1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Support/CommandLine.h"
44 #include <algorithm>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool>
49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
50   cl::Hidden,
51   cl::desc("Convert noalias attributes to metadata during inlining."));
52 
53 static cl::opt<bool>
54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
55   cl::init(true), cl::Hidden,
56   cl::desc("Convert align attributes to assumptions during inlining."));
57 
InlineFunction(CallInst * CI,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
59                           AAResults *CalleeAAR, bool InsertLifetime) {
60   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
61 }
InlineFunction(InvokeInst * II,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
63                           AAResults *CalleeAAR, bool InsertLifetime) {
64   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
65 }
66 
67 namespace {
68   /// A class for recording information about inlining a landing pad.
69   class LandingPadInliningInfo {
70     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
71     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
72     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
73     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
74     SmallVector<Value*, 8> UnwindDestPHIValues;
75 
76   public:
LandingPadInliningInfo(InvokeInst * II)77     LandingPadInliningInfo(InvokeInst *II)
78       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
79         CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
80       // If there are PHI nodes in the unwind destination block, we need to keep
81       // track of which values came into them from the invoke before removing
82       // the edge from this block.
83       llvm::BasicBlock *InvokeBB = II->getParent();
84       BasicBlock::iterator I = OuterResumeDest->begin();
85       for (; isa<PHINode>(I); ++I) {
86         // Save the value to use for this edge.
87         PHINode *PHI = cast<PHINode>(I);
88         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
89       }
90 
91       CallerLPad = cast<LandingPadInst>(I);
92     }
93 
94     /// The outer unwind destination is the target of
95     /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const96     BasicBlock *getOuterResumeDest() const {
97       return OuterResumeDest;
98     }
99 
100     BasicBlock *getInnerResumeDest();
101 
getLandingPadInst() const102     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
103 
104     /// Forward the 'resume' instruction to the caller's landing pad block.
105     /// When the landing pad block has only one predecessor, this is
106     /// a simple branch. When there is more than one predecessor, we need to
107     /// split the landing pad block after the landingpad instruction and jump
108     /// to there.
109     void forwardResume(ResumeInst *RI,
110                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
111 
112     /// Add incoming-PHI values to the unwind destination block for the given
113     /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const114     void addIncomingPHIValuesFor(BasicBlock *BB) const {
115       addIncomingPHIValuesForInto(BB, OuterResumeDest);
116     }
117 
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const118     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
119       BasicBlock::iterator I = dest->begin();
120       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121         PHINode *phi = cast<PHINode>(I);
122         phi->addIncoming(UnwindDestPHIValues[i], src);
123       }
124     }
125   };
126 } // anonymous namespace
127 
128 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
130   if (InnerResumeDest) return InnerResumeDest;
131 
132   // Split the landing pad.
133   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
134   InnerResumeDest =
135     OuterResumeDest->splitBasicBlock(SplitPoint,
136                                      OuterResumeDest->getName() + ".body");
137 
138   // The number of incoming edges we expect to the inner landing pad.
139   const unsigned PHICapacity = 2;
140 
141   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
142   Instruction *InsertPoint = &InnerResumeDest->front();
143   BasicBlock::iterator I = OuterResumeDest->begin();
144   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
145     PHINode *OuterPHI = cast<PHINode>(I);
146     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
147                                         OuterPHI->getName() + ".lpad-body",
148                                         InsertPoint);
149     OuterPHI->replaceAllUsesWith(InnerPHI);
150     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
151   }
152 
153   // Create a PHI for the exception values.
154   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
155                                      "eh.lpad-body", InsertPoint);
156   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
157   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
158 
159   // All done.
160   return InnerResumeDest;
161 }
162 
163 /// Forward the 'resume' instruction to the caller's landing pad block.
164 /// When the landing pad block has only one predecessor, this is a simple
165 /// branch. When there is more than one predecessor, we need to split the
166 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)167 void LandingPadInliningInfo::forwardResume(
168     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
169   BasicBlock *Dest = getInnerResumeDest();
170   BasicBlock *Src = RI->getParent();
171 
172   BranchInst::Create(Dest, Src);
173 
174   // Update the PHIs in the destination. They were inserted in an order which
175   // makes this work.
176   addIncomingPHIValuesForInto(Src, Dest);
177 
178   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
179   RI->eraseFromParent();
180 }
181 
182 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)183 static Value *getParentPad(Value *EHPad) {
184   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
185     return FPI->getParentPad();
186   return cast<CatchSwitchInst>(EHPad)->getParentPad();
187 }
188 
189 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
190 
191 /// Helper for getUnwindDestToken that does the descendant-ward part of
192 /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)193 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
194                                        UnwindDestMemoTy &MemoMap) {
195   SmallVector<Instruction *, 8> Worklist(1, EHPad);
196 
197   while (!Worklist.empty()) {
198     Instruction *CurrentPad = Worklist.pop_back_val();
199     // We only put pads on the worklist that aren't in the MemoMap.  When
200     // we find an unwind dest for a pad we may update its ancestors, but
201     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
202     // so they should never get updated while queued on the worklist.
203     assert(!MemoMap.count(CurrentPad));
204     Value *UnwindDestToken = nullptr;
205     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
206       if (CatchSwitch->hasUnwindDest()) {
207         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
208       } else {
209         // Catchswitch doesn't have a 'nounwind' variant, and one might be
210         // annotated as "unwinds to caller" when really it's nounwind (see
211         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
212         // parent's unwind dest from this.  We can check its catchpads'
213         // descendants, since they might include a cleanuppad with an
214         // "unwinds to caller" cleanupret, which can be trusted.
215         for (auto HI = CatchSwitch->handler_begin(),
216                   HE = CatchSwitch->handler_end();
217              HI != HE && !UnwindDestToken; ++HI) {
218           BasicBlock *HandlerBlock = *HI;
219           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
220           for (User *Child : CatchPad->users()) {
221             // Intentionally ignore invokes here -- since the catchswitch is
222             // marked "unwind to caller", it would be a verifier error if it
223             // contained an invoke which unwinds out of it, so any invoke we'd
224             // encounter must unwind to some child of the catch.
225             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
226               continue;
227 
228             Instruction *ChildPad = cast<Instruction>(Child);
229             auto Memo = MemoMap.find(ChildPad);
230             if (Memo == MemoMap.end()) {
231               // Haven't figure out this child pad yet; queue it.
232               Worklist.push_back(ChildPad);
233               continue;
234             }
235             // We've already checked this child, but might have found that
236             // it offers no proof either way.
237             Value *ChildUnwindDestToken = Memo->second;
238             if (!ChildUnwindDestToken)
239               continue;
240             // We already know the child's unwind dest, which can either
241             // be ConstantTokenNone to indicate unwind to caller, or can
242             // be another child of the catchpad.  Only the former indicates
243             // the unwind dest of the catchswitch.
244             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
245               UnwindDestToken = ChildUnwindDestToken;
246               break;
247             }
248             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
249           }
250         }
251       }
252     } else {
253       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
254       for (User *U : CleanupPad->users()) {
255         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
256           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
257             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
258           else
259             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
260           break;
261         }
262         Value *ChildUnwindDestToken;
263         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
264           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
265         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
266           Instruction *ChildPad = cast<Instruction>(U);
267           auto Memo = MemoMap.find(ChildPad);
268           if (Memo == MemoMap.end()) {
269             // Haven't resolved this child yet; queue it and keep searching.
270             Worklist.push_back(ChildPad);
271             continue;
272           }
273           // We've checked this child, but still need to ignore it if it
274           // had no proof either way.
275           ChildUnwindDestToken = Memo->second;
276           if (!ChildUnwindDestToken)
277             continue;
278         } else {
279           // Not a relevant user of the cleanuppad
280           continue;
281         }
282         // In a well-formed program, the child/invoke must either unwind to
283         // an(other) child of the cleanup, or exit the cleanup.  In the
284         // first case, continue searching.
285         if (isa<Instruction>(ChildUnwindDestToken) &&
286             getParentPad(ChildUnwindDestToken) == CleanupPad)
287           continue;
288         UnwindDestToken = ChildUnwindDestToken;
289         break;
290       }
291     }
292     // If we haven't found an unwind dest for CurrentPad, we may have queued its
293     // children, so move on to the next in the worklist.
294     if (!UnwindDestToken)
295       continue;
296 
297     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
298     // any ancestors of CurrentPad up to but not including UnwindDestToken's
299     // parent pad.  Record this in the memo map, and check to see if the
300     // original EHPad being queried is one of the ones exited.
301     Value *UnwindParent;
302     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
303       UnwindParent = getParentPad(UnwindPad);
304     else
305       UnwindParent = nullptr;
306     bool ExitedOriginalPad = false;
307     for (Instruction *ExitedPad = CurrentPad;
308          ExitedPad && ExitedPad != UnwindParent;
309          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
310       // Skip over catchpads since they just follow their catchswitches.
311       if (isa<CatchPadInst>(ExitedPad))
312         continue;
313       MemoMap[ExitedPad] = UnwindDestToken;
314       ExitedOriginalPad |= (ExitedPad == EHPad);
315     }
316 
317     if (ExitedOriginalPad)
318       return UnwindDestToken;
319 
320     // Continue the search.
321   }
322 
323   // No definitive information is contained within this funclet.
