1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies loops where we can generate the PPC branch instructions
11 // that decrement and test the count register (CTR) (bdnz and friends).
12 //
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 //
18 // Criteria for CTR loops:
19 //  - Countable loops (w/ ind. var for a trip count)
20 //  - Try inner-most loops first
21 //  - No nested CTR loops.
22 //  - No function calls in loops.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar.h"
27 #include "PPC.h"
28 #include "PPCTargetMachine.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ScalarEvolutionExpander.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/PassSupport.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 
50 #ifndef NDEBUG
51 #include "llvm/CodeGen/MachineDominators.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #endif
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "ctrloops"
60 
61 #ifndef NDEBUG
62 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
63 #endif
64 
65 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
66 
67 namespace llvm {
68   void initializePPCCTRLoopsPass(PassRegistry&);
69 #ifndef NDEBUG
70   void initializePPCCTRLoopsVerifyPass(PassRegistry&);
71 #endif
72 }
73 
74 namespace {
75   struct PPCCTRLoops : public FunctionPass {
76 
77 #ifndef NDEBUG
78     static int Counter;
79 #endif
80 
81   public:
82     static char ID;
83 
PPCCTRLoops__anona486c2b00111::PPCCTRLoops84     PPCCTRLoops() : FunctionPass(ID), TM(nullptr) {
85       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
86     }
PPCCTRLoops__anona486c2b00111::PPCCTRLoops87     PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
88       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
89     }
90 
91     bool runOnFunction(Function &F) override;
92 
getAnalysisUsage__anona486c2b00111::PPCCTRLoops93     void getAnalysisUsage(AnalysisUsage &AU) const override {
94       AU.addRequired<LoopInfoWrapperPass>();
95       AU.addPreserved<LoopInfoWrapperPass>();
96       AU.addRequired<DominatorTreeWrapperPass>();
97       AU.addPreserved<DominatorTreeWrapperPass>();
98       AU.addRequired<ScalarEvolutionWrapperPass>();
99     }
100 
101   private:
102     bool mightUseCTR(const Triple &TT, BasicBlock *BB);
103     bool convertToCTRLoop(Loop *L);
104 
105   private:
106     PPCTargetMachine *TM;
107     LoopInfo *LI;
108     ScalarEvolution *SE;
109     const DataLayout *DL;
110     DominatorTree *DT;
111     const TargetLibraryInfo *LibInfo;
112     bool PreserveLCSSA;
113   };
114 
115   char PPCCTRLoops::ID = 0;
116 #ifndef NDEBUG
117   int PPCCTRLoops::Counter = 0;
118 #endif
119 
120 #ifndef NDEBUG
121   struct PPCCTRLoopsVerify : public MachineFunctionPass {
122   public:
123     static char ID;
124 
PPCCTRLoopsVerify__anona486c2b00111::PPCCTRLoopsVerify125     PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
126       initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
127     }
128 
getAnalysisUsage__anona486c2b00111::PPCCTRLoopsVerify129     void getAnalysisUsage(AnalysisUsage &AU) const override {
130       AU.addRequired<MachineDominatorTree>();
131       MachineFunctionPass::getAnalysisUsage(AU);
132     }
133 
134     bool runOnMachineFunction(MachineFunction &MF) override;
135 
136   private:
137     MachineDominatorTree *MDT;
138   };
139 
140   char PPCCTRLoopsVerify::ID = 0;
141 #endif // NDEBUG
142 } // end anonymous namespace
143 
144 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
145                       false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)146 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
147 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
148 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
149 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
150                     false, false)
151 
152 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
153   return new PPCCTRLoops(TM);
154 }
155 
156 #ifndef NDEBUG
157 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
158                       "PowerPC CTR Loops Verify", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)159 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
160 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
161                     "PowerPC CTR Loops Verify", false, false)
162 
163 FunctionPass *llvm::createPPCCTRLoopsVerify() {
164   return new PPCCTRLoopsVerify();
165 }
166 #endif // NDEBUG
167 
runOnFunction(Function & F)168 bool PPCCTRLoops::runOnFunction(Function &F) {
169   if (skipFunction(F))
170     return false;
171 
172   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
173   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
174   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
175   DL = &F.getParent()->getDataLayout();
176   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
177   LibInfo = TLIP ? &TLIP->getTLI() : nullptr;
178   PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
179 
180   bool MadeChange = false;
181 
182   for (LoopInfo::iterator I = LI->begin(), E = LI->end();
183        I != E; ++I) {
184     Loop *L = *I;
185     if (!L->getParentLoop())
186       MadeChange |= convertToCTRLoop(L);
187   }
188 
189   return MadeChange;
190 }
191 
isLargeIntegerTy(bool Is32Bit,Type * Ty)192 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) {
193   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
194     return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
195 
196   return false;
197 }
198 
199 // Determining the address of a TLS variable results in a function call in
200 // certain TLS models.
