1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/LoopDeletion.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopPassManager.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/LoopUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-delete"
29 
30 STATISTIC(NumDeleted, "Number of loops deleted");
31 
32 /// isLoopDead - Determined if a loop is dead.  This assumes that we've already
33 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
34 /// form.
isLoopDead(Loop * L,ScalarEvolution & SE,SmallVectorImpl<BasicBlock * > & exitingBlocks,SmallVectorImpl<BasicBlock * > & exitBlocks,bool & Changed,BasicBlock * Preheader)35 bool LoopDeletionPass::isLoopDead(Loop *L, ScalarEvolution &SE,
36                                   SmallVectorImpl<BasicBlock *> &exitingBlocks,
37                                   SmallVectorImpl<BasicBlock *> &exitBlocks,
38                                   bool &Changed, BasicBlock *Preheader) {
39   BasicBlock *exitBlock = exitBlocks[0];
40 
41   // Make sure that all PHI entries coming from the loop are loop invariant.
42   // Because the code is in LCSSA form, any values used outside of the loop
43   // must pass through a PHI in the exit block, meaning that this check is
44   // sufficient to guarantee that no loop-variant values are used outside
45   // of the loop.
46   BasicBlock::iterator BI = exitBlock->begin();
47   bool AllEntriesInvariant = true;
48   bool AllOutgoingValuesSame = true;
49   while (PHINode *P = dyn_cast<PHINode>(BI)) {
50     Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
51 
52     // Make sure all exiting blocks produce the same incoming value for the exit
53     // block.  If there are different incoming values for different exiting
54     // blocks, then it is impossible to statically determine which value should
55     // be used.
56     AllOutgoingValuesSame =
57         all_of(makeArrayRef(exitingBlocks).slice(1), [&](BasicBlock *BB) {
58           return incoming == P->getIncomingValueForBlock(BB);
59         });
60 
61     if (!AllOutgoingValuesSame)
62       break;
63 
64     if (Instruction *I = dyn_cast<Instruction>(incoming))
65       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
66         AllEntriesInvariant = false;
67         break;
68       }
69 
70     ++BI;
71   }
72 
73   if (Changed)
74     SE.forgetLoopDispositions(L);
75 
76   if (!AllEntriesInvariant || !AllOutgoingValuesSame)
77     return false;
78 
79   // Make sure that no instructions in the block have potential side-effects.
80   // This includes instructions that could write to memory, and loads that are
81   // marked volatile.  This could be made more aggressive by using aliasing
82   // information to identify readonly and readnone calls.
83   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
84        LI != LE; ++LI) {
85     for (Instruction &I : **LI) {
86       if (I.mayHaveSideEffects())
87         return false;
88     }
89   }
90 
91   return true;
92 }
93 
94 /// Remove dead loops, by which we mean loops that do not impact the observable
95 /// behavior of the program other than finite running time.  Note we do ensure
96 /// that this never remove a loop that might be infinite, as doing so could
97 /// change the halting/non-halting nature of a program. NOTE: This entire
98 /// process relies pretty heavily on LoopSimplify and LCSSA in order to make
99 /// various safety checks work.
runImpl(Loop * L,DominatorTree & DT,ScalarEvolution & SE,LoopInfo & loopInfo)100 bool LoopDeletionPass::runImpl(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
101                                LoopInfo &loopInfo) {
102   assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
103 
104   // We can only remove the loop if there is a preheader that we can
105   // branch from after removing it.
106   BasicBlock *preheader = L->getLoopPreheader();
107   if (!preheader)
108     return false;
109 
110   // If LoopSimplify form is not available, stay out of trouble.
111   if (!L->hasDedicatedExits())
112     return false;
113 
114   // We can't remove loops that contain subloops.  If the subloops were dead,
115   // they would already have been removed in earlier executions of this pass.
116   if (L->begin() != L->end())
117     return false;
118 
119   SmallVector<BasicBlock *, 4> exitingBlocks;
120   L->getExitingBlocks(exitingBlocks);
121 
122   SmallVector<BasicBlock *, 4> exitBlocks;
123   L->getUniqueExitBlocks(exitBlocks);
124 
125   // We require that the loop only have a single exit block.  Otherwise, we'd
126   // be in the situation of needing to be able to solve statically which exit
127   // block will be branched to, or trying to preserve the branching logic in
128   // a loop invariant manner.
129   if (exitBlocks.size() != 1)
130     return false;
131 
132   // Finally, we have to check that the loop really is dead.
133   bool Changed = false;
134   if (!isLoopDead(L, SE, exitingBlocks, exitBlocks, Changed, preheader))
135     return Changed;
136 
137   // Don't remove loops for which we can't solve the trip count.
138   // They could be infinite, in which case we'd be changing program behavior.