324   return nullptr;
325 }
326 
327 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
328 /// return that pad instruction.  If it unwinds to caller, return
329 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
330 /// return nullptr.
331 ///
332 /// This routine gets invoked for calls in funclets in inlinees when inlining
333 /// an invoke.  Since many funclets don't have calls inside them, it's queried
334 /// on-demand rather than building a map of pads to unwind dests up front.
335 /// Determining a funclet's unwind dest may require recursively searching its
336 /// descendants, and also ancestors and cousins if the descendants don't provide
337 /// an answer.  Since most funclets will have their unwind dest immediately
338 /// available as the unwind dest of a catchswitch or cleanupret, this routine
339 /// searches top-down from the given pad and then up. To avoid worst-case
340 /// quadratic run-time given that approach, it uses a memo map to avoid
341 /// re-processing funclet trees.  The callers that rewrite the IR as they go
342 /// take advantage of this, for correctness, by checking/forcing rewritten
343 /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)344 static Value *getUnwindDestToken(Instruction *EHPad,
345                                  UnwindDestMemoTy &MemoMap) {
346   // Catchpads unwind to the same place as their catchswitch;
347   // redirct any queries on catchpads so the code below can
348   // deal with just catchswitches and cleanuppads.
349   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
350     EHPad = CPI->getCatchSwitch();
351 
352   // Check if we've already determined the unwind dest for this pad.
353   auto Memo = MemoMap.find(EHPad);
354   if (Memo != MemoMap.end())
355     return Memo->second;
356 
357   // Search EHPad and, if necessary, its descendants.
358   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
359   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
360   if (UnwindDestToken)
361     return UnwindDestToken;
362 
363   // No information is available for this EHPad from itself or any of its
364   // descendants.  An unwind all the way out to a pad in the caller would
365   // need also to agree with the unwind dest of the parent funclet, so
366   // search up the chain to try to find a funclet with information.  Put
367   // null entries in the memo map to avoid re-processing as we go up.
368   MemoMap[EHPad] = nullptr;
369   Instruction *LastUselessPad = EHPad;
370   Value *AncestorToken;
371   for (AncestorToken = getParentPad(EHPad);
372        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
373        AncestorToken = getParentPad(AncestorToken)) {
374     // Skip over catchpads since they just follow their catchswitches.
375     if (isa<CatchPadInst>(AncestorPad))
376       continue;
377     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
378     auto AncestorMemo = MemoMap.find(AncestorPad);
379     if (AncestorMemo == MemoMap.end()) {
380       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
381     } else {
382       UnwindDestToken = AncestorMemo->second;
383     }
384     if (UnwindDestToken)
385       break;
386     LastUselessPad = AncestorPad;
387   }
388 
389   // Since the whole tree under LastUselessPad has no information, it all must
390   // match UnwindDestToken; record that to avoid repeating the search.
391   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
392   while (!Worklist.empty()) {
393     Instruction *UselessPad = Worklist.pop_back_val();
394     assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
395     MemoMap[UselessPad] = UnwindDestToken;
396     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
397       for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
398         for (User *U : HandlerBlock->getFirstNonPHI()->users())
399           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
400             Worklist.push_back(cast<Instruction>(U));
401     } else {
402       assert(isa<CleanupPadInst>(UselessPad));
403       for (User *U : UselessPad->users())
404         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
405           Worklist.push_back(cast<Instruction>(U));
406     }
407   }
408 
409   return UnwindDestToken;
410 }
411 
412 /// When we inline a basic block into an invoke,
413 /// we have to turn all of the calls that can throw into invokes.
414 /// This function analyze BB to see if there are any calls, and if so,
415 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
416 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)417 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
418     BasicBlock *BB, BasicBlock *UnwindEdge,
419     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
420   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
421     Instruction *I = &*BBI++;
422 
423     // We only need to check for function calls: inlined invoke
424     // instructions require no special handling.
425     CallInst *CI = dyn_cast<CallInst>(I);
426 
427     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
428       continue;
429 
430     // We do not need to (and in fact, cannot) convert possibly throwing calls
431     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
432     // invokes.  The caller's "segment" of the deoptimization continuation
433     // attached to the newly inlined @llvm.experimental_deoptimize
434     // (resp. @llvm.experimental.guard) call should contain the exception
435     // handling logic, if any.
436     if (auto *F = CI->getCalledFunction())
437       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
438           F->getIntrinsicID() == Intrinsic::experimental_guard)
439         continue;
440 
441     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
442       // This call is nested inside a funclet.  If that funclet has an unwind
443       // destination within the inlinee, then unwinding out of this call would
444       // be UB.  Rewriting this call to an invoke which targets the inlined
445       // invoke's unwind dest would give the call's parent funclet multiple
446       // unwind destinations, which is something that subsequent EH table
447       // generation can't handle and that the veirifer rejects.  So when we
448       // see such a call, leave it as a call.
449       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
450       Value *UnwindDestToken =
451           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
452       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
453         continue;
454 #ifndef NDEBUG
455       Instruction *MemoKey;
456       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
457         MemoKey = CatchPad->getCatchSwitch();
458       else
459         MemoKey = FuncletPad;
460       assert(FuncletUnwindMap->count(MemoKey) &&
461              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
462              "must get memoized to avoid confusing later searches");
463 #endif // NDEBUG
464     }
465 
466     // Convert this function call into an invoke instruction.  First, split the
467     // basic block.
468     BasicBlock *Split =
469         BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
470 
471     // Delete the unconditional branch inserted by splitBasicBlock
472     BB->getInstList().pop_back();
473 
474     // Create the new invoke instruction.
475     SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
476     SmallVector<OperandBundleDef, 1> OpBundles;
477 
478     CI->getOperandBundlesAsDefs(OpBundles);
479 
480     // Note: we're round tripping operand bundles through memory here, and that
481     // can potentially be avoided with a cleverer API design that we do not have
482     // as of this time.
483 
484     InvokeInst *II =
485         InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
486                            OpBundles, CI->getName(), BB);
487     II->setDebugLoc(CI->getDebugLoc());
488     II->setCallingConv(CI->getCallingConv());
489     II->setAttributes(CI->getAttributes());
490 
491     // Make sure that anything using the call now uses the invoke!  This also
492     // updates the CallGraph if present, because it uses a WeakVH.
493     CI->replaceAllUsesWith(II);
494 
495     // Delete the original call
496     Split->getInstList().pop_front();
497     return BB;
498   }
499   return nullptr;
500 }
501 
502 /// If we inlined an invoke site, we need to convert calls
503 /// in the body of the inlined function into invokes.
504 ///
505 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
506 /// block of the inlined code (the last block is the end of the function),
507 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)508 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
509                                     ClonedCodeInfo &InlinedCodeInfo) {
510   BasicBlock *InvokeDest = II->getUnwindDest();
511 
512   Function *Caller = FirstNewBlock->getParent();
513 
514   // The inlined code is currently at the end of the function, scan from the
515   // start of the inlined code to its end, checking for stuff we need to
516   // rewrite.
517   LandingPadInliningInfo Invoke(II);
518 
519   // Get all of the inlined landing pad instructions.
520   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
521   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
522        I != E; ++I)
523     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
524       InlinedLPads.insert(II->getLandingPadInst());
525 
526   // Append the clauses from the outer landing pad instruction into the inlined
527   // landing pad instructions.
528   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
529   for (LandingPadInst *InlinedLPad : InlinedLPads) {
530     unsigned OuterNum = OuterLPad->getNumClauses();
531     InlinedLPad->reserveClauses(OuterNum);
532     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
533       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
534     if (OuterLPad->isCleanup())
535       InlinedLPad->setCleanup(true);
536   }
537 
538   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
539        BB != E; ++BB) {
540     if (InlinedCodeInfo.ContainsCalls)
541       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
542               &*BB, Invoke.getOuterResumeDest()))
543         // Update any PHI nodes in the exceptional block to indicate that there
544         // is now a new entry in them.
545         Invoke.addIncomingPHIValuesFor(NewBB);
546 
547     // Forward any resumes that are remaining here.
548     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
549       Invoke.forwardResume(RI, InlinedLPads);
550   }
551 
552   // Now that everything is happy, we have one final detail.  The PHI nodes in
553   // the exception destination block still have entries due to the original
554   // invoke instruction. Eliminate these entries (which might even delete the
555   // PHI node) now.
556   InvokeDest->removePredecessor(II->getParent());
557 }
558 
559 /// If we inlined an invoke site, we need to convert calls
560 /// in the body of the inlined function into invokes.
561 ///
562 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
563 /// block of the inlined code (the last block is the end of the function),
564 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)565 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
566                                ClonedCodeInfo &InlinedCodeInfo) {
567   BasicBlock *UnwindDest = II->getUnwindDest();
568   Function *Caller = FirstNewBlock->getParent();
569 
570   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
571 
572   // If there are PHI nodes in the unwind destination block, we need to keep
573   // track of which values came into them from the invoke before removing the
574   // edge from this block.
575   SmallVector<Value *, 8> UnwindDestPHIValues;
576   llvm::BasicBlock *InvokeBB = II->getParent();
577   for (Instruction &I : *UnwindDest) {
578     // Save the value to use for this edge.
