1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments. In
11 // practice, this means looking for internal functions that have pointer
12 // arguments. If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value. This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded. Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently. This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/Transforms/IPO.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/BasicAliasAnalysis.h"
39 #include "llvm/Analysis/CallGraph.h"
40 #include "llvm/Analysis/CallGraphSCCPass.h"
41 #include "llvm/Analysis/Loads.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/ValueTracking.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <set>
56 using namespace llvm;
57
58 #define DEBUG_TYPE "argpromotion"
59
60 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
61 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
62 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
63 STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated");
64
65 namespace {
66 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
67 ///
68 struct ArgPromotion : public CallGraphSCCPass {
getAnalysisUsage__anon33a886d10111::ArgPromotion69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.addRequired<AssumptionCacheTracker>();
71 AU.addRequired<TargetLibraryInfoWrapperPass>();
72 getAAResultsAnalysisUsage(AU);
73 CallGraphSCCPass::getAnalysisUsage(AU);
74 }
75
76 bool runOnSCC(CallGraphSCC &SCC) override;
77 static char ID; // Pass identification, replacement for typeid
ArgPromotion__anon33a886d10111::ArgPromotion78 explicit ArgPromotion(unsigned maxElements = 3)
79 : CallGraphSCCPass(ID), maxElements(maxElements) {
80 initializeArgPromotionPass(*PassRegistry::getPassRegistry());
81 }
82
83 private:
84
85 using llvm::Pass::doInitialization;
86 bool doInitialization(CallGraph &CG) override;
87 /// The maximum number of elements to expand, or 0 for unlimited.
88 unsigned maxElements;
89 };
90 }
91
92 /// A vector used to hold the indices of a single GEP instruction
93 typedef std::vector<uint64_t> IndicesVector;
94
95 static CallGraphNode *
96 PromoteArguments(CallGraphNode *CGN, CallGraph &CG,
97 function_ref<AAResults &(Function &F)> AARGetter,
98 unsigned MaxElements);
99 static bool isDenselyPacked(Type *type, const DataLayout &DL);
100 static bool canPaddingBeAccessed(Argument *Arg);
101 static bool isSafeToPromoteArgument(Argument *Arg, bool isByVal, AAResults &AAR,
102 unsigned MaxElements);
103 static CallGraphNode *
104 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
105 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG);
106
107 char ArgPromotion::ID = 0;
108 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
109 "Promote 'by reference' arguments to scalars", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)110 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
111 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
113 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
114 "Promote 'by reference' arguments to scalars", false, false)
115
116 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
117 return new ArgPromotion(maxElements);
118 }
119
runImpl(CallGraphSCC & SCC,CallGraph & CG,function_ref<AAResults & (Function & F)> AARGetter,unsigned MaxElements)120 static bool runImpl(CallGraphSCC &SCC, CallGraph &CG,
121 function_ref<AAResults &(Function &F)> AARGetter,
122 unsigned MaxElements) {
123 bool Changed = false, LocalChange;
124
125 do { // Iterate until we stop promoting from this SCC.
126 LocalChange = false;
127 // Attempt to promote arguments from all functions in this SCC.
128 for (CallGraphNode *OldNode : SCC) {
129 if (CallGraphNode *NewNode =
130 PromoteArguments(OldNode, CG, AARGetter, MaxElements)) {
131 LocalChange = true;
132 SCC.ReplaceNode(OldNode, NewNode);
133 }
134 }
135 Changed |= LocalChange; // Remember that we changed something.
136 } while (LocalChange);
137
138 return Changed;
139 }
140
runOnSCC(CallGraphSCC & SCC)141 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
142 if (skipSCC(SCC))
143 return false;
144
145 // Get the callgraph information that we need to update to reflect our
146 // changes.
147 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
148
149 // We compute dedicated AA results for each function in the SCC as needed. We
150 // use a lambda referencing external objects so that they live long enough to
151 // be queried, but we re-use them each time.
152 Optional<BasicAAResult> BAR;
153 Optional<AAResults> AAR;
154 auto AARGetter = [&](Function &F) -> AAResults & {
155 BAR.emplace(createLegacyPMBasicAAResult(*this, F));
156 AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
157 return *AAR;
158 };
159
160 return runImpl(SCC, CG, AARGetter, maxElements);
161 }
162
163 /// \brief Checks if a type could have padding bytes.
isDenselyPacked(Type * type,const DataLayout & DL)164 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
165
166 // There is no size information, so be conservative.
