1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16 
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
24 
25 namespace llvm {
26   class MachineInstrBuilder;
27   class X86RegisterInfo;
28   class X86Subtarget;
29 
30 namespace X86 {
31   // X86 specific condition code. These correspond to X86_*_COND in
32   // X86InstrInfo.td. They must be kept in synch.
33 enum CondCode {
34   COND_A = 0,
35   COND_AE = 1,
36   COND_B = 2,
37   COND_BE = 3,
38   COND_E = 4,
39   COND_G = 5,
40   COND_GE = 6,
41   COND_L = 7,
42   COND_LE = 8,
43   COND_NE = 9,
44   COND_NO = 10,
45   COND_NP = 11,
46   COND_NS = 12,
47   COND_O = 13,
48   COND_P = 14,
49   COND_S = 15,
50   LAST_VALID_COND = COND_S,
51 
52   // Artificial condition codes. These are used by AnalyzeBranch
53   // to indicate a block terminated with two conditional branches that together
54   // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
55   // which can't be represented on x86 with a single condition. These
56   // are never used in MachineInstrs and are inverses of one another.
57   COND_NE_OR_P,
58   COND_E_AND_NP,
59 
60   COND_INVALID
61 };
62 
63 // Turn condition code into conditional branch opcode.
64 unsigned GetCondBranchFromCond(CondCode CC);
65 
66 /// \brief Return a set opcode for the given condition and whether it has
67 /// a memory operand.
68 unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
69 
70 /// \brief Return a cmov opcode for the given condition, register size in
71 /// bytes, and operand type.
72 unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
73                          bool HasMemoryOperand = false);
74 
75 // Turn CMov opcode into condition code.
76 CondCode getCondFromCMovOpc(unsigned Opc);
77 
78 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
79 /// e.g. turning COND_E to COND_NE.
80 CondCode GetOppositeBranchCondition(CondCode CC);
81 }  // end namespace X86;
82 
83 
84 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
85 /// a reference to a stub for a global, not the global itself.
isGlobalStubReference(unsigned char TargetFlag)86 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
87   switch (TargetFlag) {
88   case X86II::MO_DLLIMPORT: // dllimport stub.
89   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
90   case X86II::MO_GOT:       // normal GOT reference.
91   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
92   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
93     return true;
94   default:
95     return false;
96   }
97 }
98 
99 /// isGlobalRelativeToPICBase - Return true if the specified global value
100 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
101 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
isGlobalRelativeToPICBase(unsigned char TargetFlag)102 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
103   switch (TargetFlag) {
104   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
105   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
106   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
107   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
108   case X86II::MO_TLVP:                           // ??? Pretty sure..
109     return true;
110   default:
111     return false;
112   }
113 }
114 
isScale(const MachineOperand & MO)115 inline static bool isScale(const MachineOperand &MO) {
116   return MO.isImm() &&
117     (MO.getImm() == 1 || MO.getImm() == 2 ||
118      MO.getImm() == 4 || MO.getImm() == 8);
119 }
120 
isLeaMem(const MachineInstr & MI,unsigned Op)121 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
122   if (MI.getOperand(Op).isFI())
123     return true;
124   return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
125          MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
126          isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
127          MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
128          (MI.getOperand(Op + X86::AddrDisp).isImm() ||
129           MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
130           MI.getOperand(Op + X86::AddrDisp).isCPI() ||
131           MI.getOperand(Op + X86::AddrDisp).isJTI());
132 }
133 
isMem(const MachineInstr & MI,unsigned Op)134 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
135   if (MI.getOperand(Op).isFI())
136     return true;
137   return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
138          MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
139 }
140 
141 class X86InstrInfo final : public X86GenInstrInfo {
142   X86Subtarget &Subtarget;
143   const X86RegisterInfo RI;
144 
145   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
146   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
147   ///
148   typedef DenseMap<unsigned,
149                    std::pair<uint16_t, uint16_t> > RegOp2MemOpTableType;
150   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
151   RegOp2MemOpTableType RegOp2MemOpTable0;
152   RegOp2MemOpTableType RegOp2MemOpTable1;
153   RegOp2MemOpTableType RegOp2MemOpTable2;
154   RegOp2MemOpTableType RegOp2MemOpTable3;
155   RegOp2MemOpTableType RegOp2MemOpTable4;
156 
157   /// MemOp2RegOpTable - Load / store unfolding opcode map.
