1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LanaiTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LanaiISelLowering.h"
15 
16 #include "Lanai.h"
17 #include "LanaiMachineFunctionInfo.h"
18 #include "LanaiSubtarget.h"
19 #include "LanaiTargetMachine.h"
20 #include "LanaiTargetObjectFile.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 #define DEBUG_TYPE "lanai-lower"
41 
42 using namespace llvm;
43 
44 // Limit on number of instructions the lowered multiplication may have before a
45 // call to the library function should be generated instead. The threshold is
46 // currently set to 14 as this was the smallest threshold that resulted in all
47 // constant multiplications being lowered. A threshold of 5 covered all cases
48 // except for one multiplication which required 14. mulsi3 requires 16
49 // instructions (including the prologue and epilogue but excluding instructions
50 // at call site). Until we can inline mulsi3, generating at most 14 instructions
51 // will be faster than invoking mulsi3.
52 static cl::opt<int> LanaiLowerConstantMulThreshold(
53     "lanai-constant-mul-threshold", cl::Hidden,
54     cl::desc("Maximum number of instruction to generate when lowering constant "
55              "multiplication instead of calling library function [default=14]"),
56     cl::init(14));
57 
LanaiTargetLowering(const TargetMachine & TM,const LanaiSubtarget & STI)58 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
59                                          const LanaiSubtarget &STI)
60     : TargetLowering(TM) {
61   // Set up the register classes.
62   addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
63 
64   // Compute derived properties from the register classes
65   TRI = STI.getRegisterInfo();
66   computeRegisterProperties(TRI);
67 
68   setStackPointerRegisterToSaveRestore(Lanai::SP);
69 
70   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
71   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
72   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
73   setOperationAction(ISD::SETCC, MVT::i32, Custom);
74   setOperationAction(ISD::SETCCE, MVT::i32, Custom);
75   setOperationAction(ISD::SELECT, MVT::i32, Expand);
76   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
77 
78   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
79   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
80   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
81   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
82 
83   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
84   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
85   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
86 
87   setOperationAction(ISD::VASTART, MVT::Other, Custom);
88   setOperationAction(ISD::VAARG, MVT::Other, Expand);
89   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
90   setOperationAction(ISD::VAEND, MVT::Other, Expand);
91 
92   setOperationAction(ISD::SDIV, MVT::i32, Expand);
93   setOperationAction(ISD::UDIV, MVT::i32, Expand);
94   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
95   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
96   setOperationAction(ISD::SREM, MVT::i32, Expand);
97   setOperationAction(ISD::UREM, MVT::i32, Expand);
98 
99   setOperationAction(ISD::MUL, MVT::i32, Custom);
100   setOperationAction(ISD::MULHU, MVT::i32, Expand);
101   setOperationAction(ISD::MULHS, MVT::i32, Expand);
102   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
103   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
104 
105   setOperationAction(ISD::ROTR, MVT::i32, Expand);
106   setOperationAction(ISD::ROTL, MVT::i32, Expand);
107   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
108   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
109   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
110 
111   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
112   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
113   setOperationAction(ISD::CTLZ, MVT::i32, Legal);
114   setOperationAction(ISD::CTTZ, MVT::i32, Legal);
115 
116   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
117   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
118   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
119 
120   // Extended load operations for i1 types must be promoted
121   for (MVT VT : MVT::integer_valuetypes()) {
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
123     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
124     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
125   }
126 
127   setTargetDAGCombine(ISD::ADD);
128   setTargetDAGCombine(ISD::SUB);
129   setTargetDAGCombine(ISD::AND);
130   setTargetDAGCombine(ISD::OR);
131   setTargetDAGCombine(ISD::XOR);
132 
133   // Function alignments (log2)
134   setMinFunctionAlignment(2);
135   setPrefFunctionAlignment(2);
136 
137   setJumpIsExpensive(true);
138 
139   // TODO: Setting the minimum jump table entries needed before a
140   // switch is transformed to a jump table to 100 to avoid creating jump tables
141   // as this was causing bad performance compared to a large group of if
142   // statements. Re-evaluate this on new benchmarks.
143   setMinimumJumpTableEntries(100);
144 
145   // Use fast calling convention for library functions.
146   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
147     setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
148   }
149 
150   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
151   MaxStoresPerMemsetOptSize = 8;
152   MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
153   MaxStoresPerMemcpyOptSize = 8;
154   MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
155   MaxStoresPerMemmoveOptSize = 8;
156 
157   // Booleans always contain 0 or 1.
158   setBooleanContents(ZeroOrOneBooleanContent);
159 }
160 
LowerOperation(SDValue Op,SelectionDAG & DAG) const161 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
162                                             SelectionDAG &DAG) const {
163   switch (Op.getOpcode()) {
164   case ISD::MUL:
165     return LowerMUL(Op, DAG);
166   case ISD::BR_CC:
167     return LowerBR_CC(Op, DAG);
168   case ISD::ConstantPool:
169     return LowerConstantPool(Op, DAG);
170   case ISD::GlobalAddress:
171     return LowerGlobalAddress(Op, DAG);
172   case ISD::BlockAddress:
173     return LowerBlockAddress(Op, DAG);
174   case ISD::JumpTable:
175     return LowerJumpTable(Op, DAG);
176   case ISD::SELECT_CC:
177     return LowerSELECT_CC(Op, DAG);
178   case ISD::SETCC:
179     return LowerSETCC(Op, DAG);
180   case ISD::SETCCE:
181     return LowerSETCCE(Op, DAG);
182   case ISD::SRL_PARTS:
183     return LowerSRL_PARTS(Op, DAG);
184   case ISD::VASTART:
185     return LowerVASTART(Op, DAG);
186   case ISD::DYNAMIC_STACKALLOC:
187     return LowerDYNAMIC_STACKALLOC(Op, DAG);
188   case ISD::RETURNADDR:
189     return LowerRETURNADDR(Op, DAG);
190   case ISD::FRAMEADDR:
191     return LowerFRAMEADDR(Op, DAG);
192   default:
193     llvm_unreachable("unimplemented operand");
194   }
195 }
196 //===----------------------------------------------------------------------===//
197 //                       Lanai Inline Assembly Support
198 //===----------------------------------------------------------------------===//
199 
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const200 unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT VT,
201                                                 SelectionDAG &DAG) const {
202   // Only unallocatable registers should be matched here.
