1//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions.
12//===----------------------------------------------------------------------===//
13
14class SystemZReg<string n> : Register<n> {
15  let Namespace = "SystemZ";
16}
17
18class SystemZRegWithSubregs<string n, list<Register> subregs>
19  : RegisterWithSubRegs<n, subregs> {
20  let Namespace = "SystemZ";
21}
22
23let Namespace = "SystemZ" in {
24def subreg_l32   : SubRegIndex<32, 0>;  // Also acts as subreg_ll32.
25def subreg_h32   : SubRegIndex<32, 32>; // Also acts as subreg_lh32.
26def subreg_l64   : SubRegIndex<64, 0>;
27def subreg_h64   : SubRegIndex<64, 64>;
28def subreg_r32   : SubRegIndex<32, 32>; // Reinterpret a wider reg as 32 bits.
29def subreg_r64   : SubRegIndex<64, 64>; // Reinterpret a wider reg as 64 bits.
30def subreg_hh32  : ComposedSubRegIndex<subreg_h64, subreg_h32>;
31def subreg_hl32  : ComposedSubRegIndex<subreg_h64, subreg_l32>;
32def subreg_hr32  : ComposedSubRegIndex<subreg_h64, subreg_r32>;
33}
34
35// Define a register class that contains values of types TYPES and an
36// associated operand called NAME.  SIZE is the size and alignment
37// of the registers and REGLIST is the list of individual registers.
38multiclass SystemZRegClass<string name, list<ValueType> types, int size,
39                           dag regList> {
40  def AsmOperand : AsmOperandClass {
41    let Name = name;
42    let ParserMethod = "parse"##name;
43    let RenderMethod = "addRegOperands";
44  }
45  def Bit : RegisterClass<"SystemZ", types, size, regList> {
46    let Size = size;
47  }
48  def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
49    let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
50  }
51}
52
53//===----------------------------------------------------------------------===//
54// General-purpose registers
55//===----------------------------------------------------------------------===//
56
57// Lower 32 bits of one of the 16 64-bit general-purpose registers
58class GPR32<bits<16> num, string n> : SystemZReg<n> {
59  let HWEncoding = num;
60}
61
62// One of the 16 64-bit general-purpose registers.
63class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
64 : SystemZRegWithSubregs<n, [low, high]> {
65  let HWEncoding = num;
66  let SubRegIndices = [subreg_l32, subreg_h32];
67}
68
69// 8 even-odd pairs of GPR64s.
70class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
71 : SystemZRegWithSubregs<n, [low, high]> {
72  let HWEncoding = num;
73  let SubRegIndices = [subreg_l64, subreg_h64];
74}
75
76// General-purpose registers
77foreach I = 0-15 in {
78  def R#I#L : GPR32<I, "r"#I>;
79  def R#I#H : GPR32<I, "r"#I>;
80  def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
81                    DwarfRegNum<[I]>;
82}
83
84foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
85  def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
86                     !cast<GPR64>("R"#I#"D")>;
87}
88
89/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
90/// together with R14 and R15 in one prolog instruction.
91defm GR32  : SystemZRegClass<"GR32",  [i32], 32,
92                             (add (sequence "R%uL",  0, 5),
93                                  (sequence "R%uL", 15, 6))>;
94defm GRH32 : SystemZRegClass<"GRH32", [i32], 32,
95                             (add (sequence "R%uH",  0, 5),
96                                  (sequence "R%uH", 15, 6))>;
97defm GR64  : SystemZRegClass<"GR64",  [i64], 64,
98                             (add (sequence "R%uD",  0, 5),
99                                  (sequence "R%uD", 15, 6))>;
100
101// Combine the low and high GR32s into a single class.  This can only be
102// used for virtual registers if the high-word facility is available.
103defm GRX32 : SystemZRegClass<"GRX32", [i32], 32,
104                             (add (sequence "R%uL",  0, 5),
105                                  (sequence "R%uH",  0, 5),
106                                  R15L, R15H, R14L, R14H, R13L, R13H,
107                                  R12L, R12H, R11L, R11H, R10L, R10H,
108                                  R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>;
109
110// The architecture doesn't really have any i128 support, so model the
111// register pairs as untyped instead.
112defm GR128 : SystemZRegClass<"GR128", [untyped], 128,
113                             (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>;
114
115// Base and index registers.  Everything except R0, which in an address
116// context evaluates as 0.
117defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>;
118defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>;
119
120// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
121// of a GR128.
122defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>;
123
124//===----------------------------------------------------------------------===//
125// Floating-point registers
126//===----------------------------------------------------------------------===//
127
128// Maps FPR register numbers to their DWARF encoding.