158   ///
159   typedef DenseMap<unsigned,
160                    std::pair<uint16_t, uint16_t> > MemOp2RegOpTableType;
161   MemOp2RegOpTableType MemOp2RegOpTable;
162 
163   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
164                             MemOp2RegOpTableType &M2RTable,
165                             uint16_t RegOp, uint16_t MemOp, uint16_t Flags);
166 
167   virtual void anchor();
168 
169   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
170                          MachineBasicBlock *&FBB,
171                          SmallVectorImpl<MachineOperand> &Cond,
172                          SmallVectorImpl<MachineInstr *> &CondBranches,
173                          bool AllowModify) const;
174 
175 public:
176   explicit X86InstrInfo(X86Subtarget &STI);
177 
178   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
179   /// such, whenever a client has an instance of instruction info, it should
180   /// always be able to get register info as well (through this method).
181   ///
getRegisterInfo()182   const X86RegisterInfo &getRegisterInfo() const { return RI; }
183 
184   /// getSPAdjust - This returns the stack pointer adjustment made by
185   /// this instruction. For x86, we need to handle more complex call
186   /// sequences involving PUSHes.
187   int getSPAdjust(const MachineInstr &MI) const override;
188 
189   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
190   /// extension instruction. That is, it's like a copy where it's legal for the
191   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
192   /// true, then it's expected the pre-extension value is available as a subreg
193   /// of the result register. This also returns the sub-register index in
194   /// SubIdx.
195   bool isCoalescableExtInstr(const MachineInstr &MI,
196                              unsigned &SrcReg, unsigned &DstReg,
197                              unsigned &SubIdx) const override;
198 
199   unsigned isLoadFromStackSlot(const MachineInstr &MI,
200                                int &FrameIndex) const override;
201   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
202   /// stack locations as well.  This uses a heuristic so it isn't
203   /// reliable for correctness.
204   unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
205                                      int &FrameIndex) const override;
206 
207   unsigned isStoreToStackSlot(const MachineInstr &MI,
208                               int &FrameIndex) const override;
209   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
210   /// stack locations as well.  This uses a heuristic so it isn't
211   /// reliable for correctness.
212   unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
213                                     int &FrameIndex) const override;
214 
215   bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
216                                          AliasAnalysis *AA) const override;
217   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
218                      unsigned DestReg, unsigned SubIdx,
219                      const MachineInstr &Orig,
220                      const TargetRegisterInfo &TRI) const override;
221 
222   /// Given an operand within a MachineInstr, insert preceding code to put it
223   /// into the right format for a particular kind of LEA instruction. This may
224   /// involve using an appropriate super-register instead (with an implicit use
225   /// of the original) or creating a new virtual register and inserting COPY
226   /// instructions to get the data into the right class.
227   ///
228   /// Reference parameters are set to indicate how caller should add this
229   /// operand to the LEA instruction.
230   bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
231                       unsigned LEAOpcode, bool AllowSP, unsigned &NewSrc,
232                       bool &isKill, bool &isUndef,
233                       MachineOperand &ImplicitOp) const;
234 
235   /// convertToThreeAddress - This method must be implemented by targets that
236   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
237   /// may be able to convert a two-address instruction into a true
238   /// three-address instruction on demand.  This allows the X86 target (for
239   /// example) to convert ADD and SHL instructions into LEA instructions if they
240   /// would require register copies due to two-addressness.
241   ///
242   /// This method returns a null pointer if the transformation cannot be
243   /// performed, otherwise it returns the new instruction.
244   ///
245   MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
246                                       MachineInstr &MI,
247                                       LiveVariables *LV) const override;
248 
249   /// Returns true iff the routine could find two commutable operands in the
250   /// given machine instruction.
251   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
252   /// input values can be re-defined in this method only if the input values
253   /// are not pre-defined, which is designated by the special value
254   /// 'CommuteAnyOperandIndex' assigned to it.
255   /// If both of indices are pre-defined and refer to some operands, then the
256   /// method simply returns true if the corresponding operands are commutable
257   /// and returns false otherwise.
