1 //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass converts vector operations into scalar operations, in order
11 // to expose optimization opportunities on the individual scalar operations.
12 // It is mainly intended for targets that do not have vector units, but it
13 // may also be useful for revectorizing code to different vector widths.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/InstVisitor.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23
24 using namespace llvm;
25
26 #define DEBUG_TYPE "scalarizer"
27
28 namespace {
29 // Used to store the scattered form of a vector.
30 typedef SmallVector<Value *, 8> ValueVector;
31
32 // Used to map a vector Value to its scattered form. We use std::map
33 // because we want iterators to persist across insertion and because the
34 // values are relatively large.
35 typedef std::map<Value *, ValueVector> ScatterMap;
36
37 // Lists Instructions that have been replaced with scalar implementations,
38 // along with a pointer to their scattered forms.
39 typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
40
41 // Provides a very limited vector-like interface for lazily accessing one
42 // component of a scattered vector or vector pointer.
43 class Scatterer {
44 public:
Scatterer()45 Scatterer() {}
46
47 // Scatter V into Size components. If new instructions are needed,
48 // insert them before BBI in BB. If Cache is nonnull, use it to cache
49 // the results.
50 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
51 ValueVector *cachePtr = nullptr);
52
53 // Return component I, creating a new Value for it if necessary.
54 Value *operator[](unsigned I);
55
56 // Return the number of components.
size() const57 unsigned size() const { return Size; }
58
59 private:
60 BasicBlock *BB;
61 BasicBlock::iterator BBI;
62 Value *V;
63 ValueVector *CachePtr;
64 PointerType *PtrTy;
65 ValueVector Tmp;
66 unsigned Size;
67 };
68
69 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
70 // called Name that compares X and Y in the same way as FCI.
71 struct FCmpSplitter {
FCmpSplitter__anon836fb3250111::FCmpSplitter72 FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
operator ()__anon836fb3250111::FCmpSplitter73 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
74 const Twine &Name) const {
75 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
76 }
77 FCmpInst &FCI;
78 };
79
80 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
81 // called Name that compares X and Y in the same way as ICI.
82 struct ICmpSplitter {
ICmpSplitter__anon836fb3250111::ICmpSplitter83 ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
operator ()__anon836fb3250111::ICmpSplitter84 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
85 const Twine &Name) const {
86 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
87 }
88 ICmpInst &ICI;
89 };
90
91 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
92 // a binary operator like BO called Name with operands X and Y.
93 struct BinarySplitter {
BinarySplitter__anon836fb3250111::BinarySplitter94 BinarySplitter(BinaryOperator &bo) : BO(bo) {}
operator ()__anon836fb3250111::BinarySplitter95 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
96 const Twine &Name) const {
97 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
98 }
99 BinaryOperator &BO;
100 };
101
102 // Information about a load or store that we're scalarizing.
103 struct VectorLayout {
VectorLayout__anon836fb3250111::VectorLayout104 VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
105
106 // Return the alignment of element I.
getElemAlign__anon836fb3250111::VectorLayout107 uint64_t getElemAlign(unsigned I) {
108 return MinAlign(VecAlign, I * ElemSize);
109 }
110
111 // The type of the vector.
112 VectorType *VecTy;
113
114 // The type of each element.
115 Type *ElemTy;
116
117 // The alignment of the vector.
118 uint64_t VecAlign;
119
120 // The size of each element.
121 uint64_t ElemSize;
122 };
123
124 class Scalarizer : public FunctionPass,
125 public InstVisitor<Scalarizer, bool> {
126 public:
127 static char ID;
128
Scalarizer()129 Scalarizer() :
130 FunctionPass(ID) {
131 initializeScalarizerPass(*PassRegistry::getPassRegistry());
132 }
133
134 bool doInitialization(Module &M) override;
135 bool runOnFunction(Function &F) override;
136
137 // InstVisitor methods. They return true if the instruction was scalarized,
138 // false if nothing changed.
