1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar/LoopDeletion.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopPassManager.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/LoopUtils.h"
26 using namespace llvm;
27
28 #define DEBUG_TYPE "loop-delete"
29
30 STATISTIC(NumDeleted, "Number of loops deleted");
31
32 /// isLoopDead - Determined if a loop is dead. This assumes that we've already
33 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
34 /// form.
isLoopDead(Loop * L,ScalarEvolution & SE,SmallVectorImpl<BasicBlock * > & exitingBlocks,SmallVectorImpl<BasicBlock * > & exitBlocks,bool & Changed,BasicBlock * Preheader)35 bool LoopDeletionPass::isLoopDead(Loop *L, ScalarEvolution &SE,
36 SmallVectorImpl<BasicBlock *> &exitingBlocks,
37 SmallVectorImpl<BasicBlock *> &exitBlocks,
38 bool &Changed, BasicBlock *Preheader) {
39 BasicBlock *exitBlock = exitBlocks[0];
40
41 // Make sure that all PHI entries coming from the loop are loop invariant.
42 // Because the code is in LCSSA form, any values used outside of the loop
43 // must pass through a PHI in the exit block, meaning that this check is
44 // sufficient to guarantee that no loop-variant values are used outside
45 // of the loop.
46 BasicBlock::iterator BI = exitBlock->begin();
47 bool AllEntriesInvariant = true;
48 bool AllOutgoingValuesSame = true;
49 while (PHINode *P = dyn_cast<PHINode>(BI)) {
50 Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
51
52 // Make sure all exiting blocks produce the same incoming value for the exit
53 // block. If there are different incoming values for different exiting
54 // blocks, then it is impossible to statically determine which value should
55 // be used.
56 AllOutgoingValuesSame =
57 all_of(makeArrayRef(exitingBlocks).slice(1), [&](BasicBlock *BB) {
58 return incoming == P->getIncomingValueForBlock(BB);
59 });
60
61 if (!AllOutgoingValuesSame)
62 break;
63
64 if (Instruction *I = dyn_cast<Instruction>(incoming))
65 if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
66 AllEntriesInvariant = false;
67 break;
68 }
69
70 ++BI;
71 }
72
73 if (Changed)
74 SE.forgetLoopDispositions(L);
75
76 if (!AllEntriesInvariant || !AllOutgoingValuesSame)
77 return false;
78
79 // Make sure that no instructions in the block have potential side-effects.
80 // This includes instructions that could write to memory, and loads that are
81 // marked volatile. This could be made more aggressive by using aliasing
82 // information to identify readonly and readnone calls.
83 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
84 LI != LE; ++LI) {
85 for (Instruction &I : **LI) {
86 if (I.mayHaveSideEffects())
87 return false;
88 }
89 }
90
91 return true;
92 }
93
94 /// Remove dead loops, by which we mean loops that do not impact the observable
95 /// behavior of the program other than finite running time. Note we do ensure
96 /// that this never remove a loop that might be infinite, as doing so could
97 /// change the halting/non-halting nature of a program. NOTE: This entire
98 /// process relies pretty heavily on LoopSimplify and LCSSA in order to make
99 /// various safety checks work.
runImpl(Loop * L,DominatorTree & DT,ScalarEvolution & SE,LoopInfo & loopInfo)100 bool LoopDeletionPass::runImpl(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
101 LoopInfo &loopInfo) {
102 assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
103
104 // We can only remove the loop if there is a preheader that we can
105 // branch from after removing it.
106 BasicBlock *preheader = L->getLoopPreheader();
107 if (!preheader)
108 return false;
109
110 // If LoopSimplify form is not available, stay out of trouble.
111 if (!L->hasDedicatedExits())
112 return false;
113
114 // We can't remove loops that contain subloops. If the subloops were dead,
115 // they would already have been removed in earlier executions of this pass.
116 if (L->begin() != L->end())
117 return false;
118
119 SmallVector<BasicBlock *, 4> exitingBlocks;
120 L->getExitingBlocks(exitingBlocks);
121
122 SmallVector<BasicBlock *, 4> exitBlocks;
123 L->getUniqueExitBlocks(exitBlocks);
124
125 // We require that the loop only have a single exit block. Otherwise, we'd
126 // be in the situation of needing to be able to solve statically which exit
127 // block will be branched to, or trying to preserve the branching logic in
128 // a loop invariant manner.
129 if (exitBlocks.size() != 1)
130 return false;
131
132 // Finally, we have to check that the loop really is dead.
133 bool Changed = false;
134 if (!isLoopDead(L, SE, exitingBlocks, exitBlocks, Changed, preheader))
135 return Changed;
136
137 // Don't remove loops for which we can't solve the trip count.
138 // They could be infinite, in which case we'd be changing program behavior.