258   ///
259   /// For example, calling this method this way:
260   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
261   ///     findCommutedOpIndices(MI, Op1, Op2);
262   /// can be interpreted as a query asking to find an operand that would be
263   /// commutable with the operand#1.
264   bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
265                              unsigned &SrcOpIdx2) const override;
266 
267   /// Returns true if the routine could find two commutable operands
268   /// in the given FMA instruction. Otherwise, returns false.
269   ///
270   /// \p SrcOpIdx1 and \p SrcOpIdx2 are INPUT and OUTPUT arguments.
271   /// The output indices of the commuted operands are returned in these
272   /// arguments. Also, the input values of these arguments may be preset either
273   /// to indices of operands that must be commuted or be equal to a special
274   /// value 'CommuteAnyOperandIndex' which means that the corresponding
275   /// operand index is not set and this method is free to pick any of
276   /// available commutable operands.
277   ///
278   /// For example, calling this method this way:
279   ///     unsigned Idx1 = 1, Idx2 = CommuteAnyOperandIndex;
280   ///     findFMA3CommutedOpIndices(MI, Idx1, Idx2);
281   /// can be interpreted as a query asking if the operand #1 can be swapped
282   /// with any other available operand (e.g. operand #2, operand #3, etc.).
283   ///
284   /// The returned FMA opcode may differ from the opcode in the given MI.
285   /// For example, commuting the operands #1 and #3 in the following FMA
286   ///     FMA213 #1, #2, #3
287   /// results into instruction with adjusted opcode:
288   ///     FMA231 #3, #2, #1
289   bool findFMA3CommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
290                                  unsigned &SrcOpIdx2) const;
291 
292   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
293   /// performs the same computations as the given MI but which has the operands
294   /// \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
295   /// It may return 0 if it is unsafe to commute the operands.
296   ///
297   /// The returned FMA opcode may differ from the opcode in the given \p MI.
298   /// For example, commuting the operands #1 and #3 in the following FMA
299   ///     FMA213 #1, #2, #3
300   /// results into instruction with adjusted opcode:
301   ///     FMA231 #3, #2, #1
302   unsigned getFMA3OpcodeToCommuteOperands(MachineInstr &MI, unsigned SrcOpIdx1,
303                                           unsigned SrcOpIdx2) const;
304 
305   // Branch analysis.
306   bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
307   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
308                      MachineBasicBlock *&FBB,
309                      SmallVectorImpl<MachineOperand> &Cond,
310                      bool AllowModify) const override;
311 
312   bool getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
313                              int64_t &Offset,
314                              const TargetRegisterInfo *TRI) const override;
315   bool analyzeBranchPredicate(MachineBasicBlock &MBB,
316                               TargetInstrInfo::MachineBranchPredicate &MBP,
317                               bool AllowModify = false) const override;
318 
319   unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
320   unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
321                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
322                         const DebugLoc &DL) const override;
323   bool canInsertSelect(const MachineBasicBlock&, ArrayRef<MachineOperand> Cond,
324                        unsigned, unsigned, int&, int&, int&) const override;
325   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
326                     const DebugLoc &DL, unsigned DstReg,
327                     ArrayRef<MachineOperand> Cond, unsigned TrueReg,
328                     unsigned FalseReg) const override;
329   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
330                    const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
331                    bool KillSrc) const override;
332   void storeRegToStackSlot(MachineBasicBlock &MBB,
333                            MachineBasicBlock::iterator MI,
334                            unsigned SrcReg, bool isKill, int FrameIndex,
335                            const TargetRegisterClass *RC,
336                            const TargetRegisterInfo *TRI) const override;
337 
338   void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
339                       SmallVectorImpl<MachineOperand> &Addr,
340                       const TargetRegisterClass *RC,
341                       MachineInstr::mmo_iterator MMOBegin,
342                       MachineInstr::mmo_iterator MMOEnd,
343                       SmallVectorImpl<MachineInstr*> &NewMIs) const;
344 
345   void loadRegFromStackSlot(MachineBasicBlock &MBB,
346                             MachineBasicBlock::iterator MI,
347                             unsigned DestReg, int FrameIndex,
348                             const TargetRegisterClass *RC,
349                             const TargetRegisterInfo *TRI) const override;
350 
351   void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
352                        SmallVectorImpl<MachineOperand> &Addr,
353                        const TargetRegisterClass *RC,
354                        MachineInstr::mmo_iterator MMOBegin,
355                        MachineInstr::mmo_iterator MMOEnd,
356                        SmallVectorImpl<MachineInstr*> &NewMIs) const;
357 
358   bool expandPostRAPseudo(MachineInstr &MI) const override;
359 
360   /// foldMemoryOperand - If this target supports it, fold a load or store of
361   /// the specified stack slot into the specified machine instruction for the
362   /// specified operand(s).  If this is possible, the target should perform the
363   /// folding and return true, otherwise it should return false.  If it folds
364   /// the instruction, it is likely that the MachineInstruction the iterator
365   /// references has been changed.
