0, DL, RHS.getValueType());
824 return LPCC::ICC_MI;
825 }
826 return LPCC::ICC_LE;
827 case ISD::SETULE:
828 return LPCC::ICC_ULE;
829 case ISD::SETGE:
830 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
831 if (RHSC->getZExtValue() == 0)
832 // X >= 0 -> is_plus(X)
833 return LPCC::ICC_PL;
834 return LPCC::ICC_GE;
835 case ISD::SETUGE:
836 return LPCC::ICC_UGE;
837 case ISD::SETNE:
838 return LPCC::ICC_NE;
839 case ISD::SETONE:
840 case ISD::SETUNE:
841 case ISD::SETOGE:
842 case ISD::SETOLE:
843 case ISD::SETOLT:
844 case ISD::SETOGT:
845 case ISD::SETOEQ:
846 case ISD::SETUEQ:
847 case ISD::SETO:
848 case ISD::SETUO:
849 llvm_unreachable("Unsupported comparison.");
850 default:
851 llvm_unreachable("Unknown integer condition code!");
852 }
853 }
854
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const855 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
856 SDValue Chain = Op.getOperand(0);
857 SDValue Cond = Op.getOperand(1);
858 SDValue LHS = Op.getOperand(2);
859 SDValue RHS = Op.getOperand(3);
860 SDValue Dest = Op.getOperand(4);
861 SDLoc DL(Op);
862
863 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
864 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
865 SDValue Flag =
866 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
867
868 return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
869 TargetCC, Flag);
870 }
871
LowerMUL(SDValue Op,SelectionDAG & DAG) const872 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
873 EVT VT = Op->getValueType(0);
874 if (VT != MVT::i32)
875 return SDValue();
876
877 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
878 if (!C)
879 return SDValue();
880
881 int64_t MulAmt = C->getSExtValue();
882 int32_t HighestOne = -1;
883 uint32_t NonzeroEntries = 0;
884 int SignedDigit[32] = {0};
885
886 // Convert to non-adjacent form (NAF) signed-digit representation.
887 // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
888 // minimal Hamming weight representation of a number (on average 1/3 of the
889 // digits will be non-zero vs 1/2 for regular binary representation). And as
890 // the non-zero digits will be the only digits contributing to the instruction
891 // count, this is desirable. The next loop converts it to NAF (following the
892 // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
893 // choosing the non-zero coefficients such that the resulting quotient is
894 // divisible by 2 which will cause the next coefficient to be zero.
895 int64_t E = std::abs(MulAmt);
896 int S = (MulAmt < 0 ? -1 : 1);
897 int I = 0;
898 while (E > 0) {
899 int ZI = 0;
900 if (E % 2 == 1) {
901 ZI = 2 - (E % 4);
902 if (ZI != 0)
903 ++NonzeroEntries;
904 }
905 SignedDigit[I] = S * ZI;
906 if (SignedDigit[I] == 1)
907 HighestOne = I;
908 E = (E - ZI) / 2;
909 ++I;
910 }
911
912 // Compute number of instructions required. Due to differences in lowering
913 // between the different processors this count is not exact.
914 // Start by assuming a shift and a add/sub for every non-zero entry (hence
915 // every non-zero entry requires 1 shift and 1 add/sub except for the first
916 // entry).
917 int32_t InstrRequired = 2 * NonzeroEntries - 1;
918 // Correct possible over-adding due to shift by 0 (which is not emitted).
919 if (std::abs(MulAmt) % 2 == 1)
920 --InstrRequired;
921 // Return if the form generated would exceed the instruction threshold.
922 if (InstrRequired > LanaiLowerConstantMulThreshold)
923 return SDValue();
924
925 SDValue Res;
926 SDLoc DL(Op);
927 SDValue V = Op->getOperand(0);
928
929 // Initialize the running sum. Set the running sum to the maximal shifted
930 // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
931 // term NAF).