167 if (!type->isSized())
168 return false;
169
170 // If the alloc size is not equal to the storage size, then there are padding
171 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
172 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
173 return false;
174
175 if (!isa<CompositeType>(type))
176 return true;
177
178 // For homogenous sequential types, check for padding within members.
179 if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
180 return isa<PointerType>(seqTy) ||
181 isDenselyPacked(seqTy->getElementType(), DL);
182
183 // Check for padding within and between elements of a struct.
184 StructType *StructTy = cast<StructType>(type);
185 const StructLayout *Layout = DL.getStructLayout(StructTy);
186 uint64_t StartPos = 0;
187 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
188 Type *ElTy = StructTy->getElementType(i);
189 if (!isDenselyPacked(ElTy, DL))
190 return false;
191 if (StartPos != Layout->getElementOffsetInBits(i))
192 return false;
193 StartPos += DL.getTypeAllocSizeInBits(ElTy);
194 }
195
196 return true;
197 }
198
199 /// \brief Checks if the padding bytes of an argument could be accessed.
canPaddingBeAccessed(Argument * arg)200 static bool canPaddingBeAccessed(Argument *arg) {
201
202 assert(arg->hasByValAttr());
203
204 // Track all the pointers to the argument to make sure they are not captured.
205 SmallPtrSet<Value *, 16> PtrValues;
206 PtrValues.insert(arg);
207
208 // Track all of the stores.
209 SmallVector<StoreInst *, 16> Stores;
210
211 // Scan through the uses recursively to make sure the pointer is always used
212 // sanely.
213 SmallVector<Value *, 16> WorkList;
214 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
215 while (!WorkList.empty()) {
216 Value *V = WorkList.back();
217 WorkList.pop_back();
218 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
219 if (PtrValues.insert(V).second)
220 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
221 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
222 Stores.push_back(Store);
223 } else if (!isa<LoadInst>(V)) {
224 return true;
225 }
226 }
227
228 // Check to make sure the pointers aren't captured
229 for (StoreInst *Store : Stores)
230 if (PtrValues.count(Store->getValueOperand()))
231 return true;
232
233 return false;
234 }
235
236 /// PromoteArguments - This method checks the specified function to see if there
237 /// are any promotable arguments and if it is safe to promote the function (for
238 /// example, all callers are direct). If safe to promote some arguments, it
239 /// calls the DoPromotion method.
240 ///
241 static CallGraphNode *
PromoteArguments(CallGraphNode * CGN,CallGraph & CG,function_ref<AAResults & (Function & F)> AARGetter,unsigned MaxElements)242 PromoteArguments(CallGraphNode *CGN, CallGraph &CG,
243 function_ref<AAResults &(Function &F)> AARGetter,
244 unsigned MaxElements) {
245 Function *F = CGN->getFunction();
246
247 // Make sure that it is local to this module.
248 if (!F || !F->hasLocalLinkage()) return nullptr;
249
250 // Don't promote arguments for variadic functions. Adding, removing, or
251 // changing non-pack parameters can change the classification of pack
252 // parameters. Frontends encode that classification at the call site in the
253 // IR, while in the callee the classification is determined dynamically based
254 // on the number of registers consumed so far.
255 if (F->isVarArg()) return nullptr;
256
257 // First check: see if there are any pointer arguments! If not, quick exit.
258 SmallVector<Argument*, 16> PointerArgs;
259 for (Argument &I : F->args())
260 if (I.getType()->isPointerTy())
261 PointerArgs.push_back(&I);
262 if (PointerArgs.empty()) return nullptr;
263
264 // Second check: make sure that all callers are direct callers. We can't
265 // transform functions that have indirect callers. Also see if the function
266 // is self-recursive.
267 bool isSelfRecursive = false;
268 for (Use &U : F->uses()) {
269 CallSite CS(U.getUser());
270 // Must be a direct call.
271 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
272
273 if (CS.getInstruction()->getParent()->getParent() == F)
274 isSelfRecursive = true;
275 }
276
277 const DataLayout &DL = F->getParent()->getDataLayout();
278
279 AAResults &AAR = AARGetter(*F);
280
281 // Check to see which arguments are promotable. If an argument is promotable,
282 // add it to ArgsToPromote.
