1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalAlias.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 using namespace llvm;
28 
29 // Out of line method to get vtable etc for class.
anchor()30 void ValueMapTypeRemapper::anchor() {}
anchor()31 void ValueMaterializer::anchor() {}
32 
33 namespace {
34 
35 /// A basic block used in a BlockAddress whose function body is not yet
36 /// materialized.
37 struct DelayedBasicBlock {
38   BasicBlock *OldBB;
39   std::unique_ptr<BasicBlock> TempBB;
40 
41   // Explicit move for MSVC.
DelayedBasicBlock__anond8860f520111::DelayedBasicBlock42   DelayedBasicBlock(DelayedBasicBlock &&X)
43       : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {}
operator =__anond8860f520111::DelayedBasicBlock44   DelayedBasicBlock &operator=(DelayedBasicBlock &&X) {
45     OldBB = std::move(X.OldBB);
46     TempBB = std::move(X.TempBB);
47     return *this;
48   }
49 
DelayedBasicBlock__anond8860f520111::DelayedBasicBlock50   DelayedBasicBlock(const BlockAddress &Old)
51       : OldBB(Old.getBasicBlock()),
52         TempBB(BasicBlock::Create(Old.getContext())) {}
53 };
54 
55 struct WorklistEntry {
56   enum EntryKind {
57     MapGlobalInit,
58     MapAppendingVar,
59     MapGlobalAliasee,
60     RemapFunction
61   };
62   struct GVInitTy {
63     GlobalVariable *GV;
64     Constant *Init;
65   };
66   struct AppendingGVTy {
67     GlobalVariable *GV;
68     Constant *InitPrefix;
69   };
70   struct GlobalAliaseeTy {
71     GlobalAlias *GA;
72     Constant *Aliasee;
73   };
74 
75   unsigned Kind : 2;
76   unsigned MCID : 29;
77   unsigned AppendingGVIsOldCtorDtor : 1;
78   unsigned AppendingGVNumNewMembers;
79   union {
80     GVInitTy GVInit;
81     AppendingGVTy AppendingGV;
82     GlobalAliaseeTy GlobalAliasee;
83     Function *RemapF;
84   } Data;
85 };
86 
87 struct MappingContext {
88   ValueToValueMapTy *VM;
89   ValueMaterializer *Materializer = nullptr;
90 
91   /// Construct a MappingContext with a value map and materializer.
MappingContext__anond8860f520111::MappingContext92   explicit MappingContext(ValueToValueMapTy &VM,
93                           ValueMaterializer *Materializer = nullptr)
94       : VM(&VM), Materializer(Materializer) {}
95 };
96 
97 class MDNodeMapper;
98 class Mapper {
99   friend class MDNodeMapper;
100 
101 #ifndef NDEBUG
102   DenseSet<GlobalValue *> AlreadyScheduled;
103 #endif
104 
105   RemapFlags Flags;
106   ValueMapTypeRemapper *TypeMapper;
107   unsigned CurrentMCID = 0;
108   SmallVector<MappingContext, 2> MCs;
109   SmallVector<WorklistEntry, 4> Worklist;
110   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
111   SmallVector<Constant *, 16> AppendingInits;
112 
113 public:
Mapper(ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)114   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
115          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
116       : Flags(Flags), TypeMapper(TypeMapper),
117         MCs(1, MappingContext(VM, Materializer)) {}
118 
119   /// ValueMapper should explicitly call \a flush() before destruction.
~Mapper()120   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
121 
hasWorkToDo() const122   bool hasWorkToDo() const { return !Worklist.empty(); }
123 
124   unsigned
registerAlternateMappingContext(ValueToValueMapTy & VM,ValueMaterializer * Materializer=nullptr)125   registerAlternateMappingContext(ValueToValueMapTy &VM,
126                                   ValueMaterializer *Materializer = nullptr) {
127     MCs.push_back(MappingContext(VM, Materializer));
128     return MCs.size() - 1;
129   }
130 
131   void addFlags(RemapFlags Flags);
132 
133   Value *mapValue(const Value *V);
134   void remapInstruction(Instruction *I);
135   void remapFunction(Function &F);
136 
mapConstant(const Constant * C)137   Constant *mapConstant(const Constant *C) {
138     return cast_or_null<Constant>(mapValue(C));
139   }
140 
141   /// Map metadata.
142   ///
143   /// Find the mapping for MD.  Guarantees that the return will be resolved
144   /// (not an MDNode, or MDNode::isResolved() returns true).