203   unsigned Reg = StringSwitch<unsigned>(RegName)
204                      .Case("pc", Lanai::PC)
205                      .Case("sp", Lanai::SP)
206                      .Case("fp", Lanai::FP)
207                      .Case("rr1", Lanai::RR1)
208                      .Case("r10", Lanai::R10)
209                      .Case("rr2", Lanai::RR2)
210                      .Case("r11", Lanai::R11)
211                      .Case("rca", Lanai::RCA)
212                      .Default(0);
213 
214   if (Reg)
215     return Reg;
216   report_fatal_error("Invalid register name global variable");
217 }
218 
219 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const220 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
221                                                   StringRef Constraint,
222                                                   MVT VT) const {
223   if (Constraint.size() == 1)
224     // GCC Constraint Letters
225     switch (Constraint[0]) {
226     case 'r': // GENERAL_REGS
227       return std::make_pair(0U, &Lanai::GPRRegClass);
228     default:
229       break;
230     }
231 
232   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
233 }
234 
235 // Examine constraint type and operand type and determine a weight value.
236 // This object must already have been set up with the operand type
237 // and the current alternative constraint selected.
238 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & Info,const char * Constraint) const239 LanaiTargetLowering::getSingleConstraintMatchWeight(
240     AsmOperandInfo &Info, const char *Constraint) const {
241   ConstraintWeight Weight = CW_Invalid;
242   Value *CallOperandVal = Info.CallOperandVal;
243   // If we don't have a value, we can't do a match,
244   // but allow it at the lowest weight.
245   if (CallOperandVal == NULL)
246     return CW_Default;
247   // Look at the constraint type.
248   switch (*Constraint) {
249   case 'I': // signed 16 bit immediate
250   case 'J': // integer zero
251   case 'K': // unsigned 16 bit immediate
252   case 'L': // immediate in the range 0 to 31
253   case 'M': // signed 32 bit immediate where lower 16 bits are 0
254   case 'N': // signed 26 bit immediate
255   case 'O': // integer zero
256     if (isa<ConstantInt>(CallOperandVal))
257       Weight = CW_Constant;
258     break;
259   default:
260     Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
261     break;
262   }
263   return Weight;
264 }
265 
266 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
267 // vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const268 void LanaiTargetLowering::LowerAsmOperandForConstraint(
269     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
270     SelectionDAG &DAG) const {
271   SDValue Result(0, 0);
272 
273   // Only support length 1 constraints for now.
274   if (Constraint.length() > 1)
275     return;
276 
277   char ConstraintLetter = Constraint[0];
278   switch (ConstraintLetter) {
279   case 'I': // Signed 16 bit constant
280     // If this fails, the parent routine will give an error
281     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
282       if (isInt<16>(C->getSExtValue())) {
283         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
284                                        Op.getValueType());
285         break;
286       }
287     }
288     return;
289   case 'J': // integer zero
290   case 'O':
291     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
292       if (C->getZExtValue() == 0) {
293         Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
294         break;
295       }
296     }
297     return;
298   case 'K': // unsigned 16 bit immediate
299     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
300       if (isUInt<16>(C->getZExtValue())) {
301         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
302                                        Op.getValueType());
303         break;
304       }
305     }
306     return;
307   case 'L': // immediate in the range 0 to 31
308     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
309       if (C->getZExtValue() <= 31) {
310         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
311                                        Op.getValueType());
312         break;
313       }
314     }
315     return;
316   case 'M': // signed 32 bit immediate where lower 16 bits are 0
317     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
318       int64_t Val = C->getSExtValue();
319       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
320         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
321         break;
322       }
323     }
324     return;
325   case 'N': // signed 26 bit immediate
326     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
327       int64_t Val = C->getSExtValue();
328       if ((Val >= -33554432) && (Val <= 33554431)) {
329         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
330         break;
331       }
332     }
333     return;
334   default:
335     break; // This will fall through to the generic implementation
336   }
337 
338   if (Result.getNode()) {
339     Ops.push_back(Result);
340     return;
341   }
342 
343   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
344 }
345 
346 //===----------------------------------------------------------------------===//
347 //                      Calling Convention Implementation
348 //===----------------------------------------------------------------------===//
349 
350 #include "LanaiGenCallingConv.inc"
351 
352 static unsigned NumFixedArgs;
CC_Lanai32_VarArg(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)353 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
354                               CCValAssign::LocInfo LocInfo,
355                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
356   // Handle fixed arguments with default CC.
357   // Note: Both the default and fast CC handle VarArg the same and hence the
358   // calling convention of the function is not considered here.