283 SmallPtrSet<Argument*, 8> ArgsToPromote;
284 SmallPtrSet<Argument*, 8> ByValArgsToTransform;
285 for (Argument *PtrArg : PointerArgs) {
286 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
287
288 // Replace sret attribute with noalias. This reduces register pressure by
289 // avoiding a register copy.
290 if (PtrArg->hasStructRetAttr()) {
291 unsigned ArgNo = PtrArg->getArgNo();
292 F->setAttributes(
293 F->getAttributes()
294 .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
295 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
296 for (Use &U : F->uses()) {
297 CallSite CS(U.getUser());
298 CS.setAttributes(
299 CS.getAttributes()
300 .removeAttribute(F->getContext(), ArgNo + 1,
301 Attribute::StructRet)
302 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
303 }
304 }
305
306 // If this is a byval argument, and if the aggregate type is small, just
307 // pass the elements, which is always safe, if the passed value is densely
308 // packed or if we can prove the padding bytes are never accessed. This does
309 // not apply to inalloca.
310 bool isSafeToPromote =
311 PtrArg->hasByValAttr() &&
312 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
313 if (isSafeToPromote) {
314 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
315 if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
316 DEBUG(dbgs() << "argpromotion disable promoting argument '"
317 << PtrArg->getName() << "' because it would require adding more"
318 << " than " << MaxElements << " arguments to the function.\n");
319 continue;
320 }
321
322 // If all the elements are single-value types, we can promote it.
323 bool AllSimple = true;
324 for (const auto *EltTy : STy->elements()) {
325 if (!EltTy->isSingleValueType()) {
326 AllSimple = false;
327 break;
328 }
329 }
330
331 // Safe to transform, don't even bother trying to "promote" it.
332 // Passing the elements as a scalar will allow sroa to hack on
333 // the new alloca we introduce.
334 if (AllSimple) {
335 ByValArgsToTransform.insert(PtrArg);
336 continue;
337 }
338 }
339 }
340
341 // If the argument is a recursive type and we're in a recursive
342 // function, we could end up infinitely peeling the function argument.
343 if (isSelfRecursive) {
344 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
345 bool RecursiveType = false;
346 for (const auto *EltTy : STy->elements()) {
347 if (EltTy == PtrArg->getType()) {
348 RecursiveType = true;
349 break;
350 }
351 }
352 if (RecursiveType)
353 continue;
354 }
355 }
356
357 // Otherwise, see if we can promote the pointer to its value.
358 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
359 MaxElements))
360 ArgsToPromote.insert(PtrArg);
361 }
362
363 // No promotable pointer arguments.
364 if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
365 return nullptr;
366
367 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform, CG);
368 }
369
370 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
371 /// all callees pass in a valid pointer for the specified function argument.
AllCallersPassInValidPointerForArgument(Argument * Arg)372 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
373 Function *Callee = Arg->getParent();
374 const DataLayout &DL = Callee->getParent()->getDataLayout();
375
376 unsigned ArgNo = Arg->getArgNo();
377
378 // Look at all call sites of the function. At this pointer we know we only
379 // have direct callees.
380 for (User *U : Callee->users()) {
381 CallSite CS(U);
382 assert(CS && "Should only have direct calls!");
383
384 if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
385 return false;
386 }
387 return true;
388 }
389
390 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
391 /// that is greater than or equal to the size of prefix, and each of the
392 /// elements in Prefix is the same as the corresponding elements in Longer.
393 ///
394 /// This means it also returns true when Prefix and Longer are equal!
IsPrefix(const IndicesVector & Prefix,const IndicesVector & Longer)395 static bool IsPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
396 if (Prefix.size() > Longer.size())
397 return false;
398 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
399 }
400
401
402 /// Checks if Indices, or a prefix of Indices, is in Set.
PrefixIn(const IndicesVector & Indices,std::set<IndicesVector> & Set)403 static bool PrefixIn(const IndicesVector &Indices,
404 std::set<IndicesVector> &Set) {
405 std::set<IndicesVector>::iterator Low;
406 Low = Set.upper_bound(Indices);
407 if (Low != Set.begin())
408 Low--;
409 // Low is now the last element smaller than or equal to Indices. This means
410 // it points to a prefix of Indices (possibly Indices itself), if such
411 // prefix exists.
412 //
413 // This load is safe if any prefix of its operands is safe to load.
414 return Low != Set.end() && IsPrefix(*Low, Indices);
415 }
416
417 /// Mark the given indices (ToMark) as safe in the given set of indices
418 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
419 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
420 /// already. Furthermore, any indices that Indices is itself a prefix of, are
421 /// removed from Safe (since they are implicitely safe because of Indices now).