145   Metadata *mapMetadata(const Metadata *MD);
146 
147   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
148                                     unsigned MCID);
149   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
150                                     bool IsOldCtorDtor,
151                                     ArrayRef<Constant *> NewMembers,
152                                     unsigned MCID);
153   void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
154                                 unsigned MCID);
155   void scheduleRemapFunction(Function &F, unsigned MCID);
156 
157   void flush();
158 
159 private:
160   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
161   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
162                             bool IsOldCtorDtor,
163                             ArrayRef<Constant *> NewMembers);
164   void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
165   void remapFunction(Function &F, ValueToValueMapTy &VM);
166 
getVM()167   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
getMaterializer()168   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
169 
170   Value *mapBlockAddress(const BlockAddress &BA);
171 
172   /// Map metadata that doesn't require visiting operands.
173   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
174 
175   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
176   Metadata *mapToSelf(const Metadata *MD);
177 };
178 
179 class MDNodeMapper {
180   Mapper &M;
181 
182   /// Data about a node in \a UniquedGraph.
183   struct Data {
184     bool HasChanged = false;
185     unsigned ID = ~0u;
186     TempMDNode Placeholder;
187 
Data__anond8860f520111::MDNodeMapper::Data188     Data() {}
Data__anond8860f520111::MDNodeMapper::Data189     Data(Data &&X)
190         : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)),
191           Placeholder(std::move(X.Placeholder)) {}
operator =__anond8860f520111::MDNodeMapper::Data192     Data &operator=(Data &&X) {
193       HasChanged = std::move(X.HasChanged);
194       ID = std::move(X.ID);
195       Placeholder = std::move(X.Placeholder);
196       return *this;
197     }
198   };
199 
200   /// A graph of uniqued nodes.
201   struct UniquedGraph {
202     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
204 
205     /// Propagate changed operands through the post-order traversal.
206     ///
207     /// Iteratively update \a Data::HasChanged for each node based on \a
208     /// Data::HasChanged of its operands, until fixed point.
209     void propagateChanges();
210 
211     /// Get a forward reference to a node to use as an operand.
212     Metadata &getFwdReference(MDNode &Op);
213   };
214 
215   /// Worklist of distinct nodes whose operands need to be remapped.
216   SmallVector<MDNode *, 16> DistinctWorklist;
217 
218   // Storage for a UniquedGraph.
219   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220   SmallVector<MDNode *, 16> POTStorage;
221 
222 public:
MDNodeMapper(Mapper & M)223   MDNodeMapper(Mapper &M) : M(M) {}
224 
225   /// Map a metadata node (and its transitive operands).
226   ///
227   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
228   /// algorithm handles distinct nodes and uniqued node subgraphs using
229   /// different strategies.
230   ///
231   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232   /// using \a mapDistinctNode().  Their mapping can always be computed
233   /// immediately without visiting operands, even if their operands change.
234   ///
235   /// The mapping for uniqued nodes depends on whether their operands change.
236   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
238   /// added to \a DistinctWorklist with \a mapDistinctNode().
239   ///
240   /// After mapping \c N itself, this function remaps the operands of the
241   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242   /// N has been mapped.
243   Metadata *map(const MDNode &N);
244 
245 private:
246   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247   ///
248   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
250   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251   /// operands uses the identity mapping.
252   ///
253   /// The algorithm works as follows:
254   ///
255   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256   ///     save the post-order traversal in the given \a UniquedGraph, tracking
257   ///     nodes' operands change.
258   ///
259   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
260   ///     through the \a UniquedGraph until fixed point, following the rule
261   ///     that if a node changes, any node that references must also change.
262   ///
263   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264   ///     (referencing new operands) where necessary.
265   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266 
267   /// Try to map the operand of an \a MDNode.
268   ///
269   /// If \c Op is already mapped, return the mapping.  If it's not an \a
270   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
271   /// return the result of \a mapDistinctNode().
272   ///
273   /// \return None if \c Op is an unmapped uniqued \a MDNode.
274   /// \post getMappedOp(Op) only returns None if this returns None.
275   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
276 
277   /// Map a distinct node.
278   ///
279   /// Return the mapping for the distinct node \c N, saving the result in \a
280   /// DistinctWorklist for later remapping.
281   ///
282   /// \pre \c N is not yet mapped.
283   /// \pre \c N.isDistinct().
284   MDNode *mapDistinctNode(const MDNode &N);
285 
286   /// Get a previously mapped node.