579     PHINode *PHI = dyn_cast<PHINode>(&I);
580     if (!PHI)
581       break;
582     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
583   }
584 
585   // Add incoming-PHI values to the unwind destination block for the given basic
586   // block, using the values for the original invoke's source block.
587   auto UpdatePHINodes = [&](BasicBlock *Src) {
588     BasicBlock::iterator I = UnwindDest->begin();
589     for (Value *V : UnwindDestPHIValues) {
590       PHINode *PHI = cast<PHINode>(I);
591       PHI->addIncoming(V, Src);
592       ++I;
593     }
594   };
595 
596   // This connects all the instructions which 'unwind to caller' to the invoke
597   // destination.
598   UnwindDestMemoTy FuncletUnwindMap;
599   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
600        BB != E; ++BB) {
601     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
602       if (CRI->unwindsToCaller()) {
603         auto *CleanupPad = CRI->getCleanupPad();
604         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
605         CRI->eraseFromParent();
606         UpdatePHINodes(&*BB);
607         // Finding a cleanupret with an unwind destination would confuse
608         // subsequent calls to getUnwindDestToken, so map the cleanuppad
609         // to short-circuit any such calls and recognize this as an "unwind
610         // to caller" cleanup.
611         assert(!FuncletUnwindMap.count(CleanupPad) ||
612                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
613         FuncletUnwindMap[CleanupPad] =
614             ConstantTokenNone::get(Caller->getContext());
615       }
616     }
617 
618     Instruction *I = BB->getFirstNonPHI();
619     if (!I->isEHPad())
620       continue;
621 
622     Instruction *Replacement = nullptr;
623     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
624       if (CatchSwitch->unwindsToCaller()) {
625         Value *UnwindDestToken;
626         if (auto *ParentPad =
627                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
628           // This catchswitch is nested inside another funclet.  If that
629           // funclet has an unwind destination within the inlinee, then
630           // unwinding out of this catchswitch would be UB.  Rewriting this
631           // catchswitch to unwind to the inlined invoke's unwind dest would
632           // give the parent funclet multiple unwind destinations, which is
633           // something that subsequent EH table generation can't handle and
634           // that the veirifer rejects.  So when we see such a call, leave it
635           // as "unwind to caller".
636           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
637           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
638             continue;
639         } else {
640           // This catchswitch has no parent to inherit constraints from, and
641           // none of its descendants can have an unwind edge that exits it and
642           // targets another funclet in the inlinee.  It may or may not have a
643           // descendant that definitively has an unwind to caller.  In either
644           // case, we'll have to assume that any unwinds out of it may need to
645           // be routed to the caller, so treat it as though it has a definitive
646           // unwind to caller.
647           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
648         }
649         auto *NewCatchSwitch = CatchSwitchInst::Create(
650             CatchSwitch->getParentPad(), UnwindDest,
651             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
652             CatchSwitch);
653         for (BasicBlock *PadBB : CatchSwitch->handlers())
654           NewCatchSwitch->addHandler(PadBB);
655         // Propagate info for the old catchswitch over to the new one in
656         // the unwind map.  This also serves to short-circuit any subsequent
657         // checks for the unwind dest of this catchswitch, which would get
658         // confused if they found the outer handler in the callee.
659         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
660         Replacement = NewCatchSwitch;
661       }
662     } else if (!isa<FuncletPadInst>(I)) {
663       llvm_unreachable("unexpected EHPad!");
664     }
665 
666     if (Replacement) {
667       Replacement->takeName(I);
668       I->replaceAllUsesWith(Replacement);
669       I->eraseFromParent();
670       UpdatePHINodes(&*BB);
671     }
672   }
673 
674   if (InlinedCodeInfo.ContainsCalls)
675     for (Function::iterator BB = FirstNewBlock->getIterator(),
676                             E = Caller->end();
677          BB != E; ++BB)
678       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
679               &*BB, UnwindDest, &FuncletUnwindMap))
680         // Update any PHI nodes in the exceptional block to indicate that there
681         // is now a new entry in them.
682         UpdatePHINodes(NewBB);
683 
684   // Now that everything is happy, we have one final detail.  The PHI nodes in
685   // the exception destination block still have entries due to the original
686   // invoke instruction. Eliminate these entries (which might even delete the
687   // PHI node) now.
688   UnwindDest->removePredecessor(InvokeBB);
689 }
690 
691 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
692 /// that metadata should be propagated to all memory-accessing cloned
693 /// instructions.
PropagateParallelLoopAccessMetadata(CallSite CS,ValueToValueMapTy & VMap)694 static void PropagateParallelLoopAccessMetadata(CallSite CS,
695                                                 ValueToValueMapTy &VMap) {
696   MDNode *M =
697     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
698   if (!M)
699     return;
700 
701   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
702        VMI != VMIE; ++VMI) {
703     if (!VMI->second)
704       continue;
705 
706     Instruction *NI = dyn_cast<Instruction>(VMI->second);
707     if (!NI)
708       continue;
709 
710     if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
711         M = MDNode::concatenate(PM, M);
712       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
713     } else if (NI->mayReadOrWriteMemory()) {
714       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
715     }
716   }
717 }
718 
719 /// When inlining a function that contains noalias scope metadata,
720 /// this metadata needs to be cloned so that the inlined blocks
721 /// have different "unqiue scopes" at every call site. Were this not done, then
722 /// aliasing scopes from a function inlined into a caller multiple times could
723 /// not be differentiated (and this would lead to miscompiles because the
724 /// non-aliasing property communicated by the metadata could have
725 /// call-site-specific control dependencies).
CloneAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap)726 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
727   const Function *CalledFunc = CS.getCalledFunction();
728   SetVector<const MDNode *> MD;
729 
730   // Note: We could only clone the metadata if it is already used in the
731   // caller. I'm omitting that check here because it might confuse
732   // inter-procedural alias analysis passes. We can revisit this if it becomes
733   // an efficiency or overhead problem.
734 
735   for (const BasicBlock &I : *CalledFunc)
736     for (const Instruction &J : I) {
737       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
738         MD.insert(M);
739       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
740         MD.insert(M);
741     }
742 
743   if (MD.empty())
744     return;
745 
746   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
747   // the set.
748   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
749   while (!Queue.empty()) {
750     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
751     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
752       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
753         if (MD.insert(M1))
754           Queue.push_back(M1);
755   }
756 
757   // Now we have a complete set of all metadata in the chains used to specify
758   // the noalias scopes and the lists of those scopes.
759   SmallVector<TempMDTuple, 16> DummyNodes;
760   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
761   for (const MDNode *I : MD) {
762     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
763     MDMap[I].reset(DummyNodes.back().get());
764   }
765 
766   // Create new metadata nodes to replace the dummy nodes, replacing old
767   // metadata references with either a dummy node or an already-created new
768   // node.
769   for (const MDNode *I : MD) {
770     SmallVector<Metadata *, 4> NewOps;
771     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
772       const Metadata *V = I->getOperand(i);
773       if (const MDNode *M = dyn_cast<MDNode>(V))
774         NewOps.push_back(MDMap[M]);
775       else
776         NewOps.push_back(const_cast<Metadata *>(V));
777     }
778 
779     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
780     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
781     assert(TempM->isTemporary() && "Expected temporary node");
782 
783     TempM->replaceAllUsesWith(NewM);
784   }
785 
786   // Now replace the metadata in the new inlined instructions with the
787   // repacements from the map.
788   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
789        VMI != VMIE; ++VMI) {
790     if (!VMI->second)
791       continue;
792 
793     Instruction *NI = dyn_cast<Instruction>(VMI->second);
794     if (!NI)
795       continue;
796 
797     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
798       MDNode *NewMD = MDMap[M];
799       // If the call site also had alias scope metadata (a list of scopes to
800       // which instructions inside it might belong), propagate those scopes to
801       // the inlined instructions.
802       if (MDNode *CSM =
803               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
804         NewMD = MDNode::concatenate(NewMD, CSM);
805       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
806     } else if (NI->mayReadOrWriteMemory()) {
807       if (MDNode *M =
808               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
809         NI->setMetadata(LLVMContext::MD_alias_scope, M);
810     }
811 
812     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
813       MDNode *NewMD = MDMap[M];
814       // If the call site also had noalias metadata (a list of scopes with
815       // which instructions inside it don't alias), propagate those scopes to
816       // the inlined instructions.
817       if (MDNode *CSM =
818               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
819         NewMD = MDNode::concatenate(NewMD, CSM);
820       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
821     } else if (NI->mayReadOrWriteMemory()) {
822       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
823         NI->setMetadata(LLVMContext::MD_noalias, M);
824     }
825   }
826 }
827 
828 /// If the inlined function has noalias arguments,
829 /// then add new alias scopes for each noalias argument, tag the mapped noalias
830 /// parameters with noalias metadata specifying the new scope, and tag all
831 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR)832 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
833                                   const DataLayout &DL, AAResults *CalleeAAR) {
834   if (!EnableNoAliasConversion)
835     return;
836 
837   const Function *CalledFunc = CS.getCalledFunction();
838   SmallVector<const Argument *, 4> NoAliasArgs;
839 
840   for (const Argument &Arg : CalledFunc->args())
841     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
842       NoAliasArgs.push_back(&Arg);
843 
844   if (NoAliasArgs.empty())
845     return;
846 
847   // To do a good job, if a noalias variable is captured, we need to know if
848   // the capture point dominates the particular use we're considering.