memAddrUsesCTR(const PPCTargetMachine * TM,const Value * MemAddr)201 static bool memAddrUsesCTR(const PPCTargetMachine *TM,
202                            const Value *MemAddr) {
203   const auto *GV = dyn_cast<GlobalValue>(MemAddr);
204   if (!GV) {
205     // Recurse to check for constants that refer to TLS global variables.
206     if (const auto *CV = dyn_cast<Constant>(MemAddr))
207       for (const auto &CO : CV->operands())
208         if (memAddrUsesCTR(TM, CO))
209           return true;
210 
211     return false;
212   }
213 
214   if (!GV->isThreadLocal())
215     return false;
216   if (!TM)
217     return true;
218   TLSModel::Model Model = TM->getTLSModel(GV);
219   return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
220 }
221 
mightUseCTR(const Triple & TT,BasicBlock * BB)222 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
223   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
224        J != JE; ++J) {
225     if (CallInst *CI = dyn_cast<CallInst>(J)) {
226       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
227         // Inline ASM is okay, unless it clobbers the ctr register.
228         InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
229         for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
230           InlineAsm::ConstraintInfo &C = CIV[i];
231           if (C.Type != InlineAsm::isInput)
232             for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
233               if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
234                 return true;
235         }
236 
237         continue;
238       }
239 
240       if (!TM)
241         return true;
242       const TargetLowering *TLI =
243           TM->getSubtargetImpl(*BB->getParent())->getTargetLowering();
244 
245       if (Function *F = CI->getCalledFunction()) {
246         // Most intrinsics don't become function calls, but some might.
247         // sin, cos, exp and log are always calls.
248         unsigned Opcode = 0;
249         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
250           switch (F->getIntrinsicID()) {
251           default: continue;
252           // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
253           // we're definitely using CTR.
254           case Intrinsic::ppc_is_decremented_ctr_nonzero:
255           case Intrinsic::ppc_mtctr:
256             return true;
257 
258 // VisualStudio defines setjmp as _setjmp
259 #if defined(_MSC_VER) && defined(setjmp) && \
260                        !defined(setjmp_undefined_for_msvc)
261 #  pragma push_macro("setjmp")
262 #  undef setjmp
263 #  define setjmp_undefined_for_msvc
264 #endif
265 
266           case Intrinsic::setjmp:
267 
268 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
269  // let's return it to _setjmp state
270 #  pragma pop_macro("setjmp")
271 #  undef setjmp_undefined_for_msvc
272 #endif
273 
274           case Intrinsic::longjmp:
275 
276           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
277           // because, although it does clobber the counter register, the
278           // control can't then return to inside the loop unless there is also
279           // an eh_sjlj_setjmp.
280           case Intrinsic::eh_sjlj_setjmp:
281 
282           case Intrinsic::memcpy:
283           case Intrinsic::memmove:
284           case Intrinsic::memset:
285           case Intrinsic::powi:
286           case Intrinsic::log:
287           case Intrinsic::log2:
288           case Intrinsic::log10:
289           case Intrinsic::exp:
290           case Intrinsic::exp2:
291           case Intrinsic::pow:
292           case Intrinsic::sin:
293           case Intrinsic::cos:
294             return true;
295           case Intrinsic::copysign:
296             if (CI->getArgOperand(0)->getType()->getScalarType()->
297                 isPPC_FP128Ty())
298               return true;
299             else
300               continue; // ISD::FCOPYSIGN is never a library call.
301           case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
302           case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
303           case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
304           case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
305           case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
306           case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
307           case Intrinsic::round:     Opcode = ISD::FROUND;     break;
308           case Intrinsic::minnum:    Opcode = ISD::FMINNUM;    break;
309           case Intrinsic::maxnum:    Opcode = ISD::FMAXNUM;    break;
310           }
311         }
312 
313         // PowerPC does not use [US]DIVREM or other library calls for
314         // operations on regular types which are not otherwise library calls
315         // (i.e. soft float or atomics). If adapting for targets that do,
316         // additional care is required here.