287   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
288 
289   /// Create a post-order traversal of an unmapped uniqued node subgraph.
290   ///
291   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
292   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
293   /// metadata that has already been mapped will not be part of the POT.
294   ///
295   /// Each node that has a changed operand from outside the graph (e.g., a
296   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
297   /// is marked with \a Data::HasChanged.
298   ///
299   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
300   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
301   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
302   /// to change because of operands outside the graph.
303   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
304 
305   /// Visit the operands of a uniqued node in the POT.
306   ///
307   /// Visit the operands in the range from \c I to \c E, returning the first
308   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
309   /// where to continue the loop through the operands.
310   ///
311   /// This sets \c HasChanged if any of the visited operands change.
312   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
313                         MDNode::op_iterator E, bool &HasChanged);
314 
315   /// Map all the nodes in the given uniqued graph.
316   ///
317   /// This visits all the nodes in \c G in post-order, using the identity
318   /// mapping or creating a new node depending on \a Data::HasChanged.
319   ///
320   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
321   /// their operands outside of \c G.
322   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
323   /// operands have changed.
324   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
325   void mapNodesInPOT(UniquedGraph &G);
326 
327   /// Remap a node's operands using the given functor.
328   ///
329   /// Iterate through the operands of \c N and update them in place using \c
330   /// mapOperand.
331   ///
332   /// \pre N.isDistinct() or N.isTemporary().
333   template <class OperandMapper>
334   void remapOperands(MDNode &N, OperandMapper mapOperand);
335 };
336 
337 } // end namespace
338 
mapValue(const Value * V)339 Value *Mapper::mapValue(const Value *V) {
340   ValueToValueMapTy::iterator I = getVM().find(V);
341 
342   // If the value already exists in the map, use it.
343   if (I != getVM().end()) {
344     assert(I->second && "Unexpected null mapping");
345     return I->second;
346   }
347 
348   // If we have a materializer and it can materialize a value, use that.
349   if (auto *Materializer = getMaterializer()) {
350     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351       getVM()[V] = NewV;
352       return NewV;
353     }
354   }
355 
356   // Global values do not need to be seeded into the VM if they
357   // are using the identity mapping.
358   if (isa<GlobalValue>(V)) {
359     if (Flags & RF_NullMapMissingGlobalValues)
360       return nullptr;
361     return getVM()[V] = const_cast<Value *>(V);
362   }
363 
364   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365     // Inline asm may need *type* remapping.
366     FunctionType *NewTy = IA->getFunctionType();
367     if (TypeMapper) {
368       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369 
370       if (NewTy != IA->getFunctionType())
371         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372                            IA->hasSideEffects(), IA->isAlignStack());
373     }
374 
375     return getVM()[V] = const_cast<Value *>(V);
376   }
377 
378   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
379     const Metadata *MD = MDV->getMetadata();
380 
381     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
382       // Look through to grab the local value.
383       if (Value *LV = mapValue(LAM->getValue())) {
384         if (V == LAM->getValue())
385           return const_cast<Value *>(V);
386         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
387       }
388 
389       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
390       // ensures metadata operands only reference defined SSA values.
391       return (Flags & RF_IgnoreMissingLocals)
392                  ? nullptr
393                  : MetadataAsValue::get(V->getContext(),
394                                         MDTuple::get(V->getContext(), None));
395     }
396 
397     // If this is a module-level metadata and we know that nothing at the module
398     // level is changing, then use an identity mapping.
399     if (Flags & RF_NoModuleLevelChanges)
400       return getVM()[V] = const_cast<Value *>(V);
401 
402     // Map the metadata and turn it into a value.
403     auto *MappedMD = mapMetadata(MD);
404     if (MD == MappedMD)
405       return getVM()[V] = const_cast<Value *>(V);
406     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
407   }
408 
409   // Okay, this either must be a constant (which may or may not be mappable) or
410   // is something that is not in the mapping table.
411   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
412   if (!C)
413     return nullptr;
414 
415   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
416     return mapBlockAddress(*BA);
417 
418   auto mapValueOrNull = [this](Value *V) {
419     auto Mapped = mapValue(V);
420     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
421            "Unexpected null mapping for constant operand without "
422            "NullMapMissingGlobalValues flag");
423     return Mapped;
424   };
425 
426   // Otherwise, we have some other constant to remap.  Start by checking to see
427   // if all operands have an identity remapping.