139 const SCEV *S = SE.getMaxBackedgeTakenCount(L);
140 if (isa<SCEVCouldNotCompute>(S))
141 return Changed;
142
143 // Now that we know the removal is safe, remove the loop by changing the
144 // branch from the preheader to go to the single exit block.
145 BasicBlock *exitBlock = exitBlocks[0];
146
147 // Because we're deleting a large chunk of code at once, the sequence in which
148 // we remove things is very important to avoid invalidation issues. Don't
149 // mess with this unless you have good reason and know what you're doing.
150
151 // Tell ScalarEvolution that the loop is deleted. Do this before
152 // deleting the loop so that ScalarEvolution can look at the loop
153 // to determine what it needs to clean up.
154 SE.forgetLoop(L);
155
156 // Connect the preheader directly to the exit block.
157 TerminatorInst *TI = preheader->getTerminator();
158 TI->replaceUsesOfWith(L->getHeader(), exitBlock);
159
160 // Rewrite phis in the exit block to get their inputs from
161 // the preheader instead of the exiting block.
162 BasicBlock *exitingBlock = exitingBlocks[0];
163 BasicBlock::iterator BI = exitBlock->begin();
164 while (PHINode *P = dyn_cast<PHINode>(BI)) {
165 int j = P->getBasicBlockIndex(exitingBlock);
166 assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
167 P->setIncomingBlock(j, preheader);
168 for (unsigned i = 1; i < exitingBlocks.size(); ++i)
169 P->removeIncomingValue(exitingBlocks[i]);
170 ++BI;
171 }
172
173 // Update the dominator tree and remove the instructions and blocks that will
174 // be deleted from the reference counting scheme.
175 SmallVector<DomTreeNode*, 8> ChildNodes;
176 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
177 LI != LE; ++LI) {
178 // Move all of the block's children to be children of the preheader, which
179 // allows us to remove the domtree entry for the block.
180 ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
181 for (DomTreeNode *ChildNode : ChildNodes) {
182 DT.changeImmediateDominator(ChildNode, DT[preheader]);
183 }
184
185 ChildNodes.clear();
186 DT.eraseNode(*LI);
187
188 // Remove the block from the reference counting scheme, so that we can
189 // delete it freely later.
190 (*LI)->dropAllReferences();
191 }
192
193 // Erase the instructions and the blocks without having to worry
194 // about ordering because we already dropped the references.
195 // NOTE: This iteration is safe because erasing the block does not remove its
196 // entry from the loop's block list. We do that in the next section.
197 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
198 LI != LE; ++LI)
199 (*LI)->eraseFromParent();
200
201 // Finally, the blocks from loopinfo. This has to happen late because
202 // otherwise our loop iterators won't work.
203
204 SmallPtrSet<BasicBlock *, 8> blocks;
205 blocks.insert(L->block_begin(), L->block_end());
206 for (BasicBlock *BB : blocks)
207 loopInfo.removeBlock(BB);
208
209 // The last step is to update LoopInfo now that we've eliminated this loop.
210 loopInfo.markAsRemoved(L);
211 Changed = true;
212
213 ++NumDeleted;
214
215 return Changed;
216 }
217
run(Loop & L,AnalysisManager<Loop> & AM)218 PreservedAnalyses LoopDeletionPass::run(Loop &L, AnalysisManager<Loop> &AM) {
219 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
220 Function *F = L.getHeader()->getParent();
221
222 auto &DT = *FAM.getCachedResult<DominatorTreeAnalysis>(*F);
223 auto &SE = *FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
224 auto &LI = *FAM.getCachedResult<LoopAnalysis>(*F);
225
226 bool Changed = runImpl(&L, DT, SE, LI);
227 if (!Changed)
228 return PreservedAnalyses::all();
229
230 return getLoopPassPreservedAnalyses();
231 }
232
233 namespace {
234 class LoopDeletionLegacyPass : public LoopPass {
235 public:
236 static char ID; // Pass ID, replacement for typeid
LoopDeletionLegacyPass()237 LoopDeletionLegacyPass() : LoopPass(ID) {
238 initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
239 }
240
241 // Possibly eliminate loop L if it is dead.
242 bool runOnLoop(Loop *L, LPPassManager &) override;
243
getAnalysisUsage(AnalysisUsage & AU) const244 void getAnalysisUsage(AnalysisUsage &AU) const override {
245 getLoopAnalysisUsage(AU);
246 }
247 };
248 }
249
250 char LoopDeletionLegacyPass::ID = 0;
251 INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
252 "Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)253 INITIALIZE_PASS_DEPENDENCY(LoopPass)
254 INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
255 "Delete dead loops", false, false)
256
257 Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
258
runOnLoop(Loop * L,LPPassManager &)259 bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
260 if (skipLoop(L))
261 return false;
262
263 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
264 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
265 LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
266
267 LoopDeletionPass Impl;
268 return Impl.runImpl(L, DT, SE, loopInfo);
269 }
270