932 if (HighestOne == -1)
933 Res = DAG.getConstant(0, DL, MVT::i32);
934 else {
935 Res = DAG.getNode(ISD::SHL, DL, VT, V,
936 DAG.getConstant(HighestOne, DL, MVT::i32));
937 SignedDigit[HighestOne] = 0;
938 }
939
940 // Assemble multiplication from shift, add, sub using NAF form and running
941 // sum.
942 for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]);
943 ++I) {
944 if (SignedDigit[I] == 0)
945 continue;
946
947 // Shifted multiplicand (v<<i).
948 SDValue Op =
949 DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
950 if (SignedDigit[I] == 1)
951 Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
952 else if (SignedDigit[I] == -1)
953 Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
954 }
955 return Res;
956 }
957
LowerSETCCE(SDValue Op,SelectionDAG & DAG) const958 SDValue LanaiTargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const {
959 SDValue LHS = Op.getOperand(0);
960 SDValue RHS = Op.getOperand(1);
961 SDValue Carry = Op.getOperand(2);
962 SDValue Cond = Op.getOperand(3);
963 SDLoc DL(Op);
964
965 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
966 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
967 SDValue Flag = DAG.getNode(LanaiISD::SUBBF, DL, MVT::Glue, LHS, RHS, Carry);
968 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
969 }
970
LowerSETCC(SDValue Op,SelectionDAG & DAG) const971 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
972 SDValue LHS = Op.getOperand(0);
973 SDValue RHS = Op.getOperand(1);
974 SDValue Cond = Op.getOperand(2);
975 SDLoc DL(Op);
976
977 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
978 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
979 SDValue Flag =
980 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
981
982 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
983 }
984
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const985 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
986 SelectionDAG &DAG) const {
987 SDValue LHS = Op.getOperand(0);
988 SDValue RHS = Op.getOperand(1);
989 SDValue TrueV = Op.getOperand(2);
990 SDValue FalseV = Op.getOperand(3);
991 SDValue Cond = Op.getOperand(4);
992 SDLoc DL(Op);
993
994 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
995 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
996 SDValue Flag =
997 DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
998
999 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1000 return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
1001 Flag);
1002 }
1003
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1004 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1005 MachineFunction &MF = DAG.getMachineFunction();
1006 LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1007
1008 SDLoc DL(Op);
1009 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1010 getPointerTy(DAG.getDataLayout()));
1011
1012 // vastart just stores the address of the VarArgsFrameIndex slot into the
1013 // memory location argument.
1014 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1015 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1016 MachinePointerInfo(SV), false, false, 0);
1017 }
1018
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const1019 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1020 SelectionDAG &DAG) const {
1021 SDValue Chain = Op.getOperand(0);
1022 SDValue Size = Op.getOperand(1);
1023 SDLoc DL(Op);
1024
1025 unsigned SPReg = getStackPointerRegisterToSaveRestore();
1026
1027 // Get a reference to the stack pointer.
1028 SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1029
1030 // Subtract the dynamic size from the actual stack size to
1031 // obtain the new stack size.
1032 SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1033
1034 // For Lanai, the outgoing memory arguments area should be on top of the
1035 // alloca area on the stack i.e., the outgoing memory arguments should be
1036 // at a lower address than the alloca area. Move the alloca area down the
1037 // stack by adding back the space reserved for outgoing arguments to SP
1038 // here.
1039 //
1040 // We do not know what the size of the outgoing args is at this point.
1041 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1042 // stack pointer. We replace this instruction with on that has the correct,
1043 // known offset in emitPrologue().
1044 SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1045
1046 // The Sub result contains the new stack start address, so it
1047 // must be placed in the stack pointer register.