849   DominatorTree DT;
850   DT.recalculate(const_cast<Function&>(*CalledFunc));
851 
852   // noalias indicates that pointer values based on the argument do not alias
853   // pointer values which are not based on it. So we add a new "scope" for each
854   // noalias function argument. Accesses using pointers based on that argument
855   // become part of that alias scope, accesses using pointers not based on that
856   // argument are tagged as noalias with that scope.
857 
858   DenseMap<const Argument *, MDNode *> NewScopes;
859   MDBuilder MDB(CalledFunc->getContext());
860 
861   // Create a new scope domain for this function.
862   MDNode *NewDomain =
863     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
864   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
865     const Argument *A = NoAliasArgs[i];
866 
867     std::string Name = CalledFunc->getName();
868     if (A->hasName()) {
869       Name += ": %";
870       Name += A->getName();
871     } else {
872       Name += ": argument ";
873       Name += utostr(i);
874     }
875 
876     // Note: We always create a new anonymous root here. This is true regardless
877     // of the linkage of the callee because the aliasing "scope" is not just a
878     // property of the callee, but also all control dependencies in the caller.
879     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
880     NewScopes.insert(std::make_pair(A, NewScope));
881   }
882 
883   // Iterate over all new instructions in the map; for all memory-access
884   // instructions, add the alias scope metadata.
885   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
886        VMI != VMIE; ++VMI) {
887     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
888       if (!VMI->second)
889         continue;
890 
891       Instruction *NI = dyn_cast<Instruction>(VMI->second);
892       if (!NI)
893         continue;
894 
895       bool IsArgMemOnlyCall = false, IsFuncCall = false;
896       SmallVector<const Value *, 2> PtrArgs;
897 
898       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
899         PtrArgs.push_back(LI->getPointerOperand());
900       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
901         PtrArgs.push_back(SI->getPointerOperand());
902       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
903         PtrArgs.push_back(VAAI->getPointerOperand());
904       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
905         PtrArgs.push_back(CXI->getPointerOperand());
906       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
907         PtrArgs.push_back(RMWI->getPointerOperand());
908       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
909         // If we know that the call does not access memory, then we'll still
910         // know that about the inlined clone of this call site, and we don't
911         // need to add metadata.
912         if (ICS.doesNotAccessMemory())
913           continue;
914 
915         IsFuncCall = true;
916         if (CalleeAAR) {
917           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
918           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
919               MRB == FMRB_OnlyReadsArgumentPointees)
920             IsArgMemOnlyCall = true;
921         }
922 
923         for (Value *Arg : ICS.args()) {
924           // We need to check the underlying objects of all arguments, not just
925           // the pointer arguments, because we might be passing pointers as
926           // integers, etc.
927           // However, if we know that the call only accesses pointer arguments,
928           // then we only need to check the pointer arguments.
929           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
930             continue;
931 
932           PtrArgs.push_back(Arg);
933         }
934       }
935 
936       // If we found no pointers, then this instruction is not suitable for
937       // pairing with an instruction to receive aliasing metadata.
938       // However, if this is a call, this we might just alias with none of the
939       // noalias arguments.
940       if (PtrArgs.empty() && !IsFuncCall)
941         continue;
942 
943       // It is possible that there is only one underlying object, but you
944       // need to go through several PHIs to see it, and thus could be
945       // repeated in the Objects list.
946       SmallPtrSet<const Value *, 4> ObjSet;
947       SmallVector<Metadata *, 4> Scopes, NoAliases;
948 
949       SmallSetVector<const Argument *, 4> NAPtrArgs;
950       for (const Value *V : PtrArgs) {
951         SmallVector<Value *, 4> Objects;
952         GetUnderlyingObjects(const_cast<Value*>(V),
953                              Objects, DL, /* LI = */ nullptr);
954 
955         for (Value *O : Objects)
956           ObjSet.insert(O);
957       }
958 
959       // Figure out if we're derived from anything that is not a noalias
960       // argument.
961       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
962       for (const Value *V : ObjSet) {
963         // Is this value a constant that cannot be derived from any pointer
964         // value (we need to exclude constant expressions, for example, that
965         // are formed from arithmetic on global symbols).
966         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
967                              isa<ConstantPointerNull>(V) ||
968                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
969         if (IsNonPtrConst)
970           continue;
971 
972         // If this is anything other than a noalias argument, then we cannot
973         // completely describe the aliasing properties using alias.scope
974         // metadata (and, thus, won't add any).
975         if (const Argument *A = dyn_cast<Argument>(V)) {
976           if (!A->hasNoAliasAttr())
977             UsesAliasingPtr = true;
978         } else {
979           UsesAliasingPtr = true;
980         }
981 
982         // If this is not some identified function-local object (which cannot
983         // directly alias a noalias argument), or some other argument (which,
984         // by definition, also cannot alias a noalias argument), then we could
985         // alias a noalias argument that has been captured).
986         if (!isa<Argument>(V) &&
987             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
988           CanDeriveViaCapture = true;
989       }
990 
991       // A function call can always get captured noalias pointers (via other
992       // parameters, globals, etc.).
993       if (IsFuncCall && !IsArgMemOnlyCall)
994         CanDeriveViaCapture = true;
995 
996       // First, we want to figure out all of the sets with which we definitely
997       // don't alias. Iterate over all noalias set, and add those for which:
998       //   1. The noalias argument is not in the set of objects from which we
999       //      definitely derive.
1000       //   2. The noalias argument has not yet been captured.
1001       // An arbitrary function that might load pointers could see captured
1002       // noalias arguments via other noalias arguments or globals, and so we
1003       // must always check for prior capture.
1004       for (const Argument *A : NoAliasArgs) {
1005         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1006                                  // It might be tempting to skip the
1007                                  // PointerMayBeCapturedBefore check if
1008                                  // A->hasNoCaptureAttr() is true, but this is
1009                                  // incorrect because nocapture only guarantees
1010                                  // that no copies outlive the function, not
1011                                  // that the value cannot be locally captured.
1012                                  !PointerMayBeCapturedBefore(A,
1013                                    /* ReturnCaptures */ false,
1014                                    /* StoreCaptures */ false, I, &DT)))
1015           NoAliases.push_back(NewScopes[A]);
1016       }
1017 
1018       if (!NoAliases.empty())
1019         NI->setMetadata(LLVMContext::MD_noalias,
1020                         MDNode::concatenate(
1021                             NI->getMetadata(LLVMContext::MD_noalias),
1022                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1023 
1024       // Next, we want to figure out all of the sets to which we might belong.
1025       // We might belong to a set if the noalias argument is in the set of
1026       // underlying objects. If there is some non-noalias argument in our list
1027       // of underlying objects, then we cannot add a scope because the fact
1028       // that some access does not alias with any set of our noalias arguments
1029       // cannot itself guarantee that it does not alias with this access
1030       // (because there is some pointer of unknown origin involved and the
1031       // other access might also depend on this pointer). We also cannot add
1032       // scopes to arbitrary functions unless we know they don't access any
1033       // non-parameter pointer-values.
1034       bool CanAddScopes = !UsesAliasingPtr;
1035       if (CanAddScopes && IsFuncCall)
1036         CanAddScopes = IsArgMemOnlyCall;
1037 
1038       if (CanAddScopes)
1039         for (const Argument *A : NoAliasArgs) {
1040           if (ObjSet.count(A))
1041             Scopes.push_back(NewScopes[A]);
1042         }
1043 
1044       if (!Scopes.empty())
1045         NI->setMetadata(
1046             LLVMContext::MD_alias_scope,
1047             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1048                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1049     }
1050   }
1051 }
1052 
1053 /// If the inlined function has non-byval align arguments, then
1054 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallSite CS,InlineFunctionInfo & IFI)1055 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1056   if (!PreserveAlignmentAssumptions)
1057     return;
1058   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1059 
1060   // To avoid inserting redundant assumptions, we should check for assumptions
1061   // already in the caller. To do this, we might need a DT of the caller.
1062   DominatorTree DT;
1063   bool DTCalculated = false;
1064 
1065   Function *CalledFunc = CS.getCalledFunction();
1066   for (Function::arg_iterator I = CalledFunc->arg_begin(),
1067                               E = CalledFunc->arg_end();
1068        I != E; ++I) {
1069     unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
1070     if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
1071       if (!DTCalculated) {
1072         DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
1073                                                ->getParent()));
1074         DTCalculated = true;
1075       }
1076 
1077       // If we can already prove the asserted alignment in the context of the
1078       // caller, then don't bother inserting the assumption.
1079       Value *Arg = CS.getArgument(I->getArgNo());
1080       if (getKnownAlignment(Arg, DL, CS.getInstruction(),
1081                             &IFI.ACT->getAssumptionCache(*CS.getCaller()),
1082                             &DT) >= Align)
1083         continue;
1084 
1085       IRBuilder<>(CS.getInstruction())
1086           .CreateAlignmentAssumption(DL, Arg, Align);
1087     }
1088   }
1089 }
1090 
1091 /// Once we have cloned code over from a callee into the caller,
1092 /// update the specified callgraph to reflect the changes we made.