MarkIndicesSafe(const IndicesVector & ToMark,std::set<IndicesVector> & Safe)422 static void MarkIndicesSafe(const IndicesVector &ToMark,
423 std::set<IndicesVector> &Safe) {
424 std::set<IndicesVector>::iterator Low;
425 Low = Safe.upper_bound(ToMark);
426 // Guard against the case where Safe is empty
427 if (Low != Safe.begin())
428 Low--;
429 // Low is now the last element smaller than or equal to Indices. This
430 // means it points to a prefix of Indices (possibly Indices itself), if
431 // such prefix exists.
432 if (Low != Safe.end()) {
433 if (IsPrefix(*Low, ToMark))
434 // If there is already a prefix of these indices (or exactly these
435 // indices) marked a safe, don't bother adding these indices
436 return;
437
438 // Increment Low, so we can use it as a "insert before" hint
439 ++Low;
440 }
441 // Insert
442 Low = Safe.insert(Low, ToMark);
443 ++Low;
444 // If there we're a prefix of longer index list(s), remove those
445 std::set<IndicesVector>::iterator End = Safe.end();
446 while (Low != End && IsPrefix(ToMark, *Low)) {
447 std::set<IndicesVector>::iterator Remove = Low;
448 ++Low;
449 Safe.erase(Remove);
450 }
451 }
452
453 /// isSafeToPromoteArgument - As you might guess from the name of this method,
454 /// it checks to see if it is both safe and useful to promote the argument.
455 /// This method limits promotion of aggregates to only promote up to three
456 /// elements of the aggregate in order to avoid exploding the number of
457 /// arguments passed in.
isSafeToPromoteArgument(Argument * Arg,bool isByValOrInAlloca,AAResults & AAR,unsigned MaxElements)458 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
459 AAResults &AAR, unsigned MaxElements) {
460 typedef std::set<IndicesVector> GEPIndicesSet;
461
462 // Quick exit for unused arguments
463 if (Arg->use_empty())
464 return true;
465
466 // We can only promote this argument if all of the uses are loads, or are GEP
467 // instructions (with constant indices) that are subsequently loaded.
468 //
469 // Promoting the argument causes it to be loaded in the caller
470 // unconditionally. This is only safe if we can prove that either the load
471 // would have happened in the callee anyway (ie, there is a load in the entry
472 // block) or the pointer passed in at every call site is guaranteed to be
473 // valid.
474 // In the former case, invalid loads can happen, but would have happened
475 // anyway, in the latter case, invalid loads won't happen. This prevents us
476 // from introducing an invalid load that wouldn't have happened in the
477 // original code.
478 //
479 // This set will contain all sets of indices that are loaded in the entry
480 // block, and thus are safe to unconditionally load in the caller.
481 //
482 // This optimization is also safe for InAlloca parameters, because it verifies
483 // that the address isn't captured.
484 GEPIndicesSet SafeToUnconditionallyLoad;
485
486 // This set contains all the sets of indices that we are planning to promote.
487 // This makes it possible to limit the number of arguments added.
488 GEPIndicesSet ToPromote;
489
490 // If the pointer is always valid, any load with first index 0 is valid.
491 if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
492 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
493
494 // First, iterate the entry block and mark loads of (geps of) arguments as
495 // safe.
496 BasicBlock &EntryBlock = Arg->getParent()->front();
497 // Declare this here so we can reuse it
498 IndicesVector Indices;
499 for (Instruction &I : EntryBlock)
500 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
501 Value *V = LI->getPointerOperand();
502 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
503 V = GEP->getPointerOperand();
504 if (V == Arg) {
505 // This load actually loads (part of) Arg? Check the indices then.
506 Indices.reserve(GEP->getNumIndices());
507 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
508 II != IE; ++II)
509 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
510 Indices.push_back(CI->getSExtValue());
511 else
512 // We found a non-constant GEP index for this argument? Bail out
513 // right away, can't promote this argument at all.
514 return false;
515
516 // Indices checked out, mark them as safe
517 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
518 Indices.clear();
519 }
520 } else if (V == Arg) {
521 // Direct loads are equivalent to a GEP with a single 0 index.