1048 SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1049
1050 SDValue Ops[2] = {ArgAdjust, CopyChain};
1051 return DAG.getMergeValues(Ops, DL);
1052 }
1053
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1054 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1055 SelectionDAG &DAG) const {
1056 MachineFunction &MF = DAG.getMachineFunction();
1057 MachineFrameInfo *MFI = MF.getFrameInfo();
1058 MFI->setReturnAddressIsTaken(true);
1059
1060 EVT VT = Op.getValueType();
1061 SDLoc DL(Op);
1062 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1063 if (Depth) {
1064 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1065 const unsigned Offset = -4;
1066 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1067 DAG.getIntPtrConstant(Offset, DL));
1068 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1069 false, false, false, 0);
1070 }
1071
1072 // Return the link register, which contains the return address.
1073 // Mark it an implicit live-in.
1074 unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1075 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1076 }
1077
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1078 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1079 SelectionDAG &DAG) const {
1080 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1081 MFI->setFrameAddressIsTaken(true);
1082
1083 EVT VT = Op.getValueType();
1084 SDLoc DL(Op);
1085 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1086 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1087 while (Depth--) {
1088 const unsigned Offset = -8;
1089 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1090 DAG.getIntPtrConstant(Offset, DL));
1091 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr,
1092 MachinePointerInfo(), false, false, false, 0);
1093 }
1094 return FrameAddr;
1095 }
1096
getTargetNodeName(unsigned Opcode) const1097 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1098 switch (Opcode) {
1099 case LanaiISD::ADJDYNALLOC:
1100 return "LanaiISD::ADJDYNALLOC";
1101 case LanaiISD::RET_FLAG:
1102 return "LanaiISD::RET_FLAG";
1103 case LanaiISD::CALL:
1104 return "LanaiISD::CALL";
1105 case LanaiISD::SELECT_CC:
1106 return "LanaiISD::SELECT_CC";
1107 case LanaiISD::SETCC:
1108 return "LanaiISD::SETCC";
1109 case LanaiISD::SUBBF:
1110 return "LanaiISD::SUBBF";
1111 case LanaiISD::SET_FLAG:
1112 return "LanaiISD::SET_FLAG";
1113 case LanaiISD::BR_CC:
1114 return "LanaiISD::BR_CC";
1115 case LanaiISD::Wrapper:
1116 return "LanaiISD::Wrapper";
1117 case LanaiISD::HI:
1118 return "LanaiISD::HI";
1119 case LanaiISD::LO:
1120 return "LanaiISD::LO";
1121 case LanaiISD::SMALL:
1122 return "LanaiISD::SMALL";
1123 default:
1124 return NULL;
1125 }
1126 }
1127
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const1128 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1129 SelectionDAG &DAG) const {
1130 SDLoc DL(Op);
1131 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1132 const Constant *C = N->getConstVal();
1133 const LanaiTargetObjectFile *TLOF =
1134 static_cast<const LanaiTargetObjectFile *>(
1135 getTargetMachine().getObjFileLowering());
1136
1137 // If the code model is small or constant will be placed in the small section,
1138 // then assume address will fit in 21-bits.
1139 if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1140 TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1141 SDValue Small = DAG.getTargetConstantPool(
1142 C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG);
1143 return DAG.getNode(ISD::OR, DL, MVT::i32,
1144 DAG.getRegister(Lanai::R0, MVT::i32),
1145 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1146 } else {
1147 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1148 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1149
1150 SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1151 N->getOffset(), OpFlagHi);
1152 SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1153 N->getOffset(), OpFlagLo);
1154 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1155 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1156 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1157 return Result;
1158 }
1159 }
1160
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1161 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1162 SelectionDAG &DAG) const {
1163 SDLoc DL(Op);
1164 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1165 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1166
1167 const LanaiTargetObjectFile *TLOF =
1168 static_cast<const LanaiTargetObjectFile *>(
1169 getTargetMachine().getObjFileLowering());
1170
1171 // If the code model is small or global variable will be placed in the small
1172 // section, then assume address will fit in 21-bits.
1173 if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1174 TLOF->isGlobalInSmallSection(GV, getTargetMachine())) {
1175 SDValue Small = DAG.getTargetGlobalAddress(
1176 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1177 return DAG.getNode(ISD::OR, DL, MVT::i32,
1178 DAG.getRegister(Lanai::R0, MVT::i32),
1179 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1180 } else {
1181 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1182 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1183
1184 // Create the TargetGlobalAddress node, folding in the constant offset.