1093 /// Note that it's possible that not all code was copied over, so only
1094 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallSite CS,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)1095 static void UpdateCallGraphAfterInlining(CallSite CS,
1096                                          Function::iterator FirstNewBlock,
1097                                          ValueToValueMapTy &VMap,
1098                                          InlineFunctionInfo &IFI) {
1099   CallGraph &CG = *IFI.CG;
1100   const Function *Caller = CS.getInstruction()->getParent()->getParent();
1101   const Function *Callee = CS.getCalledFunction();
1102   CallGraphNode *CalleeNode = CG[Callee];
1103   CallGraphNode *CallerNode = CG[Caller];
1104 
1105   // Since we inlined some uninlined call sites in the callee into the caller,
1106   // add edges from the caller to all of the callees of the callee.
1107   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1108 
1109   // Consider the case where CalleeNode == CallerNode.
1110   CallGraphNode::CalledFunctionsVector CallCache;
1111   if (CalleeNode == CallerNode) {
1112     CallCache.assign(I, E);
1113     I = CallCache.begin();
1114     E = CallCache.end();
1115   }
1116 
1117   for (; I != E; ++I) {
1118     const Value *OrigCall = I->first;
1119 
1120     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1121     // Only copy the edge if the call was inlined!
1122     if (VMI == VMap.end() || VMI->second == nullptr)
1123       continue;
1124 
1125     // If the call was inlined, but then constant folded, there is no edge to
1126     // add.  Check for this case.
1127     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1128     if (!NewCall)
1129       continue;
1130 
1131     // We do not treat intrinsic calls like real function calls because we
1132     // expect them to become inline code; do not add an edge for an intrinsic.
1133     CallSite CS = CallSite(NewCall);
1134     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1135       continue;
1136 
1137     // Remember that this call site got inlined for the client of
1138     // InlineFunction.
1139     IFI.InlinedCalls.push_back(NewCall);
1140 
1141     // It's possible that inlining the callsite will cause it to go from an
1142     // indirect to a direct call by resolving a function pointer.  If this
1143     // happens, set the callee of the new call site to a more precise
1144     // destination.  This can also happen if the call graph node of the caller
1145     // was just unnecessarily imprecise.
1146     if (!I->second->getFunction())
1147       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1148         // Indirect call site resolved to direct call.
1149         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1150 
1151         continue;
1152       }
1153 
1154     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1155   }
1156 
1157   // Update the call graph by deleting the edge from Callee to Caller.  We must
1158   // do this after the loop above in case Caller and Callee are the same.
1159   CallerNode->removeCallEdgeFor(CS);
1160 }
1161 
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)1162 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1163                                     BasicBlock *InsertBlock,
1164                                     InlineFunctionInfo &IFI) {
1165   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1166   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1167 
1168   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1169 
1170   // Always generate a memcpy of alignment 1 here because we don't know
1171   // the alignment of the src pointer.  Other optimizations can infer
1172   // better alignment.
1173   Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1174 }
1175 
1176 /// When inlining a call site that has a byval argument,
1177 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)1178 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1179                                   const Function *CalledFunc,
1180                                   InlineFunctionInfo &IFI,
1181                                   unsigned ByValAlignment) {
1182   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1183   Type *AggTy = ArgTy->getElementType();
1184 
1185   Function *Caller = TheCall->getParent()->getParent();
1186 
1187   // If the called function is readonly, then it could not mutate the caller's
1188   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1189   // temporary.
1190   if (CalledFunc->onlyReadsMemory()) {
1191     // If the byval argument has a specified alignment that is greater than the
1192     // passed in pointer, then we either have to round up the input pointer or
1193     // give up on this transformation.
1194     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1195       return Arg;
1196 
1197     const DataLayout &DL = Caller->getParent()->getDataLayout();
1198 
1199     // If the pointer is already known to be sufficiently aligned, or if we can
1200     // round it up to a larger alignment, then we don't need a temporary.
1201     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
1202                                    &IFI.ACT->getAssumptionCache(*Caller)) >=
1203         ByValAlignment)
1204       return Arg;
1205 
1206     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1207     // for code quality, but rarely happens and is required for correctness.
1208   }
1209 
1210   // Create the alloca.  If we have DataLayout, use nice alignment.
1211   unsigned Align =
1212       Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
1213 
1214   // If the byval had an alignment specified, we *must* use at least that
1215   // alignment, as it is required by the byval argument (and uses of the
1216   // pointer inside the callee).
1217   Align = std::max(Align, ByValAlignment);
1218 
1219   Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
1220                                     &*Caller->begin()->begin());
1221   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1222 
1223   // Uses of the argument in the function should use our new alloca
1224   // instead.
1225   return NewAlloca;
1226 }
1227 
1228 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)1229 static bool isUsedByLifetimeMarker(Value *V) {
1230   for (User *U : V->users()) {
1231     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1232       switch (II->getIntrinsicID()) {
1233       default: break;
1234       case Intrinsic::lifetime_start:
1235       case Intrinsic::lifetime_end:
1236         return true;
1237       }
1238     }
1239   }
1240   return false;
1241 }
1242 
1243 // Check whether the given alloca already has
1244 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)1245 static bool hasLifetimeMarkers(AllocaInst *AI) {
1246   Type *Ty = AI->getType();
1247   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1248                                        Ty->getPointerAddressSpace());
1249   if (Ty == Int8PtrTy)
1250     return isUsedByLifetimeMarker(AI);
1251 
1252   // Do a scan to find all the casts to i8*.
1253   for (User *U : AI->users()) {
1254     if (U->getType() != Int8PtrTy) continue;
1255     if (U->stripPointerCasts() != AI) continue;
1256     if (isUsedByLifetimeMarker(U))
1257       return true;
1258   }
1259   return false;
1260 }
1261 
1262 /// Rebuild the entire inlined-at chain for this instruction so that the top of
1263 /// the chain now is inlined-at the new call site.
1264 static DebugLoc
updateInlinedAtInfo(const DebugLoc & DL,DILocation * InlinedAtNode,LLVMContext & Ctx,DenseMap<const DILocation *,DILocation * > & IANodes)1265 updateInlinedAtInfo(const DebugLoc &DL, DILocation *InlinedAtNode,
1266                     LLVMContext &Ctx,
1267                     DenseMap<const DILocation *, DILocation *> &IANodes) {
1268   SmallVector<DILocation *, 3> InlinedAtLocations;
1269   DILocation *Last = InlinedAtNode;
1270   DILocation *CurInlinedAt = DL;
1271 
1272   // Gather all the inlined-at nodes
1273   while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
1274     // Skip any we've already built nodes for
1275     if (DILocation *Found = IANodes[IA]) {
1276       Last = Found;
1277       break;
1278     }
1279 
1280     InlinedAtLocations.push_back(IA);
1281     CurInlinedAt = IA;
1282   }
1283 
1284   // Starting from the top, rebuild the nodes to point to the new inlined-at
1285   // location (then rebuilding the rest of the chain behind it) and update the
1286   // map of already-constructed inlined-at nodes.
1287   for (const DILocation *MD : reverse(InlinedAtLocations)) {
1288     Last = IANodes[MD] = DILocation::getDistinct(
1289         Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
1290   }
1291 
1292   // And finally create the normal location for this instruction, referring to
1293   // the new inlined-at chain.
1294   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
1295 }
1296 
1297 /// Update inlined instructions' line numbers to
1298 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall)1299 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1300                              Instruction *TheCall) {
1301   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1302   if (!TheCallDL)
1303     return;
1304 
1305   auto &Ctx = Fn->getContext();
1306   DILocation *InlinedAtNode = TheCallDL;
1307 
1308   // Create a unique call site, not to be confused with any other call from the
1309   // same location.
1310   InlinedAtNode = DILocation::getDistinct(
1311       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1312       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1313 
1314   // Cache the inlined-at nodes as they're built so they are reused, without
1315   // this every instruction's inlined-at chain would become distinct from each
1316   // other.
1317   DenseMap<const DILocation *, DILocation *> IANodes;
1318 
1319   for (; FI != Fn->end(); ++FI) {
1320     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1321          BI != BE; ++BI) {
1322       DebugLoc DL = BI->getDebugLoc();
1323       if (!DL) {
1324         // If the inlined instruction has no line number, make it look as if it
1325         // originates from the call location. This is important for
1326         // ((__always_inline__, __nodebug__)) functions which must use caller
1327         // location for all instructions in their function body.
1328 
1329         // Don't update static allocas, as they may get moved later.
1330         if (auto *AI = dyn_cast<AllocaInst>(BI))
1331           if (isa<Constant>(AI->getArraySize()))
1332             continue;
1333 
1334         BI->setDebugLoc(TheCallDL);
1335       } else {
1336         BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
1337       }
1338     }
1339   }
1340 }
1341 
1342 /// This function inlines the called function into the basic block of the
1343 /// caller. This returns false if it is not possible to inline this call.
1344 /// The program is still in a well defined state if this occurs though.
1345 ///
1346 /// Note that this only does one level of inlining.  For example, if the
1347 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1348 /// exists in the instruction stream.  Similarly this will inline a recursive
1349 /// function by one level.