522 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
523 }
524 }
525
526 // Now, iterate all uses of the argument to see if there are any uses that are
527 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
528 SmallVector<LoadInst*, 16> Loads;
529 IndicesVector Operands;
530 for (Use &U : Arg->uses()) {
531 User *UR = U.getUser();
532 Operands.clear();
533 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
534 // Don't hack volatile/atomic loads
535 if (!LI->isSimple()) return false;
536 Loads.push_back(LI);
537 // Direct loads are equivalent to a GEP with a zero index and then a load.
538 Operands.push_back(0);
539 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
540 if (GEP->use_empty()) {
541 // Dead GEP's cause trouble later. Just remove them if we run into
542 // them.
543 GEP->eraseFromParent();
544 // TODO: This runs the above loop over and over again for dead GEPs
545 // Couldn't we just do increment the UI iterator earlier and erase the
546 // use?
547 return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
548 MaxElements);
549 }
550
551 // Ensure that all of the indices are constants.
552 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
553 i != e; ++i)
554 if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
555 Operands.push_back(C->getSExtValue());
556 else
557 return false; // Not a constant operand GEP!
558
559 // Ensure that the only users of the GEP are load instructions.
560 for (User *GEPU : GEP->users())
561 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
562 // Don't hack volatile/atomic loads
563 if (!LI->isSimple()) return false;
564 Loads.push_back(LI);
565 } else {
566 // Other uses than load?
567 return false;
568 }
569 } else {
570 return false; // Not a load or a GEP.
571 }
572
573 // Now, see if it is safe to promote this load / loads of this GEP. Loading
574 // is safe if Operands, or a prefix of Operands, is marked as safe.
575 if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
576 return false;
577
578 // See if we are already promoting a load with these indices. If not, check
579 // to make sure that we aren't promoting too many elements. If so, nothing
580 // to do.
581 if (ToPromote.find(Operands) == ToPromote.end()) {
582 if (MaxElements > 0 && ToPromote.size() == MaxElements) {
583 DEBUG(dbgs() << "argpromotion not promoting argument '"
584 << Arg->getName() << "' because it would require adding more "
585 << "than " << MaxElements << " arguments to the function.\n");
586 // We limit aggregate promotion to only promoting up to a fixed number
587 // of elements of the aggregate.
588 return false;
589 }
590 ToPromote.insert(std::move(Operands));
591 }
592 }
593
594 if (Loads.empty()) return true; // No users, this is a dead argument.
595
596 // Okay, now we know that the argument is only used by load instructions and
597 // it is safe to unconditionally perform all of them. Use alias analysis to
598 // check to see if the pointer is guaranteed to not be modified from entry of
599 // the function to each of the load instructions.
600
601 // Because there could be several/many load instructions, remember which
602 // blocks we know to be transparent to the load.
603 SmallPtrSet<BasicBlock*, 16> TranspBlocks;
604
605 for (LoadInst *Load : Loads) {
606 // Check to see if the load is invalidated from the start of the block to
607 // the load itself.
608 BasicBlock *BB = Load->getParent();
609
610 MemoryLocation Loc = MemoryLocation::get(Load);
611 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
612 return false; // Pointer is invalidated!
613
614 // Now check every path from the entry block to the load for transparency.
615 // To do this, we perform a depth first search on the inverse CFG from the
616 // loading block.
617 for (BasicBlock *P : predecessors(BB)) {
618 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
619 if (AAR.canBasicBlockModify(*TranspBB, Loc))
620 return false;
621 }
622 }
623
624 // If the path from the entry of the function to each load is free of
625 // instructions that potentially invalidate the load, we can make the
626 // transformation!
627 return true;
628 }
629
630 /// DoPromotion - This method actually performs the promotion of the specified
631 /// arguments, and returns the new function. At this point, we know that it's
632 /// safe to do so.
633 static CallGraphNode *
DoPromotion(Function * F,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform,CallGraph & CG)634 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
635 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG) {
636
637 // Start by computing a new prototype for the function, which is the same as
638 // the old function, but has modified arguments.
639 FunctionType *FTy = F->getFunctionType();
640 std::vector<Type*> Params;
641
642 typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
643
644 // ScalarizedElements - If we are promoting a pointer that has elements
645 // accessed out of it, keep track of which elements are accessed so that we
646 // can add one argument for each.
647 //
648 // Arguments that are directly loaded will have a zero element value here, to
649 // handle cases where there are both a direct load and GEP accesses.