visitInstruction(Instruction &)139 bool visitInstruction(Instruction &) { return false; }
140 bool visitSelectInst(SelectInst &SI);
141 bool visitICmpInst(ICmpInst &);
142 bool visitFCmpInst(FCmpInst &);
143 bool visitBinaryOperator(BinaryOperator &);
144 bool visitGetElementPtrInst(GetElementPtrInst &);
145 bool visitCastInst(CastInst &);
146 bool visitBitCastInst(BitCastInst &);
147 bool visitShuffleVectorInst(ShuffleVectorInst &);
148 bool visitPHINode(PHINode &);
149 bool visitLoadInst(LoadInst &);
150 bool visitStoreInst(StoreInst &);
151
registerOptions()152 static void registerOptions() {
153 // This is disabled by default because having separate loads and stores
154 // makes it more likely that the -combiner-alias-analysis limits will be
155 // reached.
156 OptionRegistry::registerOption<bool, Scalarizer,
157 &Scalarizer::ScalarizeLoadStore>(
158 "scalarize-load-store",
159 "Allow the scalarizer pass to scalarize loads and store", false);
160 }
161
162 private:
163 Scatterer scatter(Instruction *, Value *);
164 void gather(Instruction *, const ValueVector &);
165 bool canTransferMetadata(unsigned Kind);
166 void transferMetadata(Instruction *, const ValueVector &);
167 bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
168 bool finish();
169
170 template<typename T> bool splitBinary(Instruction &, const T &);
171
172 ScatterMap Scattered;
173 GatherList Gathered;
174 unsigned ParallelLoopAccessMDKind;
175 bool ScalarizeLoadStore;
176 };
177
178 char Scalarizer::ID = 0;
179 } // end anonymous namespace
180
181 INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
182 "Scalarize vector operations", false, false)
183
Scatterer(BasicBlock * bb,BasicBlock::iterator bbi,Value * v,ValueVector * cachePtr)184 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
185 ValueVector *cachePtr)
186 : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
187 Type *Ty = V->getType();
188 PtrTy = dyn_cast<PointerType>(Ty);
189 if (PtrTy)
190 Ty = PtrTy->getElementType();
191 Size = Ty->getVectorNumElements();
192 if (!CachePtr)
193 Tmp.resize(Size, nullptr);
194 else if (CachePtr->empty())
195 CachePtr->resize(Size, nullptr);
196 else
197 assert(Size == CachePtr->size() && "Inconsistent vector sizes");
198 }
199
200 // Return component I, creating a new Value for it if necessary.
operator [](unsigned I)201 Value *Scatterer::operator[](unsigned I) {
202 ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
203 // Try to reuse a previous value.
204 if (CV[I])
205 return CV[I];
206 IRBuilder<> Builder(BB, BBI);
207 if (PtrTy) {
208 if (!CV[0]) {
209 Type *Ty =
210 PointerType::get(PtrTy->getElementType()->getVectorElementType(),
211 PtrTy->getAddressSpace());
212 CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
213 }
214 if (I != 0)
215 CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
216 V->getName() + ".i" + Twine(I));
217 } else {
218 // Search through a chain of InsertElementInsts looking for element I.
219 // Record other elements in the cache. The new V is still suitable
220 // for all uncached indices.
221 for (;;) {
222 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
223 if (!Insert)
224 break;
225 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
226 if (!Idx)
227 break;
228 unsigned J = Idx->getZExtValue();
229 V = Insert->getOperand(0);
230 if (I == J) {
231 CV[J] = Insert->getOperand(1);
232 return CV[J];
233 } else if (!CV[J]) {
234 // Only cache the first entry we find for each index we're not actively
235 // searching for. This prevents us from going too far up the chain and
236 // caching incorrect entries.