359   if (ValNo < NumFixedArgs) {
360     return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
361   }
362 
363   // Promote i8/i16 args to i32
364   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
365     LocVT = MVT::i32;
366     if (ArgFlags.isSExt())
367       LocInfo = CCValAssign::SExt;
368     else if (ArgFlags.isZExt())
369       LocInfo = CCValAssign::ZExt;
370     else
371       LocInfo = CCValAssign::AExt;
372   }
373 
374   // VarArgs get passed on stack
375   unsigned Offset = State.AllocateStack(4, 4);
376   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
377   return false;
378 }
379 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const380 SDValue LanaiTargetLowering::LowerFormalArguments(
381     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
382     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
383     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
384   switch (CallConv) {
385   case CallingConv::C:
386   case CallingConv::Fast:
387     return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
388   default:
389     llvm_unreachable("Unsupported calling convention");
390   }
391 }
392 
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const393 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
394                                        SmallVectorImpl<SDValue> &InVals) const {
395   SelectionDAG &DAG = CLI.DAG;
396   SDLoc &DL = CLI.DL;
397   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
398   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
399   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
400   SDValue Chain = CLI.Chain;
401   SDValue Callee = CLI.Callee;
402   bool &IsTailCall = CLI.IsTailCall;
403   CallingConv::ID CallConv = CLI.CallConv;
404   bool IsVarArg = CLI.IsVarArg;
405 
406   // Lanai target does not yet support tail call optimization.
407   IsTailCall = false;
408 
409   switch (CallConv) {
410   case CallingConv::Fast:
411   case CallingConv::C:
412     return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
413                           OutVals, Ins, DL, DAG, InVals);
414   default:
415     llvm_unreachable("Unsupported calling convention");
416   }
417 }
418 
419 // LowerCCCArguments - transform physical registers into virtual registers and
420 // generate load operations for arguments places on the stack.
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const421 SDValue LanaiTargetLowering::LowerCCCArguments(
422     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
423     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
424     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
425   MachineFunction &MF = DAG.getMachineFunction();
426   MachineFrameInfo *MFI = MF.getFrameInfo();
427   MachineRegisterInfo &RegInfo = MF.getRegInfo();
428   LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
429 
430   // Assign locations to all of the incoming arguments.
431   SmallVector<CCValAssign, 16> ArgLocs;
432   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
433                  *DAG.getContext());
434   if (CallConv == CallingConv::Fast) {
435     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
436   } else {
437     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
438   }
439 
440   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
441     CCValAssign &VA = ArgLocs[i];
442     if (VA.isRegLoc()) {
443       // Arguments passed in registers
444       EVT RegVT = VA.getLocVT();
445       switch (RegVT.getSimpleVT().SimpleTy) {
446       case MVT::i32: {
447         unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
448         RegInfo.addLiveIn(VA.getLocReg(), VReg);
449         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
450 
451         // If this is an 8/16-bit value, it is really passed promoted to 32
452         // bits. Insert an assert[sz]ext to capture this, then truncate to the
453         // right size.
454         if (VA.getLocInfo() == CCValAssign::SExt)
455           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
456                                  DAG.getValueType(VA.getValVT()));
457         else if (VA.getLocInfo() == CCValAssign::ZExt)
458           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
459                                  DAG.getValueType(VA.getValVT()));
460 
461         if (VA.getLocInfo() != CCValAssign::Full)
462           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
463 
464         InVals.push_back(ArgValue);
465         break;
466       }
467       default:
468         DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
469                      << RegVT.getEVTString() << "\n");
470         llvm_unreachable("unhandled argument type");
471       }
472     } else {
473       // Sanity check
474       assert(VA.isMemLoc());
475       // Load the argument to a virtual register
476       unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
477       // Check that the argument fits in stack slot
478       if (ObjSize > 4) {
479         errs() << "LowerFormalArguments Unhandled argument type: "
480                << EVT(VA.getLocVT()).getEVTString() << "\n";
481       }
482       // Create the frame index object for this incoming parameter...
483       int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
484 
485       // Create the SelectionDAG nodes corresponding to a load
486       // from this parameter
487       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
488       InVals.push_back(DAG.getLoad(
489           VA.getLocVT(), DL, Chain, FIN,
490           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
491           false, false, false, 0));
492     }
493   }
494 
495   // The Lanai ABI for returning structs by value requires that we copy
496   // the sret argument into rv for the return. Save the argument into
497   // a virtual register so that we can access it from the return points.
498   if (MF.getFunction()->hasStructRetAttr()) {
499     unsigned Reg = LanaiMFI->getSRetReturnReg();
500     if (!Reg) {
501       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
502       LanaiMFI->setSRetReturnReg(Reg);
503     }
504     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
505     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
506   }
507 
508   if (IsVarArg) {
509     // Record the frame index of the first variable argument
510     // which is a value necessary to VASTART.
511     int FI = MFI->CreateFixedObject(4, CCInfo.getNextStackOffset(), true);
512     LanaiMFI->setVarArgsFrameIndex(FI);
513   }
514 
515   return Chain;
516 }
517 
518 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const519 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
520                                  bool IsVarArg,
521                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
522                                  const SmallVectorImpl<SDValue> &OutVals,
523                                  const SDLoc &DL, SelectionDAG &DAG) const {
524   // CCValAssign - represent the assignment of the return value to a location
525   SmallVector<CCValAssign, 16> RVLocs;
526 
527   // CCState - Info about the registers and stack slot.
528   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
529                  *DAG.getContext());
530 
531   // Analize return values.
532   CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
533 
534   SDValue Flag;
535   SmallVector<SDValue, 4> RetOps(1, Chain);
536 
537   // Copy the result values into the output registers.
538   for (unsigned i = 0; i != RVLocs.size(); ++i) {
539     CCValAssign &VA = RVLocs[i];
540     assert(VA.isRegLoc() && "Can only return in registers!");
541 
542     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
543 
544     // Guarantee that all emitted copies are stuck together with flags.