InlineFunction(CallSite CS,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)1350 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1351                           AAResults *CalleeAAR, bool InsertLifetime) {
1352   Instruction *TheCall = CS.getInstruction();
1353   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
1354          "Instruction not in function!");
1355 
1356   // If IFI has any state in it, zap it before we fill it in.
1357   IFI.reset();
1358 
1359   const Function *CalledFunc = CS.getCalledFunction();
1360   if (!CalledFunc ||              // Can't inline external function or indirect
1361       CalledFunc->isDeclaration() || // call, or call to a vararg function!
1362       CalledFunc->getFunctionType()->isVarArg()) return false;
1363 
1364   // The inliner does not know how to inline through calls with operand bundles
1365   // in general ...
1366   if (CS.hasOperandBundles()) {
1367     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1368       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1369       // ... but it knows how to inline through "deopt" operand bundles ...
1370       if (Tag == LLVMContext::OB_deopt)
1371         continue;
1372       // ... and "funclet" operand bundles.
1373       if (Tag == LLVMContext::OB_funclet)
1374         continue;
1375 
1376       return false;
1377     }
1378   }
1379 
1380   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1381   // calls that we inline.
1382   bool MarkNoUnwind = CS.doesNotThrow();
1383 
1384   BasicBlock *OrigBB = TheCall->getParent();
1385   Function *Caller = OrigBB->getParent();
1386 
1387   // GC poses two hazards to inlining, which only occur when the callee has GC:
1388   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1389   //     caller.
1390   //  2. If the caller has a differing GC, it is invalid to inline.
1391   if (CalledFunc->hasGC()) {
1392     if (!Caller->hasGC())
1393       Caller->setGC(CalledFunc->getGC());
1394     else if (CalledFunc->getGC() != Caller->getGC())
1395       return false;
1396   }
1397 
1398   // Get the personality function from the callee if it contains a landing pad.
1399   Constant *CalledPersonality =
1400       CalledFunc->hasPersonalityFn()
1401           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1402           : nullptr;
1403 
1404   // Find the personality function used by the landing pads of the caller. If it
1405   // exists, then check to see that it matches the personality function used in
1406   // the callee.
1407   Constant *CallerPersonality =
1408       Caller->hasPersonalityFn()
1409           ? Caller->getPersonalityFn()->stripPointerCasts()
1410           : nullptr;
1411   if (CalledPersonality) {
1412     if (!CallerPersonality)
1413       Caller->setPersonalityFn(CalledPersonality);
1414     // If the personality functions match, then we can perform the
1415     // inlining. Otherwise, we can't inline.
1416     // TODO: This isn't 100% true. Some personality functions are proper
1417     //       supersets of others and can be used in place of the other.
1418     else if (CalledPersonality != CallerPersonality)
1419       return false;
1420   }
1421 
1422   // We need to figure out which funclet the callsite was in so that we may
1423   // properly nest the callee.
1424   Instruction *CallSiteEHPad = nullptr;
1425   if (CallerPersonality) {
1426     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1427     if (isFuncletEHPersonality(Personality)) {
1428       Optional<OperandBundleUse> ParentFunclet =
1429           CS.getOperandBundle(LLVMContext::OB_funclet);
1430       if (ParentFunclet)
1431         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1432 
1433       // OK, the inlining site is legal.  What about the target function?
1434 
1435       if (CallSiteEHPad) {
1436         if (Personality == EHPersonality::MSVC_CXX) {
1437           // The MSVC personality cannot tolerate catches getting inlined into
1438           // cleanup funclets.
1439           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1440             // Ok, the call site is within a cleanuppad.  Let's check the callee
1441             // for catchpads.
1442             for (const BasicBlock &CalledBB : *CalledFunc) {
1443               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1444                 return false;
1445             }
1446           }
1447         } else if (isAsynchronousEHPersonality(Personality)) {
1448           // SEH is even less tolerant, there may not be any sort of exceptional
1449           // funclet in the callee.
1450           for (const BasicBlock &CalledBB : *CalledFunc) {
1451             if (CalledBB.isEHPad())
1452               return false;
1453           }
1454         }
1455       }
1456     }
1457   }
1458 
1459   // Determine if we are dealing with a call in an EHPad which does not unwind
1460   // to caller.
1461   bool EHPadForCallUnwindsLocally = false;
1462   if (CallSiteEHPad && CS.isCall()) {
1463     UnwindDestMemoTy FuncletUnwindMap;
1464     Value *CallSiteUnwindDestToken =
1465         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1466 
1467     EHPadForCallUnwindsLocally =
1468         CallSiteUnwindDestToken &&
1469         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1470   }
1471 
1472   // Get an iterator to the last basic block in the function, which will have
1473   // the new function inlined after it.
1474   Function::iterator LastBlock = --Caller->end();
1475 
1476   // Make sure to capture all of the return instructions from the cloned
1477   // function.
1478   SmallVector<ReturnInst*, 8> Returns;
1479   ClonedCodeInfo InlinedFunctionInfo;
1480   Function::iterator FirstNewBlock;
1481 
1482   { // Scope to destroy VMap after cloning.
1483     ValueToValueMapTy VMap;
1484     // Keep a list of pair (dst, src) to emit byval initializations.
1485     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1486 
1487     auto &DL = Caller->getParent()->getDataLayout();
1488 
1489     assert(CalledFunc->arg_size() == CS.arg_size() &&
1490            "No varargs calls can be inlined!");
1491 
1492     // Calculate the vector of arguments to pass into the function cloner, which
1493     // matches up the formal to the actual argument values.
1494     CallSite::arg_iterator AI = CS.arg_begin();
1495     unsigned ArgNo = 0;
1496     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1497          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1498       Value *ActualArg = *AI;
1499 
1500       // When byval arguments actually inlined, we need to make the copy implied
1501       // by them explicit.  However, we don't do this if the callee is readonly
1502       // or readnone, because the copy would be unneeded: the callee doesn't
1503       // modify the struct.
1504       if (CS.isByValArgument(ArgNo)) {
1505         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1506                                         CalledFunc->getParamAlignment(ArgNo+1));
1507         if (ActualArg != *AI)
1508           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1509       }
1510 
1511       VMap[&*I] = ActualArg;
1512     }
1513 
1514     // Add alignment assumptions if necessary. We do this before the inlined
1515     // instructions are actually cloned into the caller so that we can easily
1516     // check what will be known at the start of the inlined code.
1517     AddAlignmentAssumptions(CS, IFI);
1518 
1519     // We want the inliner to prune the code as it copies.  We would LOVE to
1520     // have no dead or constant instructions leftover after inlining occurs
1521     // (which can happen, e.g., because an argument was constant), but we'll be
1522     // happy with whatever the cloner can do.
1523     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1524                               /*ModuleLevelChanges=*/false, Returns, ".i",
1525                               &InlinedFunctionInfo, TheCall);
1526 
1527     // Remember the first block that is newly cloned over.
1528     FirstNewBlock = LastBlock; ++FirstNewBlock;
1529 
1530     // Inject byval arguments initialization.
1531     for (std::pair<Value*, Value*> &Init : ByValInit)
1532       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1533                               &*FirstNewBlock, IFI);
1534 
1535     Optional<OperandBundleUse> ParentDeopt =
1536         CS.getOperandBundle(LLVMContext::OB_deopt);
1537     if (ParentDeopt) {
1538       SmallVector<OperandBundleDef, 2> OpDefs;
1539 
1540       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1541         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1542         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1543 
1544         OpDefs.clear();
1545 
1546         CallSite ICS(I);
1547         OpDefs.reserve(ICS.getNumOperandBundles());
1548 
1549         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1550           auto ChildOB = ICS.getOperandBundleAt(i);
1551           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1552             // If the inlined call has other operand bundles, let them be
1553             OpDefs.emplace_back(ChildOB);
1554             continue;
1555           }
1556 
1557           // It may be useful to separate this logic (of handling operand
1558           // bundles) out to a separate "policy" component if this gets crowded.
1559           // Prepend the parent's deoptimization continuation to the newly
1560           // inlined call's deoptimization continuation.
1561           std::vector<Value *> MergedDeoptArgs;
1562           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1563                                   ChildOB.Inputs.size());
1564 
1565           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1566                                  ParentDeopt->Inputs.begin(),
1567                                  ParentDeopt->Inputs.end());
1568           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1569                                  ChildOB.Inputs.end());
1570 
1571           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1572         }
1573 
1574         Instruction *NewI = nullptr;
1575         if (isa<CallInst>(I))
1576           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1577         else
1578           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1579 
1580         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1581         // this even if the call returns void.
1582         I->replaceAllUsesWith(NewI);
1583 
1584         VH = nullptr;
1585         I->eraseFromParent();
1586       }
1587     }
1588 
1589     // Update the callgraph if requested.
1590     if (IFI.CG)
1591       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1592 
1593     // Update inlined instructions' line number information.
1594     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1595 
1596     // Clone existing noalias metadata if necessary.
1597     CloneAliasScopeMetadata(CS, VMap);
1598 
1599     // Add noalias metadata if necessary.
1600     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1601 
1602     // Propagate llvm.mem.parallel_loop_access if necessary.
1603     PropagateParallelLoopAccessMetadata(CS, VMap);
1604 
1605     // FIXME: We could register any cloned assumptions instead of clearing the
1606     // whole function's cache.