317 
318         LibFunc::Func Func;
319         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
320             LibInfo->getLibFunc(F->getName(), Func) &&
321             LibInfo->hasOptimizedCodeGen(Func)) {
322           // Non-read-only functions are never treated as intrinsics.
323           if (!CI->onlyReadsMemory())
324             return true;
325 
326           // Conversion happens only for FP calls.
327           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
328             return true;
329 
330           switch (Func) {
331           default: return true;
332           case LibFunc::copysign:
333           case LibFunc::copysignf:
334             continue; // ISD::FCOPYSIGN is never a library call.
335           case LibFunc::copysignl:
336             return true;
337           case LibFunc::fabs:
338           case LibFunc::fabsf:
339           case LibFunc::fabsl:
340             continue; // ISD::FABS is never a library call.
341           case LibFunc::sqrt:
342           case LibFunc::sqrtf:
343           case LibFunc::sqrtl:
344             Opcode = ISD::FSQRT; break;
345           case LibFunc::floor:
346           case LibFunc::floorf:
347           case LibFunc::floorl:
348             Opcode = ISD::FFLOOR; break;
349           case LibFunc::nearbyint:
350           case LibFunc::nearbyintf:
351           case LibFunc::nearbyintl:
352             Opcode = ISD::FNEARBYINT; break;
353           case LibFunc::ceil:
354           case LibFunc::ceilf:
355           case LibFunc::ceill:
356             Opcode = ISD::FCEIL; break;
357           case LibFunc::rint:
358           case LibFunc::rintf:
359           case LibFunc::rintl:
360             Opcode = ISD::FRINT; break;
361           case LibFunc::round:
362           case LibFunc::roundf:
363           case LibFunc::roundl:
364             Opcode = ISD::FROUND; break;
365           case LibFunc::trunc:
366           case LibFunc::truncf:
367           case LibFunc::truncl:
368             Opcode = ISD::FTRUNC; break;
369           case LibFunc::fmin:
370           case LibFunc::fminf:
371           case LibFunc::fminl:
372             Opcode = ISD::FMINNUM; break;
373           case LibFunc::fmax:
374           case LibFunc::fmaxf:
375           case LibFunc::fmaxl:
376             Opcode = ISD::FMAXNUM; break;
377           }
378         }
379 
380         if (Opcode) {
381           auto &DL = CI->getModule()->getDataLayout();
382           MVT VTy = TLI->getSimpleValueType(DL, CI->getArgOperand(0)->getType(),
383                                             true);
384           if (VTy == MVT::Other)
385             return true;
386 
387           if (TLI->isOperationLegalOrCustom(Opcode, VTy))
388             continue;
389           else if (VTy.isVector() &&
390                    TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
391             continue;
392 
393           return true;
394         }
395       }
396 
397       return true;
398     } else if (isa<BinaryOperator>(J) &&
399                J->getType()->getScalarType()->isPPC_FP128Ty()) {
400       // Most operations on ppc_f128 values become calls.
401       return true;
402     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
403                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
404       CastInst *CI = cast<CastInst>(J);
405       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
406           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
407           isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) ||
408           isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType()))
409         return true;
410     } else if (isLargeIntegerTy(TT.isArch32Bit(),
411                                 J->getType()->getScalarType()) &&
412                (J->getOpcode() == Instruction::UDiv ||
413                 J->getOpcode() == Instruction::SDiv ||
414                 J->getOpcode() == Instruction::URem ||
415                 J->getOpcode() == Instruction::SRem)) {
416       return true;
417     } else if (TT.isArch32Bit() &&
418                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
419                (J->getOpcode() == Instruction::Shl ||
420                 J->getOpcode() == Instruction::AShr ||
421                 J->getOpcode() == Instruction::LShr)) {
422       // Only on PPC32, for 128-bit integers (specifically not 64-bit
423       // integers), these might be runtime calls.
424       return true;
425     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
426       // On PowerPC, indirect jumps use the counter register.