545     Flag = Chain.getValue(1);
546     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
547   }
548 
549   // The Lanai ABI for returning structs by value requires that we copy
550   // the sret argument into rv for the return. We saved the argument into
551   // a virtual register in the entry block, so now we copy the value out
552   // and into rv.
553   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
554     MachineFunction &MF = DAG.getMachineFunction();
555     LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
556     unsigned Reg = LanaiMFI->getSRetReturnReg();
557     assert(Reg &&
558            "SRetReturnReg should have been set in LowerFormalArguments().");
559     SDValue Val =
560         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
561 
562     Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag);
563     Flag = Chain.getValue(1);
564     RetOps.push_back(
565         DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
566   }
567 
568   RetOps[0] = Chain; // Update chain
569 
570   unsigned Opc = LanaiISD::RET_FLAG;
571   if (Flag.getNode())
572     RetOps.push_back(Flag);
573 
574   // Return Void
575   return DAG.getNode(Opc, DL, MVT::Other,
576                      ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
577 }
578 
579 // LowerCCCCallTo - functions arguments are copied from virtual regs to
580 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool IsVarArg,bool IsTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const581 SDValue LanaiTargetLowering::LowerCCCCallTo(
582     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
583     bool IsTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
584     const SmallVectorImpl<SDValue> &OutVals,
585     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
586     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
587   // Analyze operands of the call, assigning locations to each operand.
588   SmallVector<CCValAssign, 16> ArgLocs;
589   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
590                  *DAG.getContext());
591   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
592   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
593 
594   NumFixedArgs = 0;
595   if (IsVarArg && G) {
596     const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
597     if (CalleeFn)
598       NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
599   }
600   if (NumFixedArgs)
601     CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
602   else {
603     if (CallConv == CallingConv::Fast)
604       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
605     else
606       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
607   }
608 
609   // Get a count of how many bytes are to be pushed on the stack.
610   unsigned NumBytes = CCInfo.getNextStackOffset();
611 
612   // Create local copies for byval args.
613   SmallVector<SDValue, 8> ByValArgs;
614   for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
615     ISD::ArgFlagsTy Flags = Outs[I].Flags;
616     if (!Flags.isByVal())
617       continue;
618 
619     SDValue Arg = OutVals[I];
620     unsigned Size = Flags.getByValSize();
621     unsigned Align = Flags.getByValAlign();
622 
623     int FI = MFI->CreateStackObject(Size, Align, false);
624     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
625     SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
626 
627     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
628                           /*IsVolatile=*/false,
629                           /*AlwaysInline=*/false,
630                           /*IsTailCall=*/false, MachinePointerInfo(),
631                           MachinePointerInfo());
632     ByValArgs.push_back(FIPtr);
633   }
634 
635   Chain = DAG.getCALLSEQ_START(
636       Chain,
637       DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
638       DL);
639 
640   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
641   SmallVector<SDValue, 12> MemOpChains;
642   SDValue StackPtr;
643 
644   // Walk the register/memloc assignments, inserting copies/loads.
645   for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
646     CCValAssign &VA = ArgLocs[I];
647     SDValue Arg = OutVals[I];
648     ISD::ArgFlagsTy Flags = Outs[I].Flags;
649 
650     // Promote the value if needed.
651     switch (VA.getLocInfo()) {
652     case CCValAssign::Full:
653       break;
654     case CCValAssign::SExt:
655       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
656       break;
657     case CCValAssign::ZExt:
658       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
659       break;
660     case CCValAssign::AExt:
661       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
662       break;
663     default:
664       llvm_unreachable("Unknown loc info!");
665     }
666 
667     // Use local copy if it is a byval arg.
668     if (Flags.isByVal())
669       Arg = ByValArgs[J++];
670 
671     // Arguments that can be passed on register must be kept at RegsToPass
672     // vector
673     if (VA.isRegLoc()) {
674       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
675     } else {
676       assert(VA.isMemLoc());
677 
678       if (StackPtr.getNode() == 0)
679         StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
680                                       getPointerTy(DAG.getDataLayout()));
681 
682       SDValue PtrOff =
683           DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
684                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
685 
686       MemOpChains.push_back(DAG.getStore(
687           Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, false, 0));
688     }
689   }
690 
691   // Transform all store nodes into one single node because all store nodes are
692   // independent of each other.
693   if (!MemOpChains.empty())
694     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
695                         ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
696 
697   SDValue InFlag;
698 
699   // Build a sequence of copy-to-reg nodes chained together with token chain and
700   // flag operands which copy the outgoing args into registers.  The InFlag in
701   // necessary since all emitted instructions must be stuck together.
702   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
703     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
704                              RegsToPass[I].second, InFlag);
705     InFlag = Chain.getValue(1);
706   }
707 
708   // If the callee is a GlobalAddress node (quite common, every direct call is)
709   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
710   // Likewise ExternalSymbol -> TargetExternalSymbol.
711   uint8_t OpFlag = LanaiII::MO_NO_FLAG;
712   if (G) {
713     Callee = DAG.getTargetGlobalAddress(
714         G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
715   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
716     Callee = DAG.getTargetExternalSymbol(
717         E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
718   }
719 
720   // Returns a chain & a flag for retval copy to use.
721   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
722   SmallVector<SDValue, 8> Ops;
723   Ops.push_back(Chain);
724   Ops.push_back(Callee);
725 
726   // Add a register mask operand representing the call-preserved registers.
727   // TODO: Should return-twice functions be handled?
728   const uint32_t *Mask =
729       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
730   assert(Mask && "Missing call preserved mask for calling convention");
731   Ops.push_back(DAG.getRegisterMask(Mask));
732 
733   // Add argument registers to the end of the list so that they are
734   // known live into the call.