428   unsigned OpNo = 0, NumOperands = C->getNumOperands();
429   Value *Mapped = nullptr;
430   for (; OpNo != NumOperands; ++OpNo) {
431     Value *Op = C->getOperand(OpNo);
432     Mapped = mapValueOrNull(Op);
433     if (!Mapped)
434       return nullptr;
435     if (Mapped != Op)
436       break;
437   }
438 
439   // See if the type mapper wants to remap the type as well.
440   Type *NewTy = C->getType();
441   if (TypeMapper)
442     NewTy = TypeMapper->remapType(NewTy);
443 
444   // If the result type and all operands match up, then just insert an identity
445   // mapping.
446   if (OpNo == NumOperands && NewTy == C->getType())
447     return getVM()[V] = C;
448 
449   // Okay, we need to create a new constant.  We've already processed some or
450   // all of the operands, set them all up now.
451   SmallVector<Constant*, 8> Ops;
452   Ops.reserve(NumOperands);
453   for (unsigned j = 0; j != OpNo; ++j)
454     Ops.push_back(cast<Constant>(C->getOperand(j)));
455 
456   // If one of the operands mismatch, push it and the other mapped operands.
457   if (OpNo != NumOperands) {
458     Ops.push_back(cast<Constant>(Mapped));
459 
460     // Map the rest of the operands that aren't processed yet.
461     for (++OpNo; OpNo != NumOperands; ++OpNo) {
462       Mapped = mapValueOrNull(C->getOperand(OpNo));
463       if (!Mapped)
464         return nullptr;
465       Ops.push_back(cast<Constant>(Mapped));
466     }
467   }
468   Type *NewSrcTy = nullptr;
469   if (TypeMapper)
470     if (auto *GEPO = dyn_cast<GEPOperator>(C))
471       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
472 
473   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
474     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
475   if (isa<ConstantArray>(C))
476     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
477   if (isa<ConstantStruct>(C))
478     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
479   if (isa<ConstantVector>(C))
480     return getVM()[V] = ConstantVector::get(Ops);
481   // If this is a no-operand constant, it must be because the type was remapped.
482   if (isa<UndefValue>(C))
483     return getVM()[V] = UndefValue::get(NewTy);
484   if (isa<ConstantAggregateZero>(C))
485     return getVM()[V] = ConstantAggregateZero::get(NewTy);
486   assert(isa<ConstantPointerNull>(C));
487   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
488 }
489 
mapBlockAddress(const BlockAddress & BA)490 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
491   Function *F = cast<Function>(mapValue(BA.getFunction()));
492 
493   // F may not have materialized its initializer.  In that case, create a
494   // dummy basic block for now, and replace it once we've materialized all
495   // the initializers.
496   BasicBlock *BB;
497   if (F->empty()) {
498     DelayedBBs.push_back(DelayedBasicBlock(BA));
499     BB = DelayedBBs.back().TempBB.get();
500   } else {
501     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
502   }
503 
504   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
505 }
506 
mapToMetadata(const Metadata * Key,Metadata * Val)507 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
508   getVM().MD()[Key].reset(Val);
509   return Val;
510 }
511 
mapToSelf(const Metadata * MD)512 Metadata *Mapper::mapToSelf(const Metadata *MD) {
513   return mapToMetadata(MD, const_cast<Metadata *>(MD));
514 }
515 
tryToMapOperand(const Metadata * Op)516 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
517   if (!Op)
518     return nullptr;
519 
520   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
521 #ifndef NDEBUG
522     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
523       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
524               M.getVM().getMappedMD(Op)) &&
525              "Expected Value to be memoized");
526     else
527       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
528              "Expected result to be memoized");
529 #endif
530     return *MappedOp;
531   }
532 
533   const MDNode &N = *cast<MDNode>(Op);
534   if (N.isDistinct())
535     return mapDistinctNode(N);
536   return None;
537 }
538 
mapDistinctNode(const MDNode & N)539 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
540   assert(N.isDistinct() && "Expected a distinct node");
541   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
542   DistinctWorklist.push_back(cast<MDNode>(
543       (M.Flags & RF_MoveDistinctMDs)
544           ? M.mapToSelf(&N)
545           : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
546   return DistinctWorklist.back();
547 }
548 
wrapConstantAsMetadata(const ConstantAsMetadata & CMD,Value * MappedV)549 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
550                                                   Value *MappedV) {
551   if (CMD.getValue() == MappedV)
552     return const_cast<ConstantAsMetadata *>(&CMD);
553   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
554 }
555 
getMappedOp(const Metadata * Op) const556 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
557   if (!Op)
558     return nullptr;
559 
560   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
561     return *MappedOp;
562 
563   if (isa<MDString>(Op))
564     return const_cast<Metadata *>(Op);
565 
566   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
567     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
568 
569   return None;
570 }
571 
getFwdReference(MDNode & Op)572 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
573   auto Where = Info.find(&Op);
574   assert(Where != Info.end() && "Expected a valid reference");
575 
576   auto &OpD = Where->second;
577   if (!OpD.HasChanged)
578     return Op;
579 
580   // Lazily construct a temporary node.