366   MachineInstr *
367   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
368                         ArrayRef<unsigned> Ops,
369                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
370                         LiveIntervals *LIS = nullptr) const override;
371 
372   /// foldMemoryOperand - Same as the previous version except it allows folding
373   /// of any load and store from / to any address, not just from a specific
374   /// stack slot.
375   MachineInstr *foldMemoryOperandImpl(
376       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
377       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
378       LiveIntervals *LIS = nullptr) const override;
379 
380   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
381   /// a store or a load and a store into two or more instruction. If this is
382   /// possible, returns true as well as the new instructions by reference.
383   bool
384   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
385                       bool UnfoldLoad, bool UnfoldStore,
386                       SmallVectorImpl<MachineInstr *> &NewMIs) const override;
387 
388   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
389                            SmallVectorImpl<SDNode*> &NewNodes) const override;
390 
391   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
392   /// instruction after load / store are unfolded from an instruction of the
393   /// specified opcode. It returns zero if the specified unfolding is not
394   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
395   /// index of the operand which will hold the register holding the loaded
396   /// value.
397   unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
398                               bool UnfoldLoad, bool UnfoldStore,
399                               unsigned *LoadRegIndex = nullptr) const override;
400 
401   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
402   /// to determine if two loads are loading from the same base address. It
403   /// should only return true if the base pointers are the same and the
404   /// only differences between the two addresses are the offset. It also returns
405   /// the offsets by reference.
406   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
407                                int64_t &Offset2) const override;
408 
409   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
410   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
411   /// be scheduled togther. On some targets if two loads are loading from
412   /// addresses in the same cache line, it's better if they are scheduled
413   /// together. This function takes two integers that represent the load offsets
414   /// from the common base address. It returns true if it decides it's desirable
415   /// to schedule the two loads together. "NumLoads" is the number of loads that
416   /// have already been scheduled after Load1.
417   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
418                                int64_t Offset1, int64_t Offset2,
419                                unsigned NumLoads) const override;
420 
421   bool shouldScheduleAdjacent(MachineInstr &First,
422                               MachineInstr &Second) const override;
423 
424   void getNoopForMachoTarget(MCInst &NopInst) const override;
425 
426   bool
427   ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
428 
429   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
430   /// instruction that defines the specified register class.
431   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
432 
433   /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
434   /// would clobber the EFLAGS condition register. Note the result may be
435   /// conservative. If it cannot definitely determine the safety after visiting
436   /// a few instructions in each direction it assumes it's not safe.
437   bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
438                              MachineBasicBlock::iterator I) const;
439 
440   /// True if MI has a condition code def, e.g. EFLAGS, that is
441   /// not marked dead.
442   bool hasLiveCondCodeDef(MachineInstr &MI) const;
443 
444   /// getGlobalBaseReg - Return a virtual register initialized with the
445   /// the global base register value. Output instructions required to
446   /// initialize the register in the function entry block, if necessary.