735   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
736     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
737                                   RegsToPass[I].second.getValueType()));
738 
739   if (InFlag.getNode())
740     Ops.push_back(InFlag);
741 
742   Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
743                       ArrayRef<SDValue>(&Ops[0], Ops.size()));
744   InFlag = Chain.getValue(1);
745 
746   // Create the CALLSEQ_END node.
747   Chain = DAG.getCALLSEQ_END(
748       Chain,
749       DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
750       DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag,
751       DL);
752   InFlag = Chain.getValue(1);
753 
754   // Handle result values, copying them out of physregs into vregs that we
755   // return.
756   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
757                          InVals);
758 }
759 
760 // LowerCallResult - Lower the result values of a call into the
761 // appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const762 SDValue LanaiTargetLowering::LowerCallResult(
763     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
764     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
765     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
766   // Assign locations to each value returned by this call.
767   SmallVector<CCValAssign, 16> RVLocs;
768   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
769                  *DAG.getContext());
770 
771   CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
772 
773   // Copy all of the result registers out of their specified physreg.
774   for (unsigned I = 0; I != RVLocs.size(); ++I) {
775     Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
776                                RVLocs[I].getValVT(), InFlag)
777                 .getValue(1);
778     InFlag = Chain.getValue(2);
779     InVals.push_back(Chain.getValue(0));
780   }
781 
782   return Chain;
783 }
784 
785 //===----------------------------------------------------------------------===//
786 //                      Custom Lowerings
787 //===----------------------------------------------------------------------===//
788 
IntCondCCodeToICC(SDValue CC,const SDLoc & DL,SDValue & LHS,SDValue & RHS,SelectionDAG & DAG)789 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
790                                         SDValue &LHS, SDValue &RHS,
791                                         SelectionDAG &DAG) {
792   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
793 
794   // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
795   // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
796   // and Lanai only supports integer comparisons, so only provide definitions
797   // for them.
798   switch (SetCCOpcode) {
799   case ISD::SETEQ:
800     return LPCC::ICC_EQ;
801   case ISD::SETGT:
802     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
803       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
804         // X > -1 -> X >= 0 -> is_plus(X)
805         RHS = DAG.getConstant(0, DL, RHS.getValueType());
806         return LPCC::ICC_PL;
807       }
808     return LPCC::ICC_GT;
809   case ISD::SETUGT:
810     return LPCC::ICC_UGT;
811   case ISD::SETLT:
812     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
813       if (RHSC->getZExtValue() == 0)
814         // X < 0 -> is_minus(X)
815         return LPCC::ICC_MI;
816     return LPCC::ICC_LT;
817   case ISD::SETULT:
818     return LPCC::ICC_ULT;
819   case ISD::SETLE:
820     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
821       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
822         // X <= -1 -> X < 0 -> is_minus(X)
823         RHS = DAG.getConstant(0, DL, RHS.getValueType());
824         return LPCC::ICC_MI;
825       }
826     return LPCC::ICC_LE;
827   case ISD::SETULE:
828     return LPCC::ICC_ULE;
829   case ISD::SETGE:
830     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
831       if (RHSC->getZExtValue() == 0)
832         // X >= 0 -> is_plus(X)
833         return LPCC::ICC_PL;
834     return LPCC::ICC_GE;
835   case ISD::SETUGE:
836     return LPCC::ICC_UGE;
837   case ISD::SETNE:
838     return LPCC::ICC_NE;
839   case ISD::SETONE:
840   case ISD::SETUNE:
841   case ISD::SETOGE:
842   case ISD::SETOLE:
843   case ISD::SETOLT:
844   case ISD::SETOGT:
845   case ISD::SETOEQ:
846   case ISD::SETUEQ:
847   case ISD::SETO:
848   case ISD::SETUO:
849     llvm_unreachable("Unsupported comparison.");
850   default:
851     llvm_unreachable("Unknown integer condition code!");
852   }
853 }
854 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const855 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
856   SDValue Chain = Op.getOperand(0);
857   SDValue Cond = Op.getOperand(1);
858   SDValue LHS = Op.getOperand(2);
859   SDValue RHS = Op.getOperand(3);
860   SDValue Dest = Op.getOperand(4);
861   SDLoc DL(Op);
862 
863   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
864   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
865   SDValue Flag =
866       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
867 
868   return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
869                      TargetCC, Flag);
870 }
871 
LowerMUL(SDValue Op,SelectionDAG & DAG) const872 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
873   EVT VT = Op->getValueType(0);
874   if (VT != MVT::i32)
875     return SDValue();
876 
877   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
878   if (!C)
879     return SDValue();
880 
881   int64_t MulAmt = C->getSExtValue();
882   int32_t HighestOne = -1;
883   uint32_t NonzeroEntries = 0;
884   int SignedDigit[32] = {0};
885 
886   // Convert to non-adjacent form (NAF) signed-digit representation.
887   // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
888   // minimal Hamming weight representation of a number (on average 1/3 of the
889   // digits will be non-zero vs 1/2 for regular binary representation). And as
890   // the non-zero digits will be the only digits contributing to the instruction
891   // count, this is desirable. The next loop converts it to NAF (following the
892   // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
893   // choosing the non-zero coefficients such that the resulting quotient is
894   // divisible by 2 which will cause the next coefficient to be zero.
895   int64_t E = std::abs(MulAmt);
896   int S = (MulAmt < 0 ? -1 : 1);
897   int I = 0;
898   while (E > 0) {
899     int ZI = 0;
900     if (E % 2 == 1) {
901       ZI = 2 - (E % 4);
902       if (ZI != 0)
903         ++NonzeroEntries;
904     }
905     SignedDigit[I] = S * ZI;
906     if (SignedDigit[I] == 1)
907       HighestOne = I;
908     E = (E - ZI) / 2;
909     ++I;
910   }
911 
912   // Compute number of instructions required. Due to differences in lowering
913   // between the different processors this count is not exact.