139   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
140   if (isa<SCEVCouldNotCompute>(S))
141     return Changed;
142 
143   // Now that we know the removal is safe, remove the loop by changing the
144   // branch from the preheader to go to the single exit block.
145   BasicBlock *exitBlock = exitBlocks[0];
146 
147   // Because we're deleting a large chunk of code at once, the sequence in which
148   // we remove things is very important to avoid invalidation issues.  Don't
149   // mess with this unless you have good reason and know what you're doing.
150 
151   // Tell ScalarEvolution that the loop is deleted. Do this before
152   // deleting the loop so that ScalarEvolution can look at the loop
153   // to determine what it needs to clean up.
154   SE.forgetLoop(L);
155 
156   // Connect the preheader directly to the exit block.
157   TerminatorInst *TI = preheader->getTerminator();
158   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
159 
160   // Rewrite phis in the exit block to get their inputs from
161   // the preheader instead of the exiting block.
162   BasicBlock *exitingBlock = exitingBlocks[0];
163   BasicBlock::iterator BI = exitBlock->begin();
164   while (PHINode *P = dyn_cast<PHINode>(BI)) {
165     int j = P->getBasicBlockIndex(exitingBlock);
166     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
167     P->setIncomingBlock(j, preheader);
168     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
169       P->removeIncomingValue(exitingBlocks[i]);
170     ++BI;
171   }
172 
173   // Update the dominator tree and remove the instructions and blocks that will
174   // be deleted from the reference counting scheme.
175   SmallVector<DomTreeNode*, 8> ChildNodes;
176   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
177        LI != LE; ++LI) {
178     // Move all of the block's children to be children of the preheader, which
179     // allows us to remove the domtree entry for the block.
180     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
181     for (DomTreeNode *ChildNode : ChildNodes) {
182       DT.changeImmediateDominator(ChildNode, DT[preheader]);
183     }
184 
185     ChildNodes.clear();
186     DT.eraseNode(*LI);
187 
188     // Remove the block from the reference counting scheme, so that we can
189     // delete it freely later.
190     (*LI)->dropAllReferences();
191   }
192 
193   // Erase the instructions and the blocks without having to worry
194   // about ordering because we already dropped the references.
195   // NOTE: This iteration is safe because erasing the block does not remove its
196   // entry from the loop's block list.  We do that in the next section.
197   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
198        LI != LE; ++LI)
199     (*LI)->eraseFromParent();
200 
201   // Finally, the blocks from loopinfo.  This has to happen late because
202   // otherwise our loop iterators won't work.
203 
204   SmallPtrSet<BasicBlock *, 8> blocks;
205   blocks.insert(L->block_begin(), L->block_end());
206   for (BasicBlock *BB : blocks)
207     loopInfo.removeBlock(BB);
208 
209   // The last step is to update LoopInfo now that we've eliminated this loop.
210   loopInfo.markAsRemoved(L);
211   Changed = true;
212 
213   ++NumDeleted;
214 
215   return Changed;
216 }
217 
run(Loop & L,AnalysisManager<Loop> & AM)218 PreservedAnalyses LoopDeletionPass::run(Loop &L, AnalysisManager<Loop> &AM) {
219   auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
220   Function *F = L.getHeader()->getParent();
221 
222   auto &DT = *FAM.getCachedResult<DominatorTreeAnalysis>(*F);
223   auto &SE = *FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
224   auto &LI = *FAM.getCachedResult<LoopAnalysis>(*F);
225 
226   bool Changed = runImpl(&L, DT, SE, LI);
227   if (!Changed)
228     return PreservedAnalyses::all();
229 
230   return getLoopPassPreservedAnalyses();
231 }
232 
233 namespace {
234 class LoopDeletionLegacyPass : public LoopPass {
235 public:
236   static char ID; // Pass ID, replacement for typeid
LoopDeletionLegacyPass()237   LoopDeletionLegacyPass() : LoopPass(ID) {
238     initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
239   }
240 
241   // Possibly eliminate loop L if it is dead.
242   bool runOnLoop(Loop *L, LPPassManager &) override;
243 
getAnalysisUsage(AnalysisUsage & AU) const244   void getAnalysisUsage(AnalysisUsage &AU) const override {
245     getLoopAnalysisUsage(AU);
246   }
247 };
248 }
249 
250 char LoopDeletionLegacyPass::ID = 0;
251 INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
252                       "Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)253 INITIALIZE_PASS_DEPENDENCY(LoopPass)
254 INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
255                     "Delete dead loops", false, false)
256 
257 Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
258 
runOnLoop(Loop * L,LPPassManager &)259 bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
260   if (skipLoop(L))
261     return false;
262 
263   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
264   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
265   LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
266 
267   LoopDeletionPass Impl;
268   return Impl.runImpl(L, DT, SE, loopInfo);
269 }
270