237 CV[J] = Insert->getOperand(1);
238 }
239 }
240 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
241 V->getName() + ".i" + Twine(I));
242 }
243 return CV[I];
244 }
245
doInitialization(Module & M)246 bool Scalarizer::doInitialization(Module &M) {
247 ParallelLoopAccessMDKind =
248 M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
249 ScalarizeLoadStore =
250 M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
251 return false;
252 }
253
runOnFunction(Function & F)254 bool Scalarizer::runOnFunction(Function &F) {
255 if (skipFunction(F))
256 return false;
257 assert(Gathered.empty() && Scattered.empty());
258 for (BasicBlock &BB : F) {
259 for (BasicBlock::iterator II = BB.begin(), IE = BB.end(); II != IE;) {
260 Instruction *I = &*II;
261 bool Done = visit(I);
262 ++II;
263 if (Done && I->getType()->isVoidTy())
264 I->eraseFromParent();
265 }
266 }
267 return finish();
268 }
269
270 // Return a scattered form of V that can be accessed by Point. V must be a
271 // vector or a pointer to a vector.
scatter(Instruction * Point,Value * V)272 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
273 if (Argument *VArg = dyn_cast<Argument>(V)) {
274 // Put the scattered form of arguments in the entry block,
275 // so that it can be used everywhere.
276 Function *F = VArg->getParent();
277 BasicBlock *BB = &F->getEntryBlock();
278 return Scatterer(BB, BB->begin(), V, &Scattered[V]);
279 }
280 if (Instruction *VOp = dyn_cast<Instruction>(V)) {
281 // Put the scattered form of an instruction directly after the
282 // instruction.
283 BasicBlock *BB = VOp->getParent();
284 return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
285 V, &Scattered[V]);
286 }
287 // In the fallback case, just put the scattered before Point and
288 // keep the result local to Point.
289 return Scatterer(Point->getParent(), Point->getIterator(), V);
290 }
291
292 // Replace Op with the gathered form of the components in CV. Defer the
293 // deletion of Op and creation of the gathered form to the end of the pass,
294 // so that we can avoid creating the gathered form if all uses of Op are
295 // replaced with uses of CV.
gather(Instruction * Op,const ValueVector & CV)296 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
297 // Since we're not deleting Op yet, stub out its operands, so that it
298 // doesn't make anything live unnecessarily.
299 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
300 Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
301
302 transferMetadata(Op, CV);
303
304 // If we already have a scattered form of Op (created from ExtractElements
305 // of Op itself), replace them with the new form.
306 ValueVector &SV = Scattered[Op];
307 if (!SV.empty()) {
308 for (unsigned I = 0, E = SV.size(); I != E; ++I) {
309 Value *V = SV[I];
310 if (V == nullptr)
311 continue;
312
313 Instruction *Old = cast<Instruction>(V);
314 CV[I]->takeName(Old);
315 Old->replaceAllUsesWith(CV[I]);
316 Old->eraseFromParent();
317 }
318 }
319 SV = CV;
320 Gathered.push_back(GatherList::value_type(Op, &SV));
321 }
322
323 // Return true if it is safe to transfer the given metadata tag from
324 // vector to scalar instructions.
canTransferMetadata(unsigned Tag)325 bool Scalarizer::canTransferMetadata(unsigned Tag) {
326 return (Tag == LLVMContext::MD_tbaa
327 || Tag == LLVMContext::MD_fpmath
328 || Tag == LLVMContext::MD_tbaa_struct
329 || Tag == LLVMContext::MD_invariant_load
330 || Tag == LLVMContext::MD_alias_scope
331 || Tag == LLVMContext::MD_noalias
332 || Tag == ParallelLoopAccessMDKind);
333 }
334
335 // Transfer metadata from Op to the instructions in CV if it is known
336 // to be safe to do so.
transferMetadata(Instruction * Op,const ValueVector & CV)337 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
338 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
339 Op->getAllMetadataOtherThanDebugLoc(MDs);
340 for (unsigned I = 0, E = CV.size(); I != E; ++I) {
341 if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
342 for (const auto &MD : MDs)
343 if (canTransferMetadata(MD.first))
344 New->setMetadata(MD.first, MD.second);
345 if (Op->getDebugLoc() && !New->getDebugLoc())
346 New->setDebugLoc(Op->getDebugLoc());
347 }
348 }
349 }
350
351 // Try to fill in Layout from Ty, returning true on success. Alignment is
352 // the alignment of the vector, or 0 if the ABI default should be used.
getVectorLayout(Type * Ty,unsigned Alignment,VectorLayout & Layout,const DataLayout & DL)353 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
354 VectorLayout &Layout, const DataLayout &DL) {
355 // Make sure we're dealing with a vector.