447   ///
448   unsigned getGlobalBaseReg(MachineFunction *MF) const;
449 
450   std::pair<uint16_t, uint16_t>
451   getExecutionDomain(const MachineInstr &MI) const override;
452 
453   void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
454 
455   unsigned
456   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
457                                const TargetRegisterInfo *TRI) const override;
458   unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
459                                 const TargetRegisterInfo *TRI) const override;
460   void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
461                                  const TargetRegisterInfo *TRI) const override;
462 
463   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
464                                       unsigned OpNum,
465                                       ArrayRef<MachineOperand> MOs,
466                                       MachineBasicBlock::iterator InsertPt,
467                                       unsigned Size, unsigned Alignment,
468                                       bool AllowCommute) const;
469 
470   void
471   getUnconditionalBranch(MCInst &Branch,
472                          const MCSymbolRefExpr *BranchTarget) const override;
473 
474   void getTrap(MCInst &MI) const override;
475 
476   unsigned getJumpInstrTableEntryBound() const override;
477 
478   bool isHighLatencyDef(int opc) const override;
479 
480   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
481                              const MachineRegisterInfo *MRI,
482                              const MachineInstr &DefMI, unsigned DefIdx,
483                              const MachineInstr &UseMI,
484                              unsigned UseIdx) const override;
485 
useMachineCombiner()486   bool useMachineCombiner() const override {
487     return true;
488   }
489 
490   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
491 
492   bool hasReassociableOperands(const MachineInstr &Inst,
493                                const MachineBasicBlock *MBB) const override;
494 
495   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
496                              MachineInstr &NewMI1,
497                              MachineInstr &NewMI2) const override;
498 
499   /// analyzeCompare - For a comparison instruction, return the source registers
500   /// in SrcReg and SrcReg2 if having two register operands, and the value it
501   /// compares against in CmpValue. Return true if the comparison instruction
502   /// can be analyzed.
503   bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
504                       unsigned &SrcReg2, int &CmpMask,
505                       int &CmpValue) const override;
506 
507   /// optimizeCompareInstr - Check if there exists an earlier instruction that
508   /// operates on the same source operands and sets flags in the same way as
509   /// Compare; remove Compare if possible.
510   bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
511                             unsigned SrcReg2, int CmpMask, int CmpValue,
512                             const MachineRegisterInfo *MRI) const override;
513 
514   /// optimizeLoadInstr - Try to remove the load by folding it to a register
515   /// operand at the use. We fold the load instructions if and only if the
516   /// def and use are in the same BB. We only look at one load and see
517   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
518   /// defined by the load we are trying to fold. DefMI returns the machine
519   /// instruction that defines FoldAsLoadDefReg, and the function returns
520   /// the machine instruction generated due to folding.
521   MachineInstr *optimizeLoadInstr(MachineInstr &MI,
522                                   const MachineRegisterInfo *MRI,
523                                   unsigned &FoldAsLoadDefReg,
524                                   MachineInstr *&DefMI) const override;
525 
526   std::pair<unsigned, unsigned>
527   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
528 
529   ArrayRef<std::pair<unsigned, const char *>>
530   getSerializableDirectMachineOperandTargetFlags() const override;
531 
532 protected:
533   /// Commutes the operands in the given instruction by changing the operands
534   /// order and/or changing the instruction's opcode and/or the immediate value
535   /// operand.
536   ///
537   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
538   /// to be commuted.
539   ///
540   /// Do not call this method for a non-commutable instruction or
541   /// non-commutable operands.
542   /// Even though the instruction is commutable, the method may still
543   /// fail to commute the operands, null pointer is returned in such cases.
544   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
545                                        unsigned CommuteOpIdx1,
546                                        unsigned CommuteOpIdx2) const override;
547 
548 private:
549   MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
550                                              MachineFunction::iterator &MFI,
551                                              MachineInstr &MI,
552                                              LiveVariables *LV) const;
553 
554   /// Handles memory folding for special case instructions, for instance those
555   /// requiring custom manipulation of the address.
556   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
557                                         unsigned OpNum,
558                                         ArrayRef<MachineOperand> MOs,
559                                         MachineBasicBlock::iterator InsertPt,
560                                         unsigned Size, unsigned Align) const;
561 
562   /// isFrameOperand - Return true and the FrameIndex if the specified
563   /// operand and follow operands form a reference to the stack frame.
564   bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
565                       int &FrameIndex) const;
566 
567   /// Expand the MOVImmSExti8 pseudo-instructions.
568   bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB) const;
569 };
570 
571 } // End llvm namespace
572 
573 #endif
574