914   // Start by assuming a shift and a add/sub for every non-zero entry (hence
915   // every non-zero entry requires 1 shift and 1 add/sub except for the first
916   // entry).
917   int32_t InstrRequired = 2 * NonzeroEntries - 1;
918   // Correct possible over-adding due to shift by 0 (which is not emitted).
919   if (std::abs(MulAmt) % 2 == 1)
920     --InstrRequired;
921   // Return if the form generated would exceed the instruction threshold.
922   if (InstrRequired > LanaiLowerConstantMulThreshold)
923     return SDValue();
924 
925   SDValue Res;
926   SDLoc DL(Op);
927   SDValue V = Op->getOperand(0);
928 
929   // Initialize the running sum. Set the running sum to the maximal shifted
930   // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
931   // term NAF).
932   if (HighestOne == -1)
933     Res = DAG.getConstant(0, DL, MVT::i32);
934   else {
935     Res = DAG.getNode(ISD::SHL, DL, VT, V,
936                       DAG.getConstant(HighestOne, DL, MVT::i32));
937     SignedDigit[HighestOne] = 0;
938   }
939 
940   // Assemble multiplication from shift, add, sub using NAF form and running
941   // sum.
942   for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]);
943        ++I) {
944     if (SignedDigit[I] == 0)
945       continue;
946 
947     // Shifted multiplicand (v<<i).
948     SDValue Op =
949         DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
950     if (SignedDigit[I] == 1)
951       Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
952     else if (SignedDigit[I] == -1)
953       Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
954   }
955   return Res;
956 }
957 
LowerSETCCE(SDValue Op,SelectionDAG & DAG) const958 SDValue LanaiTargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const {
959   SDValue LHS = Op.getOperand(0);
960   SDValue RHS = Op.getOperand(1);
961   SDValue Carry = Op.getOperand(2);
962   SDValue Cond = Op.getOperand(3);
963   SDLoc DL(Op);
964 
965   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
966   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
967   SDValue Flag = DAG.getNode(LanaiISD::SUBBF, DL, MVT::Glue, LHS, RHS, Carry);
968   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
969 }
970 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const971 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
972   SDValue LHS = Op.getOperand(0);
973   SDValue RHS = Op.getOperand(1);
974   SDValue Cond = Op.getOperand(2);
975   SDLoc DL(Op);
976 
977   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
978   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
979   SDValue Flag =
980       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
981 
982   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
983 }
984 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const985 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
986                                             SelectionDAG &DAG) const {
987   SDValue LHS = Op.getOperand(0);
988   SDValue RHS = Op.getOperand(1);
989   SDValue TrueV = Op.getOperand(2);
990   SDValue FalseV = Op.getOperand(3);
991   SDValue Cond = Op.getOperand(4);
992   SDLoc DL(Op);
993 
994   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
995   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
996   SDValue Flag =
997       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
998 
999   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1000   return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
1001                      Flag);
1002 }
1003 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1004 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1005   MachineFunction &MF = DAG.getMachineFunction();
1006   LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1007 
1008   SDLoc DL(Op);
1009   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1010                                  getPointerTy(DAG.getDataLayout()));
1011 
1012   // vastart just stores the address of the VarArgsFrameIndex slot into the
1013   // memory location argument.
1014   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1015   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1016                       MachinePointerInfo(SV), false, false, 0);
1017 }
1018 
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const1019 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1020                                                      SelectionDAG &DAG) const {
1021   SDValue Chain = Op.getOperand(0);
1022   SDValue Size = Op.getOperand(1);
1023   SDLoc DL(Op);
1024 
1025   unsigned SPReg = getStackPointerRegisterToSaveRestore();
1026 
1027   // Get a reference to the stack pointer.
1028   SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1029 
1030   // Subtract the dynamic size from the actual stack size to
1031   // obtain the new stack size.
1032   SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1033 
1034   // For Lanai, the outgoing memory arguments area should be on top of the
1035   // alloca area on the stack i.e., the outgoing memory arguments should be
1036   // at a lower address than the alloca area. Move the alloca area down the
1037   // stack by adding back the space reserved for outgoing arguments to SP
1038   // here.
1039   //
1040   // We do not know what the size of the outgoing args is at this point.
1041   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1042   // stack pointer. We replace this instruction with on that has the correct,
1043   // known offset in emitPrologue().
1044   SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1045 
1046   // The Sub result contains the new stack start address, so it
1047   // must be placed in the stack pointer register.
1048   SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1049 
1050   SDValue Ops[2] = {ArgAdjust, CopyChain};
1051   return DAG.getMergeValues(Ops, DL);
1052 }
1053 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1054 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1055                                              SelectionDAG &DAG) const {
1056   MachineFunction &MF = DAG.getMachineFunction();
1057   MachineFrameInfo *MFI = MF.getFrameInfo();
1058   MFI->setReturnAddressIsTaken(true);
1059 
1060   EVT VT = Op.getValueType();
1061   SDLoc DL(Op);
1062   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1063   if (Depth) {
1064     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1065     const unsigned Offset = -4;
1066     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1067                               DAG.getIntPtrConstant(Offset, DL));
1068     return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1069                        false, false, false, 0);
1070   }
1071 
1072   // Return the link register, which contains the return address.
1073   // Mark it an implicit live-in.