356 Layout.VecTy = dyn_cast<VectorType>(Ty);
357 if (!Layout.VecTy)
358 return false;
359
360 // Check that we're dealing with full-byte elements.
361 Layout.ElemTy = Layout.VecTy->getElementType();
362 if (DL.getTypeSizeInBits(Layout.ElemTy) !=
363 DL.getTypeStoreSizeInBits(Layout.ElemTy))
364 return false;
365
366 if (Alignment)
367 Layout.VecAlign = Alignment;
368 else
369 Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
370 Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
371 return true;
372 }
373
374 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
375 // to create an instruction like I with operands X and Y and name Name.
376 template<typename Splitter>
splitBinary(Instruction & I,const Splitter & Split)377 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
378 VectorType *VT = dyn_cast<VectorType>(I.getType());
379 if (!VT)
380 return false;
381
382 unsigned NumElems = VT->getNumElements();
383 IRBuilder<> Builder(&I);
384 Scatterer Op0 = scatter(&I, I.getOperand(0));
385 Scatterer Op1 = scatter(&I, I.getOperand(1));
386 assert(Op0.size() == NumElems && "Mismatched binary operation");
387 assert(Op1.size() == NumElems && "Mismatched binary operation");
388 ValueVector Res;
389 Res.resize(NumElems);
390 for (unsigned Elem = 0; Elem < NumElems; ++Elem)
391 Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
392 I.getName() + ".i" + Twine(Elem));
393 gather(&I, Res);
394 return true;
395 }
396
visitSelectInst(SelectInst & SI)397 bool Scalarizer::visitSelectInst(SelectInst &SI) {
398 VectorType *VT = dyn_cast<VectorType>(SI.getType());
399 if (!VT)
400 return false;
401
402 unsigned NumElems = VT->getNumElements();
403 IRBuilder<> Builder(&SI);
404 Scatterer Op1 = scatter(&SI, SI.getOperand(1));
405 Scatterer Op2 = scatter(&SI, SI.getOperand(2));
406 assert(Op1.size() == NumElems && "Mismatched select");
407 assert(Op2.size() == NumElems && "Mismatched select");
408 ValueVector Res;
409 Res.resize(NumElems);
410
411 if (SI.getOperand(0)->getType()->isVectorTy()) {
412 Scatterer Op0 = scatter(&SI, SI.getOperand(0));
413 assert(Op0.size() == NumElems && "Mismatched select");
414 for (unsigned I = 0; I < NumElems; ++I)
415 Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
416 SI.getName() + ".i" + Twine(I));
417 } else {
418 Value *Op0 = SI.getOperand(0);
419 for (unsigned I = 0; I < NumElems; ++I)
420 Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
421 SI.getName() + ".i" + Twine(I));
422 }
423 gather(&SI, Res);
424 return true;
425 }
426
visitICmpInst(ICmpInst & ICI)427 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
428 return splitBinary(ICI, ICmpSplitter(ICI));
429 }
430
visitFCmpInst(FCmpInst & FCI)431 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
432 return splitBinary(FCI, FCmpSplitter(FCI));
433 }
434
visitBinaryOperator(BinaryOperator & BO)435 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
436 return splitBinary(BO, BinarySplitter(BO));
437 }
438
visitGetElementPtrInst(GetElementPtrInst & GEPI)439 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
440 VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
441 if (!VT)
442 return false;
443
444 IRBuilder<> Builder(&GEPI);
445 unsigned NumElems = VT->getNumElements();
446 unsigned NumIndices = GEPI.getNumIndices();
447
448 Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
449
450 SmallVector<Scatterer, 8> Ops;
451 Ops.resize(NumIndices);
452 for (unsigned I = 0; I < NumIndices; ++I)
453 Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
454
455 ValueVector Res;
456 Res.resize(NumElems);
457 for (unsigned I = 0; I < NumElems; ++I) {
458 SmallVector<Value *, 8> Indices;
459 Indices.resize(NumIndices);