650 //
651 std::map<Argument*, ScalarizeTable> ScalarizedElements;
652
653 // OriginalLoads - Keep track of a representative load instruction from the
654 // original function so that we can tell the alias analysis implementation
655 // what the new GEP/Load instructions we are inserting look like.
656 // We need to keep the original loads for each argument and the elements
657 // of the argument that are accessed.
658 std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
659
660 // Attribute - Keep track of the parameter attributes for the arguments
661 // that we are *not* promoting. For the ones that we do promote, the parameter
662 // attributes are lost
663 SmallVector<AttributeSet, 8> AttributesVec;
664 const AttributeSet &PAL = F->getAttributes();
665
666 // Add any return attributes.
667 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
668 AttributesVec.push_back(AttributeSet::get(F->getContext(),
669 PAL.getRetAttributes()));
670
671 // First, determine the new argument list
672 unsigned ArgIndex = 1;
673 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
674 ++I, ++ArgIndex) {
675 if (ByValArgsToTransform.count(&*I)) {
676 // Simple byval argument? Just add all the struct element types.
677 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
678 StructType *STy = cast<StructType>(AgTy);
679 Params.insert(Params.end(), STy->element_begin(), STy->element_end());
680 ++NumByValArgsPromoted;
681 } else if (!ArgsToPromote.count(&*I)) {
682 // Unchanged argument
683 Params.push_back(I->getType());
684 AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
685 if (attrs.hasAttributes(ArgIndex)) {
686 AttrBuilder B(attrs, ArgIndex);
687 AttributesVec.
688 push_back(AttributeSet::get(F->getContext(), Params.size(), B));
689 }
690 } else if (I->use_empty()) {
691 // Dead argument (which are always marked as promotable)
692 ++NumArgumentsDead;
693 } else {
694 // Okay, this is being promoted. This means that the only uses are loads
695 // or GEPs which are only used by loads
696
697 // In this table, we will track which indices are loaded from the argument
698 // (where direct loads are tracked as no indices).
699 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
700 for (User *U : I->users()) {
701 Instruction *UI = cast<Instruction>(U);
702 Type *SrcTy;
703 if (LoadInst *L = dyn_cast<LoadInst>(UI))
704 SrcTy = L->getType();
705 else
706 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
707 IndicesVector Indices;
708 Indices.reserve(UI->getNumOperands() - 1);
709 // Since loads will only have a single operand, and GEPs only a single
710 // non-index operand, this will record direct loads without any indices,
711 // and gep+loads with the GEP indices.
712 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
713 II != IE; ++II)
714 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
715 // GEPs with a single 0 index can be merged with direct loads
716 if (Indices.size() == 1 && Indices.front() == 0)
717 Indices.clear();
718 ArgIndices.insert(std::make_pair(SrcTy, Indices));
719 LoadInst *OrigLoad;
720 if (LoadInst *L = dyn_cast<LoadInst>(UI))
721 OrigLoad = L;
722 else
723 // Take any load, we will use it only to update Alias Analysis
724 OrigLoad = cast<LoadInst>(UI->user_back());
725 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
726 }
727
728 // Add a parameter to the function for each element passed in.
729 for (const auto &ArgIndex : ArgIndices) {
730 // not allowed to dereference ->begin() if size() is 0
731 Params.push_back(GetElementPtrInst::getIndexedType(
732 cast<PointerType>(I->getType()->getScalarType())->getElementType(),
733 ArgIndex.second));
734 assert(Params.back());
735 }
736
737 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
738 ++NumArgumentsPromoted;
739 else
740 ++NumAggregatesPromoted;
741 }
742 }
743
744 // Add any function attributes.
745 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
746 AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
747 PAL.getFnAttributes()));
748
749 Type *RetTy = FTy->getReturnType();
750
751 // Construct the new function type using the new arguments.
752 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
753
754 // Create the new function body and insert it into the module.
755 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
756 NF->copyAttributesFrom(F);
757
758 // Patch the pointer to LLVM function in debug info descriptor.
759 NF->setSubprogram(F->getSubprogram());
760 F->setSubprogram(nullptr);
761
762 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
763 << "From: " << *F);
764
765 // Recompute the parameter attributes list based on the new arguments for
766 // the function.
767 NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
768 AttributesVec.clear();
769
770 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
771 NF->takeName(F);
772
773 // Get a new callgraph node for NF.
774 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
775
776 // Loop over all of the callers of the function, transforming the call sites
777 // to pass in the loaded pointers.