1185 SDValue Hi = DAG.getTargetGlobalAddress(
1186 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1187 SDValue Lo = DAG.getTargetGlobalAddress(
1188 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1189 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1190 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1191 return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1192 }
1193 }
1194
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1195 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1196 SelectionDAG &DAG) const {
1197 SDLoc DL(Op);
1198 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1199
1200 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1201 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1202
1203 SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1204 SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1205 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1206 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1207 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1208 return Result;
1209 }
1210
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1211 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1212 SelectionDAG &DAG) const {
1213 SDLoc DL(Op);
1214 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1215
1216 // If the code model is small assume address will fit in 21-bits.
1217 if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1218 SDValue Small = DAG.getTargetJumpTable(
1219 JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1220 return DAG.getNode(ISD::OR, DL, MVT::i32,
1221 DAG.getRegister(Lanai::R0, MVT::i32),
1222 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1223 } else {
1224 uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1225 uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1226
1227 SDValue Hi = DAG.getTargetJumpTable(
1228 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1229 SDValue Lo = DAG.getTargetJumpTable(
1230 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1231 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1232 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1233 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1234 return Result;
1235 }
1236 }
1237
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const1238 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1239 SelectionDAG &DAG) const {
1240 MVT VT = Op.getSimpleValueType();
1241 unsigned VTBits = VT.getSizeInBits();
1242 SDLoc dl(Op);
1243 SDValue ShOpLo = Op.getOperand(0);
1244 SDValue ShOpHi = Op.getOperand(1);
1245 SDValue ShAmt = Op.getOperand(2);
1246
1247 // Performs the following for a >> b:
1248 // unsigned r_high = a_high >> b;
1249 // r_high = (32 - b <= 0) ? 0 : r_high;
1250 //
1251 // unsigned r_low = a_low >> b;
1252 // r_low = (32 - b <= 0) ? r_high : r_low;
1253 // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1254 // return (unsigned long long)r_high << 32 | r_low;
1255 // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1256 // mask the shift amount.
1257
1258 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1259 SDValue NegatedPlus32 = DAG.getNode(
1260 ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1261 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1262
1263 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1264 Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1265
1266 SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1267 Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1268 SDValue CarryBits =
1269 DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1270 SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1271 Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1272 DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1273
1274 SDValue Ops[2] = {Lo, Hi};
1275 return DAG.getMergeValues(Ops, dl);
1276 }
1277
1278 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)1279 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1280 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1281 }
1282
1283 // Return true if N is conditionally 0 or all ones.
1284 // Detects these expressions where cc is an i1 value:
1285 //
1286 // (select cc 0, y) [AllOnes=0]
1287 // (select cc y, 0) [AllOnes=0]
1288 // (zext cc) [AllOnes=0]
1289 // (sext cc) [AllOnes=0/1]
1290 // (select cc -1, y) [AllOnes=1]
1291 // (select cc y, -1) [AllOnes=1]
1292 //
1293 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
1294 // all ones operand (AllOnes true).
1295 // * Invert is set when N is the all zero/ones constant when CC is false.
1296 // * OtherOp is set to the alternative value of N.
1297 //
1298 // For example, for (select cc X, Y) and AllOnes = 0 if:
1299 // * X = 0, Invert = False and OtherOp = Y
1300 // * Y = 0, Invert = True and OtherOp = X
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)1301 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1302 bool &Invert, SDValue &OtherOp,
1303 SelectionDAG &DAG) {
1304 switch (N->getOpcode()) {
1305 default:
1306 return false;
1307 case ISD::SELECT: {
1308 CC = N->getOperand(0);
1309 SDValue N1 = N->getOperand(1);
1310 SDValue N2 = N->getOperand(2);
1311 if (isZeroOrAllOnes(N1, AllOnes)) {
1312 Invert = false;
1313 OtherOp = N2;
1314 return true;
1315 }
1316 if (isZeroOrAllOnes(N2, AllOnes)) {
1317 Invert = true;
1318 OtherOp = N1;
1319 return true;
1320 }
1321 return false;
1322 }
1323 case ISD::ZERO_EXTEND: {
1324 // (zext cc) can never be the all ones value.