460 for (unsigned J = 0; J < NumIndices; ++J)
461 Indices[J] = Ops[J][I];
462 Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
463 GEPI.getName() + ".i" + Twine(I));
464 if (GEPI.isInBounds())
465 if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
466 NewGEPI->setIsInBounds();
467 }
468 gather(&GEPI, Res);
469 return true;
470 }
471
visitCastInst(CastInst & CI)472 bool Scalarizer::visitCastInst(CastInst &CI) {
473 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
474 if (!VT)
475 return false;
476
477 unsigned NumElems = VT->getNumElements();
478 IRBuilder<> Builder(&CI);
479 Scatterer Op0 = scatter(&CI, CI.getOperand(0));
480 assert(Op0.size() == NumElems && "Mismatched cast");
481 ValueVector Res;
482 Res.resize(NumElems);
483 for (unsigned I = 0; I < NumElems; ++I)
484 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
485 CI.getName() + ".i" + Twine(I));
486 gather(&CI, Res);
487 return true;
488 }
489
visitBitCastInst(BitCastInst & BCI)490 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
491 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
492 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
493 if (!DstVT || !SrcVT)
494 return false;
495
496 unsigned DstNumElems = DstVT->getNumElements();
497 unsigned SrcNumElems = SrcVT->getNumElements();
498 IRBuilder<> Builder(&BCI);
499 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
500 ValueVector Res;
501 Res.resize(DstNumElems);
502
503 if (DstNumElems == SrcNumElems) {
504 for (unsigned I = 0; I < DstNumElems; ++I)
505 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
506 BCI.getName() + ".i" + Twine(I));
507 } else if (DstNumElems > SrcNumElems) {
508 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
509 // individual elements to the destination.
510 unsigned FanOut = DstNumElems / SrcNumElems;
511 Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
512 unsigned ResI = 0;
513 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
514 Value *V = Op0[Op0I];
515 Instruction *VI;
516 // Look through any existing bitcasts before converting to <N x t2>.
517 // In the best case, the resulting conversion might be a no-op.
518 while ((VI = dyn_cast<Instruction>(V)) &&
519 VI->getOpcode() == Instruction::BitCast)
520 V = VI->getOperand(0);
521 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
522 Scatterer Mid = scatter(&BCI, V);
523 for (unsigned MidI = 0; MidI < FanOut; ++MidI)
524 Res[ResI++] = Mid[MidI];
525 }
526 } else {
527 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
528 unsigned FanIn = SrcNumElems / DstNumElems;
529 Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
530 unsigned Op0I = 0;
531 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
532 Value *V = UndefValue::get(MidTy);
533 for (unsigned MidI = 0; MidI < FanIn; ++MidI)
534 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
535 BCI.getName() + ".i" + Twine(ResI)
536 + ".upto" + Twine(MidI));
537 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
538 BCI.getName() + ".i" + Twine(ResI));
539 }
540 }
541 gather(&BCI, Res);
542 return true;
543 }
544
visitShuffleVectorInst(ShuffleVectorInst & SVI)545 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
546 VectorType *VT = dyn_cast<VectorType>(SVI.getType());
547 if (!VT)
548 return false;
549
550 unsigned NumElems = VT->getNumElements();
551 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
552 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
553 ValueVector Res;
554 Res.resize(NumElems);
555
556 for (unsigned I = 0; I < NumElems; ++I) {
557 int Selector = SVI.getMaskValue(I);
558 if (Selector < 0)
559 Res[I] = UndefValue::get(VT->getElementType());
560 else if (unsigned(Selector) < Op0.size())
561 Res[I] = Op0[Selector];