778 //
779 SmallVector<Value*, 16> Args;
780 while (!F->use_empty()) {
781 CallSite CS(F->user_back());
782 assert(CS.getCalledFunction() == F);
783 Instruction *Call = CS.getInstruction();
784 const AttributeSet &CallPAL = CS.getAttributes();
785
786 // Add any return attributes.
787 if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
788 AttributesVec.push_back(AttributeSet::get(F->getContext(),
789 CallPAL.getRetAttributes()));
790
791 // Loop over the operands, inserting GEP and loads in the caller as
792 // appropriate.
793 CallSite::arg_iterator AI = CS.arg_begin();
794 ArgIndex = 1;
795 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
796 I != E; ++I, ++AI, ++ArgIndex)
797 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
798 Args.push_back(*AI); // Unmodified argument
799
800 if (CallPAL.hasAttributes(ArgIndex)) {
801 AttrBuilder B(CallPAL, ArgIndex);
802 AttributesVec.
803 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
804 }
805 } else if (ByValArgsToTransform.count(&*I)) {
806 // Emit a GEP and load for each element of the struct.
807 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
808 StructType *STy = cast<StructType>(AgTy);
809 Value *Idxs[2] = {
810 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
811 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
812 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
813 Value *Idx = GetElementPtrInst::Create(
814 STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
815 // TODO: Tell AA about the new values?
816 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
817 }
818 } else if (!I->use_empty()) {
819 // Non-dead argument: insert GEPs and loads as appropriate.
820 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
821 // Store the Value* version of the indices in here, but declare it now
822 // for reuse.
823 std::vector<Value*> Ops;
824 for (const auto &ArgIndex : ArgIndices) {
825 Value *V = *AI;
826 LoadInst *OrigLoad =
827 OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
828 if (!ArgIndex.second.empty()) {
829 Ops.reserve(ArgIndex.second.size());
830 Type *ElTy = V->getType();
831 for (unsigned long II : ArgIndex.second) {
832 // Use i32 to index structs, and i64 for others (pointers/arrays).
833 // This satisfies GEP constraints.
834 Type *IdxTy = (ElTy->isStructTy() ?
835 Type::getInt32Ty(F->getContext()) :
836 Type::getInt64Ty(F->getContext()));
837 Ops.push_back(ConstantInt::get(IdxTy, II));
838 // Keep track of the type we're currently indexing.
839 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
840 }
841 // And create a GEP to extract those indices.
842 V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
843 V->getName() + ".idx", Call);
844 Ops.clear();
845 }
846 // Since we're replacing a load make sure we take the alignment
847 // of the previous load.
848 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
849 newLoad->setAlignment(OrigLoad->getAlignment());
850 // Transfer the AA info too.
851 AAMDNodes AAInfo;
852 OrigLoad->getAAMetadata(AAInfo);
853 newLoad->setAAMetadata(AAInfo);
854
855 Args.push_back(newLoad);
856 }
857 }
858
859 // Push any varargs arguments on the list.
860 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
861 Args.push_back(*AI);
862 if (CallPAL.hasAttributes(ArgIndex)) {
863 AttrBuilder B(CallPAL, ArgIndex);
864 AttributesVec.
865 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
866 }
867 }
868
869 // Add any function attributes.
870 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
871 AttributesVec.push_back(AttributeSet::get(Call->getContext(),
872 CallPAL.getFnAttributes()));
873
874 SmallVector<OperandBundleDef, 1> OpBundles;
875 CS.getOperandBundlesAsDefs(OpBundles);
876
877 Instruction *New;
878 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
879 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
880 Args, OpBundles, "", Call);
881 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
882 cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
883 AttributesVec));
884 } else {
885 New = CallInst::Create(NF, Args, OpBundles, "", Call);
886 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
887 cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
888 AttributesVec));
889 if (cast<CallInst>(Call)->isTailCall())
890 cast<CallInst>(New)->setTailCall();
891 }
892 New->setDebugLoc(Call->getDebugLoc());
893 Args.clear();
894 AttributesVec.clear();
895
896 // Update the callgraph to know that the callsite has been transformed.
897 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
898 CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
899
900 if (!Call->use_empty()) {
901 Call->replaceAllUsesWith(New);
902 New->takeName(Call);
903 }
904
905 // Finally, remove the old call from the program, reducing the use-count of
906 // F.