1074   unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1075   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1076 }
1077 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1078 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1079                                             SelectionDAG &DAG) const {
1080   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1081   MFI->setFrameAddressIsTaken(true);
1082 
1083   EVT VT = Op.getValueType();
1084   SDLoc DL(Op);
1085   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1086   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1087   while (Depth--) {
1088     const unsigned Offset = -8;
1089     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1090                               DAG.getIntPtrConstant(Offset, DL));
1091     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr,
1092                             MachinePointerInfo(), false, false, false, 0);
1093   }
1094   return FrameAddr;
1095 }
1096 
getTargetNodeName(unsigned Opcode) const1097 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1098   switch (Opcode) {
1099   case LanaiISD::ADJDYNALLOC:
1100     return "LanaiISD::ADJDYNALLOC";
1101   case LanaiISD::RET_FLAG:
1102     return "LanaiISD::RET_FLAG";
1103   case LanaiISD::CALL:
1104     return "LanaiISD::CALL";
1105   case LanaiISD::SELECT_CC:
1106     return "LanaiISD::SELECT_CC";
1107   case LanaiISD::SETCC:
1108     return "LanaiISD::SETCC";
1109   case LanaiISD::SUBBF:
1110     return "LanaiISD::SUBBF";
1111   case LanaiISD::SET_FLAG:
1112     return "LanaiISD::SET_FLAG";
1113   case LanaiISD::BR_CC:
1114     return "LanaiISD::BR_CC";
1115   case LanaiISD::Wrapper:
1116     return "LanaiISD::Wrapper";
1117   case LanaiISD::HI:
1118     return "LanaiISD::HI";
1119   case LanaiISD::LO:
1120     return "LanaiISD::LO";
1121   case LanaiISD::SMALL:
1122     return "LanaiISD::SMALL";
1123   default:
1124     return NULL;
1125   }
1126 }
1127 
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const1128 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1129                                                SelectionDAG &DAG) const {
1130   SDLoc DL(Op);
1131   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1132   const Constant *C = N->getConstVal();
1133   const LanaiTargetObjectFile *TLOF =
1134       static_cast<const LanaiTargetObjectFile *>(
1135           getTargetMachine().getObjFileLowering());
1136 
1137   // If the code model is small or constant will be placed in the small section,
1138   // then assume address will fit in 21-bits.
1139   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1140       TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1141     SDValue Small = DAG.getTargetConstantPool(
1142         C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG);
1143     return DAG.getNode(ISD::OR, DL, MVT::i32,
1144                        DAG.getRegister(Lanai::R0, MVT::i32),
1145                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1146   } else {
1147     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1148     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1149 
1150     SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1151                                            N->getOffset(), OpFlagHi);
1152     SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1153                                            N->getOffset(), OpFlagLo);
1154     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1155     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1156     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1157     return Result;
1158   }
1159 }
1160 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1161 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1162                                                 SelectionDAG &DAG) const {
1163   SDLoc DL(Op);
1164   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1165   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1166 
1167   const LanaiTargetObjectFile *TLOF =
1168       static_cast<const LanaiTargetObjectFile *>(
1169           getTargetMachine().getObjFileLowering());
1170 
1171   // If the code model is small or global variable will be placed in the small
1172   // section, then assume address will fit in 21-bits.
1173   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1174       TLOF->isGlobalInSmallSection(GV, getTargetMachine())) {
1175     SDValue Small = DAG.getTargetGlobalAddress(
1176         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1177     return DAG.getNode(ISD::OR, DL, MVT::i32,
1178                        DAG.getRegister(Lanai::R0, MVT::i32),
1179                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1180   } else {
1181     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1182     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1183 
1184     // Create the TargetGlobalAddress node, folding in the constant offset.
1185     SDValue Hi = DAG.getTargetGlobalAddress(
1186         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1187     SDValue Lo = DAG.getTargetGlobalAddress(
1188         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1189     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1190     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1191     return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1192   }
1193 }
1194 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1195 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1196                                                SelectionDAG &DAG) const {
1197   SDLoc DL(Op);
1198   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1199 
1200   uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1201   uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1202 
1203   SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1204   SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1205   Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1206   Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1207   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1208   return Result;
1209 }
1210 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1211 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1212                                             SelectionDAG &DAG) const {
1213   SDLoc DL(Op);
1214   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1215 
1216   // If the code model is small assume address will fit in 21-bits.
1217   if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1218     SDValue Small = DAG.getTargetJumpTable(
1219         JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1220     return DAG.getNode(ISD::OR, DL, MVT::i32,
1221                        DAG.getRegister(Lanai::R0, MVT::i32),
1222                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1223   } else {
1224     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1225     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1226 
1227     SDValue Hi = DAG.getTargetJumpTable(
1228         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1229     SDValue Lo = DAG.getTargetJumpTable(
1230         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1231     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1232     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1233     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1234     return Result;
1235   }
1236 }
1237 
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const1238 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1239                                             SelectionDAG &DAG) const {
1240   MVT VT = Op.getSimpleValueType();
1241   unsigned VTBits = VT.getSizeInBits();
1242   SDLoc dl(Op);
1243   SDValue ShOpLo = Op.getOperand(0);
1244   SDValue ShOpHi = Op.getOperand(1);
1245   SDValue ShAmt = Op.getOperand(2);
1246 
1247   // Performs the following for a >> b:
1248   //   unsigned r_high = a_high >> b;
1249   //   r_high = (32 - b <= 0) ? 0 : r_high;
1250   //
1251   //   unsigned r_low = a_low >> b;
1252   //   r_low = (32 - b <= 0) ? r_high : r_low;
1253   //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1254   //   return (unsigned long long)r_high << 32 | r_low;
1255   // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1256   // mask the shift amount.