1607     if (IFI.ACT)
1608       IFI.ACT->getAssumptionCache(*Caller).clear();
1609   }
1610 
1611   // If there are any alloca instructions in the block that used to be the entry
1612   // block for the callee, move them to the entry block of the caller.  First
1613   // calculate which instruction they should be inserted before.  We insert the
1614   // instructions at the end of the current alloca list.
1615   {
1616     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1617     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1618          E = FirstNewBlock->end(); I != E; ) {
1619       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1620       if (!AI) continue;
1621 
1622       // If the alloca is now dead, remove it.  This often occurs due to code
1623       // specialization.
1624       if (AI->use_empty()) {
1625         AI->eraseFromParent();
1626         continue;
1627       }
1628 
1629       if (!isa<Constant>(AI->getArraySize()))
1630         continue;
1631 
1632       // Keep track of the static allocas that we inline into the caller.
1633       IFI.StaticAllocas.push_back(AI);
1634 
1635       // Scan for the block of allocas that we can move over, and move them
1636       // all at once.
1637       while (isa<AllocaInst>(I) &&
1638              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1639         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1640         ++I;
1641       }
1642 
1643       // Transfer all of the allocas over in a block.  Using splice means
1644       // that the instructions aren't removed from the symbol table, then
1645       // reinserted.
1646       Caller->getEntryBlock().getInstList().splice(
1647           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1648     }
1649     // Move any dbg.declares describing the allocas into the entry basic block.
1650     DIBuilder DIB(*Caller->getParent());
1651     for (auto &AI : IFI.StaticAllocas)
1652       replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1653   }
1654 
1655   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1656   if (InlinedFunctionInfo.ContainsCalls) {
1657     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1658     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1659       CallSiteTailKind = CI->getTailCallKind();
1660 
1661     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1662          ++BB) {
1663       for (Instruction &I : *BB) {
1664         CallInst *CI = dyn_cast<CallInst>(&I);
1665         if (!CI)
1666           continue;
1667 
1668         if (Function *F = CI->getCalledFunction())
1669           InlinedDeoptimizeCalls |=
1670               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1671 
1672         // We need to reduce the strength of any inlined tail calls.  For
1673         // musttail, we have to avoid introducing potential unbounded stack
1674         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1675         // with musttail, we can inline 'g' into 'f' so long as we preserve
1676         // musttail on the cloned call to 'f'.  If either the inlined call site
1677         // or the cloned call site is *not* musttail, the program already has
1678         // one frame of stack growth, so it's safe to remove musttail.  Here is
1679         // a table of example transformations:
1680         //
1681         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1682         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1683         //    f ->          g -> musttail f  ==>  f ->          f
1684         //    f ->          g ->     tail f  ==>  f ->          f
1685         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1686         ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1687         CI->setTailCallKind(ChildTCK);
1688         InlinedMustTailCalls |= CI->isMustTailCall();
1689 
1690         // Calls inlined through a 'nounwind' call site should be marked
1691         // 'nounwind'.
1692         if (MarkNoUnwind)
1693           CI->setDoesNotThrow();
1694       }
1695     }
1696   }
1697 
1698   // Leave lifetime markers for the static alloca's, scoping them to the
1699   // function we just inlined.
1700   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1701     IRBuilder<> builder(&FirstNewBlock->front());
1702     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1703       AllocaInst *AI = IFI.StaticAllocas[ai];
1704 
1705       // If the alloca is already scoped to something smaller than the whole
1706       // function then there's no need to add redundant, less accurate markers.
1707       if (hasLifetimeMarkers(AI))
1708         continue;
1709 
1710       // Try to determine the size of the allocation.
1711       ConstantInt *AllocaSize = nullptr;
1712       if (ConstantInt *AIArraySize =
1713           dyn_cast<ConstantInt>(AI->getArraySize())) {
1714         auto &DL = Caller->getParent()->getDataLayout();
1715         Type *AllocaType = AI->getAllocatedType();
1716         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1717         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1718 
1719         // Don't add markers for zero-sized allocas.
1720         if (AllocaArraySize == 0)
1721           continue;
1722 
1723         // Check that array size doesn't saturate uint64_t and doesn't
1724         // overflow when it's multiplied by type size.
1725         if (AllocaArraySize != ~0ULL &&
1726             UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1727           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1728                                         AllocaArraySize * AllocaTypeSize);
1729         }
1730       }
1731 
1732       builder.CreateLifetimeStart(AI, AllocaSize);
1733       for (ReturnInst *RI : Returns) {
1734         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1735         // call and a return.  The return kills all local allocas.
1736         if (InlinedMustTailCalls &&
1737             RI->getParent()->getTerminatingMustTailCall())
1738           continue;
1739         if (InlinedDeoptimizeCalls &&
1740             RI->getParent()->getTerminatingDeoptimizeCall())
1741           continue;
1742         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1743       }
1744     }
1745   }
1746 
1747   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1748   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1749   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1750     Module *M = Caller->getParent();
1751     // Get the two intrinsics we care about.
1752     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1753     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1754 
1755     // Insert the llvm.stacksave.
1756     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1757                              .CreateCall(StackSave, {}, "savedstack");
1758 
1759     // Insert a call to llvm.stackrestore before any return instructions in the
1760     // inlined function.
1761     for (ReturnInst *RI : Returns) {
1762       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1763       // call and a return.  The return will restore the stack pointer.
1764       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1765         continue;
1766       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1767         continue;
1768       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1769     }
1770   }
1771 
1772   // If we are inlining for an invoke instruction, we must make sure to rewrite
1773   // any call instructions into invoke instructions.  This is sensitive to which
1774   // funclet pads were top-level in the inlinee, so must be done before
1775   // rewriting the "parent pad" links.
1776   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1777     BasicBlock *UnwindDest = II->getUnwindDest();
1778     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1779     if (isa<LandingPadInst>(FirstNonPHI)) {
1780       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1781     } else {
1782       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1783     }
1784   }
1785 
1786   // Update the lexical scopes of the new funclets and callsites.
1787   // Anything that had 'none' as its parent is now nested inside the callsite's
1788   // EHPad.
1789 
1790   if (CallSiteEHPad) {
1791     for (Function::iterator BB = FirstNewBlock->getIterator(),
1792                             E = Caller->end();
1793          BB != E; ++BB) {
1794       // Add bundle operands to any top-level call sites.
1795       SmallVector<OperandBundleDef, 1> OpBundles;
1796       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1797         Instruction *I = &*BBI++;
1798         CallSite CS(I);
1799         if (!CS)
1800           continue;
1801 
1802         // Skip call sites which are nounwind intrinsics.
1803         auto *CalledFn =
1804             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1805         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1806           continue;
1807 
1808         // Skip call sites which already have a "funclet" bundle.
1809         if (CS.getOperandBundle(LLVMContext::OB_funclet))
1810           continue;
1811 
1812         CS.getOperandBundlesAsDefs(OpBundles);
1813         OpBundles.emplace_back("funclet", CallSiteEHPad);
1814 
1815         Instruction *NewInst;
1816         if (CS.isCall())
1817           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1818         else
1819           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1820         NewInst->takeName(I);
1821         I->replaceAllUsesWith(NewInst);
1822         I->eraseFromParent();
1823 
1824         OpBundles.clear();
1825       }
1826 
1827       // It is problematic if the inlinee has a cleanupret which unwinds to
1828       // caller and we inline it into a call site which doesn't unwind but into
1829       // an EH pad that does.  Such an edge must be dynamically unreachable.
1830       // As such, we replace the cleanupret with unreachable.
1831       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1832         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1833           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1834 
1835       Instruction *I = BB->getFirstNonPHI();
1836       if (!I->isEHPad())
1837         continue;
1838 
1839       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1840         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1841           CatchSwitch->setParentPad(CallSiteEHPad);
1842       } else {
1843         auto *FPI = cast<FuncletPadInst>(I);
1844         if (isa<ConstantTokenNone>(FPI->getParentPad()))
1845           FPI->setParentPad(CallSiteEHPad);
1846       }
1847     }
1848   }
1849 
1850   if (InlinedDeoptimizeCalls) {
1851     // We need to at least remove the deoptimizing returns from the Return set,
1852     // so that the control flow from those returns does not get merged into the
1853     // caller (but terminate it instead).  If the caller's return type does not
1854     // match the callee's return type, we also need to change the return type of
1855     // the intrinsic.
1856     if (Caller->getReturnType() == TheCall->getType()) {
1857       auto NewEnd = remove_if(Returns, [](ReturnInst *RI) {
1858         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
1859       });
1860       Returns.erase(NewEnd, Returns.end());
1861     } else {
1862       SmallVector<ReturnInst *, 8> NormalReturns;
1863       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
1864           Caller->getParent(), Intrinsic::experimental_deoptimize,
1865           {Caller->getReturnType()});
1866 
1867       for (ReturnInst *RI : Returns) {
1868         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
1869         if (!DeoptCall) {
1870           NormalReturns.push_back(RI);
1871           continue;
1872         }
1873 
1874         // The calling convention on the deoptimize call itself may be bogus,
1875         // since the code we're inlining may have undefined behavior (and may
1876         // never actually execute at runtime); but all
1877         // @llvm.experimental.deoptimize declarations have to have the same
1878         // calling convention in a well-formed module.