427       return true;
428     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
429       if (!TM)
430         return true;
431       const TargetLowering *TLI =
432           TM->getSubtargetImpl(*BB->getParent())->getTargetLowering();
433 
434       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
435         return true;
436     }
437 
438     if (TM->getSubtargetImpl(*BB->getParent())->getTargetLowering()->useSoftFloat()) {
439       switch(J->getOpcode()) {
440       case Instruction::FAdd:
441       case Instruction::FSub:
442       case Instruction::FMul:
443       case Instruction::FDiv:
444       case Instruction::FRem:
445       case Instruction::FPTrunc:
446       case Instruction::FPExt:
447       case Instruction::FPToUI:
448       case Instruction::FPToSI:
449       case Instruction::UIToFP:
450       case Instruction::SIToFP:
451       case Instruction::FCmp:
452         return true;
453       }
454     }
455 
456     for (Value *Operand : J->operands())
457       if (memAddrUsesCTR(TM, Operand))
458         return true;
459   }
460 
461   return false;
462 }
463 
convertToCTRLoop(Loop * L)464 bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
465   bool MadeChange = false;
466 
467   const Triple TT =
468       Triple(L->getHeader()->getParent()->getParent()->getTargetTriple());
469   if (!TT.isArch32Bit() && !TT.isArch64Bit())
470     return MadeChange; // Unknown arch. type.
471 
472   // Process nested loops first.
473   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
474     MadeChange |= convertToCTRLoop(*I);
475     DEBUG(dbgs() << "Nested loop converted\n");
476   }
477 
478   // If a nested loop has been converted, then we can't convert this loop.
479   if (MadeChange)
480     return MadeChange;
481 
482 #ifndef NDEBUG
483   // Stop trying after reaching the limit (if any).
484   int Limit = CTRLoopLimit;
485   if (Limit >= 0) {
486     if (Counter >= CTRLoopLimit)
487       return false;
488     Counter++;
489   }
490 #endif
491 
492   // We don't want to spill/restore the counter register, and so we don't
493   // want to use the counter register if the loop contains calls.
494   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
495        I != IE; ++I)
496     if (mightUseCTR(TT, *I))
497       return MadeChange;
498 
499   SmallVector<BasicBlock*, 4> ExitingBlocks;
500   L->getExitingBlocks(ExitingBlocks);
501 
502   BasicBlock *CountedExitBlock = nullptr;
503   const SCEV *ExitCount = nullptr;
504   BranchInst *CountedExitBranch = nullptr;
505   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
506        IE = ExitingBlocks.end(); I != IE; ++I) {
507     const SCEV *EC = SE->getExitCount(L, *I);
508     DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
509                     (*I)->getName() << ": " << *EC << "\n");
510     if (isa<SCEVCouldNotCompute>(EC))
511       continue;
512     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
513       if (ConstEC->getValue()->isZero())
514         continue;
515     } else if (!SE->isLoopInvariant(EC, L))
516       continue;
517 
518     if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32))
519       continue;
520 
521     // We now have a loop-invariant count of loop iterations (which is not the
522     // constant zero) for which we know that this loop will not exit via this
523     // exisiting block.
524 
525     // We need to make sure that this block will run on every loop iteration.
526     // For this to be true, we must dominate all blocks with backedges. Such
527     // blocks are in-loop predecessors to the header block.
528     bool NotAlways = false;
529     for (pred_iterator PI = pred_begin(L->getHeader()),
530          PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
531       if (!L->contains(*PI))
532         continue;
533 
534       if (!DT->dominates(*I, *PI)) {
535         NotAlways = true;
536         break;
537       }
538     }
539 
540     if (NotAlways)
541       continue;
542 
543     // Make sure this blocks ends with a conditional branch.
544     Instruction *TI = (*I)->getTerminator();
545     if (!TI)
546       continue;
547 
548     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
549       if (!BI->isConditional())
550         continue;
551 
552       CountedExitBranch = BI;
553     } else
554       continue;
555 
556     // Note that this block may not be the loop latch block, even if the loop
557     // has a latch block.
558     CountedExitBlock = *I;
559     ExitCount = EC;
560     break;
561   }
562 
563   if (!CountedExitBlock)
564     return MadeChange;
565 
566   BasicBlock *Preheader = L->getLoopPreheader();
567 
568   // If we don't have a preheader, then insert one. If we already have a
569   // preheader, then we can use it (except if the preheader contains a use of
570   // the CTR register because some such uses might be reordered by the
571   // selection DAG after the mtctr instruction).
572   if (!Preheader || mightUseCTR(TT, Preheader))
573     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
574   if (!Preheader)
575     return MadeChange;
576 
577   DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
578 
579   // Insert the count into the preheader and replace the condition used by the
580   // selected branch.