1257 
1258   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1259   SDValue NegatedPlus32 = DAG.getNode(
1260       ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1261   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1262 
1263   SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1264   Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1265 
1266   SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1267   Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1268   SDValue CarryBits =
1269       DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1270   SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1271   Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1272                      DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1273 
1274   SDValue Ops[2] = {Lo, Hi};
1275   return DAG.getMergeValues(Ops, dl);
1276 }
1277 
1278 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)1279 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1280   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1281 }
1282 
1283 // Return true if N is conditionally 0 or all ones.
1284 // Detects these expressions where cc is an i1 value:
1285 //
1286 //   (select cc 0, y)   [AllOnes=0]
1287 //   (select cc y, 0)   [AllOnes=0]
1288 //   (zext cc)          [AllOnes=0]
1289 //   (sext cc)          [AllOnes=0/1]
1290 //   (select cc -1, y)  [AllOnes=1]
1291 //   (select cc y, -1)  [AllOnes=1]
1292 //
1293 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
1294 //   all ones operand (AllOnes true).
1295 // * Invert is set when N is the all zero/ones constant when CC is false.
1296 // * OtherOp is set to the alternative value of N.
1297 //
1298 // For example, for (select cc X, Y) and AllOnes = 0 if:
1299 // * X = 0, Invert = False and OtherOp = Y
1300 // * Y = 0, Invert = True and OtherOp = X
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)1301 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1302                                        bool &Invert, SDValue &OtherOp,
1303                                        SelectionDAG &DAG) {
1304   switch (N->getOpcode()) {
1305   default:
1306     return false;
1307   case ISD::SELECT: {
1308     CC = N->getOperand(0);
1309     SDValue N1 = N->getOperand(1);
1310     SDValue N2 = N->getOperand(2);
1311     if (isZeroOrAllOnes(N1, AllOnes)) {
1312       Invert = false;
1313       OtherOp = N2;
1314       return true;
1315     }
1316     if (isZeroOrAllOnes(N2, AllOnes)) {
1317       Invert = true;
1318       OtherOp = N1;
1319       return true;
1320     }
1321     return false;
1322   }
1323   case ISD::ZERO_EXTEND: {
1324     // (zext cc) can never be the all ones value.
1325     if (AllOnes)
1326       return false;
1327     CC = N->getOperand(0);
1328     if (CC.getValueType() != MVT::i1)
1329       return false;
1330     SDLoc dl(N);
1331     EVT VT = N->getValueType(0);
1332     OtherOp = DAG.getConstant(1, dl, VT);
1333     Invert = true;
1334     return true;
1335   }
1336   case ISD::SIGN_EXTEND: {
1337     CC = N->getOperand(0);
1338     if (CC.getValueType() != MVT::i1)
1339       return false;
1340     SDLoc dl(N);
1341     EVT VT = N->getValueType(0);
1342     Invert = !AllOnes;
1343     if (AllOnes)
1344       // When looking for an AllOnes constant, N is an sext, and the 'other'
1345       // value is 0.
1346       OtherOp = DAG.getConstant(0, dl, VT);
1347     else
1348       OtherOp =
1349           DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT);
1350     return true;
1351   }
1352   }
1353 }
1354 
1355 // Combine a constant select operand into its use:
1356 //
1357 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
1358 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
1359 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
1360 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
1361 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
1362 //
1363 // The transform is rejected if the select doesn't have a constant operand that
1364 // is null, or all ones when AllOnes is set.
1365 //
1366 // Also recognize sext/zext from i1:
1367 //
1368 //   (add (zext cc), x) -> (select cc (add x, 1), x)
1369 //   (add (sext cc), x) -> (select cc (add x, -1), x)
1370 //
1371 // These transformations eventually create predicated instructions.
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes)1372 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1373                                    TargetLowering::DAGCombinerInfo &DCI,
1374                                    bool AllOnes) {
1375   SelectionDAG &DAG = DCI.DAG;
1376   EVT VT = N->getValueType(0);
1377   SDValue NonConstantVal;
1378   SDValue CCOp;
1379   bool SwapSelectOps;
1380   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1381                                   NonConstantVal, DAG))
1382     return SDValue();
1383 
1384   // Slct is now know to be the desired identity constant when CC is true.
1385   SDValue TrueVal = OtherOp;
1386   SDValue FalseVal =
1387       DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1388   // Unless SwapSelectOps says CC should be false.
1389   if (SwapSelectOps)
1390     std::swap(TrueVal, FalseVal);
1391 
1392   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1393 }
1394 
1395 // Attempt combineSelectAndUse on each operand of a commutative operator N.
1396 static SDValue
combineSelectAndUseCommutative(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes)1397 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1398                                bool AllOnes) {
1399   SDValue N0 = N->getOperand(0);
1400   SDValue N1 = N->getOperand(1);
1401   if (N0.getNode()->hasOneUse())
1402     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1403       return Result;
1404   if (N1.getNode()->hasOneUse())
1405     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1406       return Result;
1407   return SDValue();
1408 }
1409 
1410 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)1411 static SDValue PerformSUBCombine(SDNode *N,
1412                                  TargetLowering::DAGCombinerInfo &DCI) {
1413   SDValue N0 = N->getOperand(0);
1414   SDValue N1 = N->getOperand(1);
1415 
1416   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1417   if (N1.getNode()->hasOneUse())
1418     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1419       return Result;
1420 
1421   return SDValue();
1422 }
1423 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1424 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1425                                                DAGCombinerInfo &DCI) const {
1426   switch (N->getOpcode()) {
1427   default:
1428     break;
1429   case ISD::ADD:
1430   case ISD::OR:
1431   case ISD::XOR:
1432     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1433   case ISD::AND:
1434     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1435   case ISD::SUB:
1436     return PerformSUBCombine(N, DCI);
1437   }
1438 
1439   return SDValue();
1440 }
1441