1879         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
1880         NewDeoptIntrinsic->setCallingConv(CallingConv);
1881         auto *CurBB = RI->getParent();
1882         RI->eraseFromParent();
1883 
1884         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
1885                                          DeoptCall->arg_end());
1886 
1887         SmallVector<OperandBundleDef, 1> OpBundles;
1888         DeoptCall->getOperandBundlesAsDefs(OpBundles);
1889         DeoptCall->eraseFromParent();
1890         assert(!OpBundles.empty() &&
1891                "Expected at least the deopt operand bundle");
1892 
1893         IRBuilder<> Builder(CurBB);
1894         CallInst *NewDeoptCall =
1895             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
1896         NewDeoptCall->setCallingConv(CallingConv);
1897         if (NewDeoptCall->getType()->isVoidTy())
1898           Builder.CreateRetVoid();
1899         else
1900           Builder.CreateRet(NewDeoptCall);
1901       }
1902 
1903       // Leave behind the normal returns so we can merge control flow.
1904       std::swap(Returns, NormalReturns);
1905     }
1906   }
1907 
1908   // Handle any inlined musttail call sites.  In order for a new call site to be
1909   // musttail, the source of the clone and the inlined call site must have been
1910   // musttail.  Therefore it's safe to return without merging control into the
1911   // phi below.
1912   if (InlinedMustTailCalls) {
1913     // Check if we need to bitcast the result of any musttail calls.
1914     Type *NewRetTy = Caller->getReturnType();
1915     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
1916 
1917     // Handle the returns preceded by musttail calls separately.
1918     SmallVector<ReturnInst *, 8> NormalReturns;
1919     for (ReturnInst *RI : Returns) {
1920       CallInst *ReturnedMustTail =
1921           RI->getParent()->getTerminatingMustTailCall();
1922       if (!ReturnedMustTail) {
1923         NormalReturns.push_back(RI);
1924         continue;
1925       }
1926       if (!NeedBitCast)
1927         continue;
1928 
1929       // Delete the old return and any preceding bitcast.
1930       BasicBlock *CurBB = RI->getParent();
1931       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
1932       RI->eraseFromParent();
1933       if (OldCast)
1934         OldCast->eraseFromParent();
1935 
1936       // Insert a new bitcast and return with the right type.
1937       IRBuilder<> Builder(CurBB);
1938       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
1939     }
1940 
1941     // Leave behind the normal returns so we can merge control flow.
1942     std::swap(Returns, NormalReturns);
1943   }
1944 
1945   // If we cloned in _exactly one_ basic block, and if that block ends in a
1946   // return instruction, we splice the body of the inlined callee directly into
1947   // the calling basic block.
1948   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1949     // Move all of the instructions right before the call.
1950     OrigBB->getInstList().splice(TheCall->getIterator(),
1951                                  FirstNewBlock->getInstList(),
1952                                  FirstNewBlock->begin(), FirstNewBlock->end());
1953     // Remove the cloned basic block.
1954     Caller->getBasicBlockList().pop_back();
1955 
1956     // If the call site was an invoke instruction, add a branch to the normal
1957     // destination.
1958     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1959       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1960       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
1961     }
1962 
1963     // If the return instruction returned a value, replace uses of the call with
1964     // uses of the returned value.
1965     if (!TheCall->use_empty()) {
1966       ReturnInst *R = Returns[0];
1967       if (TheCall == R->getReturnValue())
1968         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1969       else
1970         TheCall->replaceAllUsesWith(R->getReturnValue());
1971     }
1972     // Since we are now done with the Call/Invoke, we can delete it.
1973     TheCall->eraseFromParent();
1974 
1975     // Since we are now done with the return instruction, delete it also.
1976     Returns[0]->eraseFromParent();
1977 
1978     // We are now done with the inlining.
1979     return true;
1980   }
1981 
1982   // Otherwise, we have the normal case, of more than one block to inline or
1983   // multiple return sites.
1984 
1985   // We want to clone the entire callee function into the hole between the
1986   // "starter" and "ender" blocks.  How we accomplish this depends on whether
1987   // this is an invoke instruction or a call instruction.
1988   BasicBlock *AfterCallBB;
1989   BranchInst *CreatedBranchToNormalDest = nullptr;
1990   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1991 
1992     // Add an unconditional branch to make this look like the CallInst case...
1993     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
1994 
1995     // Split the basic block.  This guarantees that no PHI nodes will have to be
1996     // updated due to new incoming edges, and make the invoke case more
1997     // symmetric to the call case.
1998     AfterCallBB =
1999         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2000                                 CalledFunc->getName() + ".exit");
2001 
2002   } else {  // It's a call
2003     // If this is a call instruction, we need to split the basic block that
2004     // the call lives in.
2005     //
2006     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2007                                           CalledFunc->getName() + ".exit");
2008   }
2009 
2010   // Change the branch that used to go to AfterCallBB to branch to the first
2011   // basic block of the inlined function.
2012   //
2013   TerminatorInst *Br = OrigBB->getTerminator();
2014   assert(Br && Br->getOpcode() == Instruction::Br &&
2015          "splitBasicBlock broken!");
2016   Br->setOperand(0, &*FirstNewBlock);
2017 
2018   // Now that the function is correct, make it a little bit nicer.  In
2019   // particular, move the basic blocks inserted from the end of the function
2020   // into the space made by splitting the source basic block.
2021   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2022                                      Caller->getBasicBlockList(), FirstNewBlock,
2023                                      Caller->end());
2024 
2025   // Handle all of the return instructions that we just cloned in, and eliminate
2026   // any users of the original call/invoke instruction.
2027   Type *RTy = CalledFunc->getReturnType();
2028 
2029   PHINode *PHI = nullptr;
2030   if (Returns.size() > 1) {
2031     // The PHI node should go at the front of the new basic block to merge all
2032     // possible incoming values.
2033     if (!TheCall->use_empty()) {
2034       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2035                             &AfterCallBB->front());
2036       // Anything that used the result of the function call should now use the
2037       // PHI node as their operand.
2038       TheCall->replaceAllUsesWith(PHI);
2039     }
2040 
2041     // Loop over all of the return instructions adding entries to the PHI node
2042     // as appropriate.
2043     if (PHI) {
2044       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2045         ReturnInst *RI = Returns[i];
2046         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2047                "Ret value not consistent in function!");
2048         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2049       }
2050     }
2051 
2052     // Add a branch to the merge points and remove return instructions.
2053     DebugLoc Loc;
2054     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2055       ReturnInst *RI = Returns[i];
2056       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2057       Loc = RI->getDebugLoc();
2058       BI->setDebugLoc(Loc);
2059       RI->eraseFromParent();
2060     }
2061     // We need to set the debug location to *somewhere* inside the
2062     // inlined function. The line number may be nonsensical, but the
2063     // instruction will at least be associated with the right
2064     // function.
2065     if (CreatedBranchToNormalDest)
2066       CreatedBranchToNormalDest->setDebugLoc(Loc);
2067   } else if (!Returns.empty()) {
2068     // Otherwise, if there is exactly one return value, just replace anything
2069     // using the return value of the call with the computed value.
2070     if (!TheCall->use_empty()) {
2071       if (TheCall == Returns[0]->getReturnValue())
2072         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2073       else
2074         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2075     }
2076 
2077     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2078     BasicBlock *ReturnBB = Returns[0]->getParent();
2079     ReturnBB->replaceAllUsesWith(AfterCallBB);
2080 
2081     // Splice the code from the return block into the block that it will return
2082     // to, which contains the code that was after the call.
2083     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2084                                       ReturnBB->getInstList());
2085 
2086     if (CreatedBranchToNormalDest)
2087       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2088 
2089     // Delete the return instruction now and empty ReturnBB now.
2090     Returns[0]->eraseFromParent();
2091     ReturnBB->eraseFromParent();
2092   } else if (!TheCall->use_empty()) {
2093     // No returns, but something is using the return value of the call.  Just
2094     // nuke the result.
2095     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2096   }
2097 
2098   // Since we are now done with the Call/Invoke, we can delete it.
2099   TheCall->eraseFromParent();
2100 
2101   // If we inlined any musttail calls and the original return is now
2102   // unreachable, delete it.  It can only contain a bitcast and ret.
2103   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2104     AfterCallBB->eraseFromParent();
2105 
2106   // We should always be able to fold the entry block of the function into the
2107   // single predecessor of the block...
2108   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2109   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2110 
2111   // Splice the code entry block into calling block, right before the
2112   // unconditional branch.
2113   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2114   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2115 
2116   // Remove the unconditional branch.
2117   OrigBB->getInstList().erase(Br);
2118 
2119   // Now we can remove the CalleeEntry block, which is now empty.
2120   Caller->getBasicBlockList().erase(CalleeEntry);
2121 
2122   // If we inserted a phi node, check to see if it has a single value (e.g. all
2123   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2124   // block other optimizations.
2125   if (PHI) {
2126     auto &DL = Caller->getParent()->getDataLayout();
2127     if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
2128                                        &IFI.ACT->getAssumptionCache(*Caller))) {
2129       PHI->replaceAllUsesWith(V);
2130       PHI->eraseFromParent();
2131     }
2132   }
2133 
2134   return true;
2135 }
2136