1325 if (AllOnes)
1326 return false;
1327 CC = N->getOperand(0);
1328 if (CC.getValueType() != MVT::i1)
1329 return false;
1330 SDLoc dl(N);
1331 EVT VT = N->getValueType(0);
1332 OtherOp = DAG.getConstant(1, dl, VT);
1333 Invert = true;
1334 return true;
1335 }
1336 case ISD::SIGN_EXTEND: {
1337 CC = N->getOperand(0);
1338 if (CC.getValueType() != MVT::i1)
1339 return false;
1340 SDLoc dl(N);
1341 EVT VT = N->getValueType(0);
1342 Invert = !AllOnes;
1343 if (AllOnes)
1344 // When looking for an AllOnes constant, N is an sext, and the 'other'
1345 // value is 0.
1346 OtherOp = DAG.getConstant(0, dl, VT);
1347 else
1348 OtherOp =
1349 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT);
1350 return true;
1351 }
1352 }
1353 }
1354
1355 // Combine a constant select operand into its use:
1356 //
1357 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1358 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1359 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
1360 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
1361 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
1362 //
1363 // The transform is rejected if the select doesn't have a constant operand that
1364 // is null, or all ones when AllOnes is set.
1365 //
1366 // Also recognize sext/zext from i1:
1367 //
1368 // (add (zext cc), x) -> (select cc (add x, 1), x)
1369 // (add (sext cc), x) -> (select cc (add x, -1), x)
1370 //
1371 // These transformations eventually create predicated instructions.
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes)1372 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1373 TargetLowering::DAGCombinerInfo &DCI,
1374 bool AllOnes) {
1375 SelectionDAG &DAG = DCI.DAG;
1376 EVT VT = N->getValueType(0);
1377 SDValue NonConstantVal;
1378 SDValue CCOp;
1379 bool SwapSelectOps;
1380 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1381 NonConstantVal, DAG))
1382 return SDValue();
1383
1384 // Slct is now know to be the desired identity constant when CC is true.
1385 SDValue TrueVal = OtherOp;
1386 SDValue FalseVal =
1387 DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1388 // Unless SwapSelectOps says CC should be false.
1389 if (SwapSelectOps)
1390 std::swap(TrueVal, FalseVal);
1391
1392 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1393 }
1394
1395 // Attempt combineSelectAndUse on each operand of a commutative operator N.
1396 static SDValue
combineSelectAndUseCommutative(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes)1397 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1398 bool AllOnes) {
1399 SDValue N0 = N->getOperand(0);
1400 SDValue N1 = N->getOperand(1);
1401 if (N0.getNode()->hasOneUse())
1402 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1403 return Result;
1404 if (N1.getNode()->hasOneUse())
1405 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1406 return Result;
1407 return SDValue();
1408 }
1409
1410 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)1411 static SDValue PerformSUBCombine(SDNode *N,
1412 TargetLowering::DAGCombinerInfo &DCI) {
1413 SDValue N0 = N->getOperand(0);
1414 SDValue N1 = N->getOperand(1);
1415
1416 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1417 if (N1.getNode()->hasOneUse())
1418 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1419 return Result;
1420
1421 return SDValue();
1422 }
1423
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1424 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1425 DAGCombinerInfo &DCI) const {
1426 switch (N->getOpcode()) {
1427 default:
1428 break;
1429 case ISD::ADD:
1430 case ISD::OR:
1431 case ISD::XOR:
1432 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1433 case ISD::AND:
1434 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1435 case ISD::SUB:
1436 return PerformSUBCombine(N, DCI);
1437 }
1438
1439 return SDValue();
1440 }
1441