907 Call->eraseFromParent();
908 }
909
910 // Since we have now created the new function, splice the body of the old
911 // function right into the new function, leaving the old rotting hulk of the
912 // function empty.
913 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
914
915 // Loop over the argument list, transferring uses of the old arguments over to
916 // the new arguments, also transferring over the names as well.
917 //
918 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
919 I2 = NF->arg_begin(); I != E; ++I) {
920 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
921 // If this is an unmodified argument, move the name and users over to the
922 // new version.
923 I->replaceAllUsesWith(&*I2);
924 I2->takeName(&*I);
925 ++I2;
926 continue;
927 }
928
929 if (ByValArgsToTransform.count(&*I)) {
930 // In the callee, we create an alloca, and store each of the new incoming
931 // arguments into the alloca.
932 Instruction *InsertPt = &NF->begin()->front();
933
934 // Just add all the struct element types.
935 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
936 Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
937 StructType *STy = cast<StructType>(AgTy);
938 Value *Idxs[2] = {
939 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
940
941 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
942 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
943 Value *Idx = GetElementPtrInst::Create(
944 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
945 InsertPt);
946 I2->setName(I->getName()+"."+Twine(i));
947 new StoreInst(&*I2++, Idx, InsertPt);
948 }
949
950 // Anything that used the arg should now use the alloca.
951 I->replaceAllUsesWith(TheAlloca);
952 TheAlloca->takeName(&*I);
953
954 // If the alloca is used in a call, we must clear the tail flag since
955 // the callee now uses an alloca from the caller.
956 for (User *U : TheAlloca->users()) {
957 CallInst *Call = dyn_cast<CallInst>(U);
958 if (!Call)
959 continue;
960 Call->setTailCall(false);
961 }
962 continue;
963 }
964
965 if (I->use_empty())
966 continue;
967
968 // Otherwise, if we promoted this argument, then all users are load
969 // instructions (or GEPs with only load users), and all loads should be
970 // using the new argument that we added.
971 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
972
973 while (!I->use_empty()) {
974 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
975 assert(ArgIndices.begin()->second.empty() &&
976 "Load element should sort to front!");
977 I2->setName(I->getName()+".val");
978 LI->replaceAllUsesWith(&*I2);
979 LI->eraseFromParent();
980 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
981 << "' in function '" << F->getName() << "'\n");
982 } else {
983 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
984 IndicesVector Operands;
985 Operands.reserve(GEP->getNumIndices());
986 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
987 II != IE; ++II)
988 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
989
990 // GEPs with a single 0 index can be merged with direct loads
991 if (Operands.size() == 1 && Operands.front() == 0)
992 Operands.clear();
993
994 Function::arg_iterator TheArg = I2;
995 for (ScalarizeTable::iterator It = ArgIndices.begin();
996 It->second != Operands; ++It, ++TheArg) {
997 assert(It != ArgIndices.end() && "GEP not handled??");
998 }
999
1000 std::string NewName = I->getName();
1001 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
1002 NewName += "." + utostr(Operands[i]);
1003 }
1004 NewName += ".val";
1005 TheArg->setName(NewName);
1006
1007 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
1008 << "' of function '" << NF->getName() << "'\n");
1009
1010 // All of the uses must be load instructions. Replace them all with
1011 // the argument specified by ArgNo.
1012 while (!GEP->use_empty()) {
1013 LoadInst *L = cast<LoadInst>(GEP->user_back());
1014 L->replaceAllUsesWith(&*TheArg);
1015 L->eraseFromParent();
1016 }
1017 GEP->eraseFromParent();
1018 }
1019 }
1020
1021 // Increment I2 past all of the arguments added for this promoted pointer.
1022 std::advance(I2, ArgIndices.size());
1023 }
1024
1025 NF_CGN->stealCalledFunctionsFrom(CG[F]);
1026
1027 // Now that the old function is dead, delete it. If there is a dangling
1028 // reference to the CallgraphNode, just leave the dead function around for
1029 // someone else to nuke.
1030 CallGraphNode *CGN = CG[F];
1031 if (CGN->getNumReferences() == 0)
1032 delete CG.removeFunctionFromModule(CGN);
1033 else
1034 F->setLinkage(Function::ExternalLinkage);
1035
1036 return NF_CGN;
1037 }
1038
doInitialization(CallGraph & CG)1039 bool ArgPromotion::doInitialization(CallGraph &CG) {
1040 return CallGraphSCCPass::doInitialization(CG);
1041 }
1042