562 else
563 Res[I] = Op1[Selector - Op0.size()];
564 }
565 gather(&SVI, Res);
566 return true;
567 }
568
visitPHINode(PHINode & PHI)569 bool Scalarizer::visitPHINode(PHINode &PHI) {
570 VectorType *VT = dyn_cast<VectorType>(PHI.getType());
571 if (!VT)
572 return false;
573
574 unsigned NumElems = VT->getNumElements();
575 IRBuilder<> Builder(&PHI);
576 ValueVector Res;
577 Res.resize(NumElems);
578
579 unsigned NumOps = PHI.getNumOperands();
580 for (unsigned I = 0; I < NumElems; ++I)
581 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
582 PHI.getName() + ".i" + Twine(I));
583
584 for (unsigned I = 0; I < NumOps; ++I) {
585 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
586 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
587 for (unsigned J = 0; J < NumElems; ++J)
588 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
589 }
590 gather(&PHI, Res);
591 return true;
592 }
593
visitLoadInst(LoadInst & LI)594 bool Scalarizer::visitLoadInst(LoadInst &LI) {
595 if (!ScalarizeLoadStore)
596 return false;
597 if (!LI.isSimple())
598 return false;
599
600 VectorLayout Layout;
601 if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
602 LI.getModule()->getDataLayout()))
603 return false;
604
605 unsigned NumElems = Layout.VecTy->getNumElements();
606 IRBuilder<> Builder(&LI);
607 Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
608 ValueVector Res;
609 Res.resize(NumElems);
610
611 for (unsigned I = 0; I < NumElems; ++I)
612 Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
613 LI.getName() + ".i" + Twine(I));
614 gather(&LI, Res);
615 return true;
616 }
617
visitStoreInst(StoreInst & SI)618 bool Scalarizer::visitStoreInst(StoreInst &SI) {
619 if (!ScalarizeLoadStore)
620 return false;
621 if (!SI.isSimple())
622 return false;
623
624 VectorLayout Layout;
625 Value *FullValue = SI.getValueOperand();
626 if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
627 SI.getModule()->getDataLayout()))
628 return false;
629
630 unsigned NumElems = Layout.VecTy->getNumElements();
631 IRBuilder<> Builder(&SI);
632 Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
633 Scatterer Val = scatter(&SI, FullValue);
634
635 ValueVector Stores;
636 Stores.resize(NumElems);
637 for (unsigned I = 0; I < NumElems; ++I) {
638 unsigned Align = Layout.getElemAlign(I);
639 Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
640 }
641 transferMetadata(&SI, Stores);
642 return true;
643 }
644
645 // Delete the instructions that we scalarized. If a full vector result
646 // is still needed, recreate it using InsertElements.
finish()647 bool Scalarizer::finish() {
648 // The presence of data in Gathered or Scattered indicates changes
649 // made to the Function.
650 if (Gathered.empty() && Scattered.empty())
651 return false;
652 for (const auto &GMI : Gathered) {
653 Instruction *Op = GMI.first;
654 ValueVector &CV = *GMI.second;
655 if (!Op->use_empty()) {
656 // The value is still needed, so recreate it using a series of
657 // InsertElements.
658 Type *Ty = Op->getType();
659 Value *Res = UndefValue::get(Ty);
660 BasicBlock *BB = Op->getParent();
661 unsigned Count = Ty->getVectorNumElements();
662 IRBuilder<> Builder(Op);
663 if (isa<PHINode>(Op))
664 Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
665 for (unsigned I = 0; I < Count; ++I)
666 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
667 Op->getName() + ".upto" + Twine(I));
668 Res->takeName(Op);
669 Op->replaceAllUsesWith(Res);
670 }
671 Op->eraseFromParent();
672 }
673 Gathered.clear();
674 Scattered.clear();
675 return true;
676 }
677
createScalarizerPass()678 FunctionPass *llvm::createScalarizerPass() {
679 return new Scalarizer();
680 }
681