581   MadeChange = true;
582 
583   SCEVExpander SCEVE(*SE, Preheader->getModule()->getDataLayout(), "loopcnt");
584   LLVMContext &C = SE->getContext();
585   Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
586                                        Type::getInt32Ty(C);
587   if (!ExitCount->getType()->isPointerTy() &&
588       ExitCount->getType() != CountType)
589     ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
590   ExitCount = SE->getAddExpr(ExitCount, SE->getOne(CountType));
591   Value *ECValue =
592       SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator());
593 
594   IRBuilder<> CountBuilder(Preheader->getTerminator());
595   Module *M = Preheader->getParent()->getParent();
596   Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
597                                                CountType);
598   CountBuilder.CreateCall(MTCTRFunc, ECValue);
599 
600   IRBuilder<> CondBuilder(CountedExitBranch);
601   Value *DecFunc =
602     Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
603   Value *NewCond = CondBuilder.CreateCall(DecFunc, {});
604   Value *OldCond = CountedExitBranch->getCondition();
605   CountedExitBranch->setCondition(NewCond);
606 
607   // The false branch must exit the loop.
608   if (!L->contains(CountedExitBranch->getSuccessor(0)))
609     CountedExitBranch->swapSuccessors();
610 
611   // The old condition may be dead now, and may have even created a dead PHI
612   // (the original induction variable).
613   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
614   DeleteDeadPHIs(CountedExitBlock);
615 
616   ++NumCTRLoops;
617   return MadeChange;
618 }
619 
620 #ifndef NDEBUG
clobbersCTR(const MachineInstr * MI)621 static bool clobbersCTR(const MachineInstr *MI) {
622   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
623     const MachineOperand &MO = MI->getOperand(i);
624     if (MO.isReg()) {
625       if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
626         return true;
627     } else if (MO.isRegMask()) {
628       if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
629         return true;
630     }
631   }
632 
633   return false;
634 }
635 
verifyCTRBranch(MachineBasicBlock * MBB,MachineBasicBlock::iterator I)636 static bool verifyCTRBranch(MachineBasicBlock *MBB,
637                             MachineBasicBlock::iterator I) {
638   MachineBasicBlock::iterator BI = I;
639   SmallSet<MachineBasicBlock *, 16>   Visited;
640   SmallVector<MachineBasicBlock *, 8> Preds;
641   bool CheckPreds;
642 
643   if (I == MBB->begin()) {
644     Visited.insert(MBB);
645     goto queue_preds;
646   } else
647     --I;
648 
649 check_block:
650   Visited.insert(MBB);
651   if (I == MBB->end())
652     goto queue_preds;
653 
654   CheckPreds = true;
655   for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
656     unsigned Opc = I->getOpcode();
657     if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
658       CheckPreds = false;
659       break;
660     }
661 
662     if (I != BI && clobbersCTR(I)) {
663       DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
664                       MBB->getFullName() << ") instruction " << *I <<
665                       " clobbers CTR, invalidating " << "BB#" <<
666                       BI->getParent()->getNumber() << " (" <<
667                       BI->getParent()->getFullName() << ") instruction " <<
668                       *BI << "\n");
669       return false;
670     }
671 
672     if (I == IE)
673       break;
674   }
675 
676   if (!CheckPreds && Preds.empty())
677     return true;
678 
679   if (CheckPreds) {
680 queue_preds:
681     if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
682       DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
683                       BI->getParent()->getNumber() << " (" <<
684                       BI->getParent()->getFullName() << ") instruction " <<
685                       *BI << "\n");
686       return false;
687     }
688 
689     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
690          PIE = MBB->pred_end(); PI != PIE; ++PI)
691       Preds.push_back(*PI);
692   }
693 
694   do {
695     MBB = Preds.pop_back_val();
696     if (!Visited.count(MBB)) {
697       I = MBB->getLastNonDebugInstr();
698       goto check_block;
699     }
700   } while (!Preds.empty());
701 
702   return true;
703 }
704 
runOnMachineFunction(MachineFunction & MF)705 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
706   MDT = &getAnalysis<MachineDominatorTree>();
707 
708   // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
709   // any other instructions that might clobber the ctr register.
710   for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
711        I != IE; ++I) {
712     MachineBasicBlock *MBB = &*I;
713     if (!MDT->isReachableFromEntry(MBB))
714       continue;
715 
716     for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
717       MIIE = MBB->end(); MII != MIIE; ++MII) {
718       unsigned Opc = MII->getOpcode();
719       if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
720           Opc == PPC::BDZ8  || Opc == PPC::BDZ)
721         if (!verifyCTRBranch(MBB, MII))
722           llvm_unreachable("Invalid PPC CTR loop!");
723     }
724   }
725 
726   return false;
727 }
728 #endif // NDEBUG
729