129class DwarfMapping<int id> { int Id = id; }
130
131def F0Dwarf  : DwarfMapping<16>;
132def F2Dwarf  : DwarfMapping<17>;
133def F4Dwarf  : DwarfMapping<18>;
134def F6Dwarf  : DwarfMapping<19>;
135
136def F1Dwarf  : DwarfMapping<20>;
137def F3Dwarf  : DwarfMapping<21>;
138def F5Dwarf  : DwarfMapping<22>;
139def F7Dwarf  : DwarfMapping<23>;
140
141def F8Dwarf  : DwarfMapping<24>;
142def F10Dwarf : DwarfMapping<25>;
143def F12Dwarf : DwarfMapping<26>;
144def F14Dwarf : DwarfMapping<27>;
145
146def F9Dwarf  : DwarfMapping<28>;
147def F11Dwarf : DwarfMapping<29>;
148def F13Dwarf : DwarfMapping<30>;
149def F15Dwarf : DwarfMapping<31>;
150
151def F16Dwarf : DwarfMapping<68>;
152def F18Dwarf : DwarfMapping<69>;
153def F20Dwarf : DwarfMapping<70>;
154def F22Dwarf : DwarfMapping<71>;
155
156def F17Dwarf : DwarfMapping<72>;
157def F19Dwarf : DwarfMapping<73>;
158def F21Dwarf : DwarfMapping<74>;
159def F23Dwarf : DwarfMapping<75>;
160
161def F24Dwarf : DwarfMapping<76>;
162def F26Dwarf : DwarfMapping<77>;
163def F28Dwarf : DwarfMapping<78>;
164def F30Dwarf : DwarfMapping<79>;
165
166def F25Dwarf : DwarfMapping<80>;
167def F27Dwarf : DwarfMapping<81>;
168def F29Dwarf : DwarfMapping<82>;
169def F31Dwarf : DwarfMapping<83>;
170
171// Upper 32 bits of one of the floating-point registers
172class FPR32<bits<16> num, string n> : SystemZReg<n> {
173  let HWEncoding = num;
174}
175
176// One of the floating-point registers.
177class FPR64<bits<16> num, string n, FPR32 high>
178 : SystemZRegWithSubregs<n, [high]> {
179  let HWEncoding = num;
180  let SubRegIndices = [subreg_r32];
181}
182
183// 8 pairs of FPR64s, with a one-register gap inbetween.
184class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
185 : SystemZRegWithSubregs<n, [low, high]> {
186  let HWEncoding = num;
187  let SubRegIndices = [subreg_l64, subreg_h64];
188}
189
190// Floating-point registers.  Registers 16-31 require the vector facility.
191foreach I = 0-15 in {
192  def F#I#S : FPR32<I, "f"#I>;
193  def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
194              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
195}
196foreach I = 16-31 in {
197  def F#I#S : FPR32<I, "v"#I>;
198  def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>,
199              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
200}
201
202foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
203  def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
204                     !cast<FPR64>("F"#I#"D")>;
205}
206
207// There's no store-multiple instruction for FPRs, so we're not fussy
208// about the order in which call-saved registers are allocated.
209defm FP32  : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>;
210defm FP64  : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>;
211defm FP128 : SystemZRegClass<"FP128", [f128], 128,
212                             (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>;
213
214//===----------------------------------------------------------------------===//
215// Vector registers
216//===----------------------------------------------------------------------===//
217
218// A full 128-bit vector register, with an FPR64 as its high part.
219class VR128<bits<16> num, string n, FPR64 high>
220  : SystemZRegWithSubregs<n, [high]> {
221  let HWEncoding = num;
222  let SubRegIndices = [subreg_r64];
223}
224
225// Full vector registers.
226foreach I = 0-31 in {
227  def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>,
228            DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
229}
230
231// Class used to store 32-bit values in the first element of a vector
232// register.  f32 scalars are used for the WLEDB and WLDEB instructions.
233defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32,
234                            (add (sequence "F%uS", 0, 7),
235                                 (sequence "F%uS", 16, 31),
236                                 (sequence "F%uS", 8, 15))>;
237
238// Class used to store 64-bit values in the upper half of a vector register.
239// The vector facility also includes scalar f64 instructions that operate
240// on the full vector register set.
241defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64,
242                            (add (sequence "F%uD", 0, 7),
243                                 (sequence "F%uD", 16, 31),
244                                 (sequence "F%uD", 8, 15))>;
245
246// The subset of vector registers that can be used for floating-point
247// operations too.
248defm VF128 : SystemZRegClass<"VF128",
249                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
250                             (sequence "V%u", 0, 15)>;
251
252// All vector registers.
253defm VR128 : SystemZRegClass<"VR128",
254                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
255                             (add (sequence "V%u", 0, 7),
256                                  (sequence "V%u", 16, 31),
257                                  (sequence "V%u", 8, 15))>;
258
259// Attaches a ValueType to a register operand, to make the instruction
260// definitions easier.
261class TypedReg<ValueType vtin, RegisterOperand opin> {
262  ValueType vt = vtin;
263  RegisterOperand op = opin;
264}
265
266def v32eb   : TypedReg<f32,     VR32>;
267def v64g    : TypedReg<i64,     VR64>;
268def v64db   : TypedReg<f64,     VR64>;
269def v128b   : TypedReg<v16i8,   VR128>;
270def v128h   : TypedReg<v8i16,   VR128>;
271def v128f   : TypedReg<v4i32,   VR128>;
272def v128g   : TypedReg<v2i64,   VR128>;
273def v128q   : TypedReg<v16i8,   VR128>;
274def v128eb  : TypedReg<v4f32,   VR128>;
275def v128db  : TypedReg<v2f64,   VR128>;
276def v128any : TypedReg<untyped, VR128>;
277
278//===----------------------------------------------------------------------===//
279// Other registers
280//===----------------------------------------------------------------------===//
281
282// The 2-bit condition code field of the PSW.  Every register named in an
283// inline asm needs a class associated with it.
284def CC : SystemZReg<"cc">;
285let isAllocatable = 0 in
286  def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
287