581   if (!OpD.Placeholder)
582     OpD.Placeholder = Op.clone();
583 
584   return *OpD.Placeholder;
585 }
586 
587 template <class OperandMapper>
remapOperands(MDNode & N,OperandMapper mapOperand)588 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
589   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
590   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
591     Metadata *Old = N.getOperand(I);
592     Metadata *New = mapOperand(Old);
593 
594     if (Old != New)
595       N.replaceOperandWith(I, New);
596   }
597 }
598 
599 namespace {
600 /// An entry in the worklist for the post-order traversal.
601 struct POTWorklistEntry {
602   MDNode *N;              ///< Current node.
603   MDNode::op_iterator Op; ///< Current operand of \c N.
604 
605   /// Keep a flag of whether operands have changed in the worklist to avoid
606   /// hitting the map in \a UniquedGraph.
607   bool HasChanged = false;
608 
POTWorklistEntry__anond8860f520411::POTWorklistEntry609   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
610 };
611 } // end namespace
612 
createPOT(UniquedGraph & G,const MDNode & FirstN)613 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
614   assert(G.Info.empty() && "Expected a fresh traversal");
615   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
616 
617   // Construct a post-order traversal of the uniqued subgraph under FirstN.
618   bool AnyChanges = false;
619   SmallVector<POTWorklistEntry, 16> Worklist;
620   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
621   (void)G.Info[&FirstN];
622   while (!Worklist.empty()) {
623     // Start or continue the traversal through the this node's operands.
624     auto &WE = Worklist.back();
625     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
626       // Push a new node to traverse first.
627       Worklist.push_back(POTWorklistEntry(*N));
628       continue;
629     }
630 
631     // Push the node onto the POT.
632     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
633     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
634     auto &D = G.Info[WE.N];
635     AnyChanges |= D.HasChanged = WE.HasChanged;
636     D.ID = G.POT.size();
637     G.POT.push_back(WE.N);
638 
639     // Pop the node off the worklist.
640     Worklist.pop_back();
641   }
642   return AnyChanges;
643 }
644 
visitOperands(UniquedGraph & G,MDNode::op_iterator & I,MDNode::op_iterator E,bool & HasChanged)645 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
646                                     MDNode::op_iterator E, bool &HasChanged) {
647   while (I != E) {
648     Metadata *Op = *I++; // Increment even on early return.
649     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
650       // Check if the operand changes.
651       HasChanged |= Op != *MappedOp;
652       continue;
653     }
654 
655     // A uniqued metadata node.
656     MDNode &OpN = *cast<MDNode>(Op);
657     assert(OpN.isUniqued() &&
658            "Only uniqued operands cannot be mapped immediately");
659     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
660       return &OpN; // This is a new one.  Return it.
661   }
662   return nullptr;
663 }
664 
propagateChanges()665 void MDNodeMapper::UniquedGraph::propagateChanges() {
666   bool AnyChanges;
667   do {
668     AnyChanges = false;
669     for (MDNode *N : POT) {
670       auto &D = Info[N];
671       if (D.HasChanged)
672         continue;
673 
674       if (!llvm::any_of(N->operands(), [&](const Metadata *Op) {
675             auto Where = Info.find(Op);
676             return Where != Info.end() && Where->second.HasChanged;
677           }))
678         continue;
679 
680       AnyChanges = D.HasChanged = true;
681     }
682   } while (AnyChanges);
683 }
684 
mapNodesInPOT(UniquedGraph & G)685 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
686   // Construct uniqued nodes, building forward references as necessary.
687   SmallVector<MDNode *, 16> CyclicNodes;
688   for (auto *N : G.POT) {
689     auto &D = G.Info[N];
690     if (!D.HasChanged) {
691       // The node hasn't changed.
692       M.mapToSelf(N);
693       continue;
694     }
695 
696     // Remember whether this node had a placeholder.
697     bool HadPlaceholder(D.Placeholder);
698 
699     // Clone the uniqued node and remap the operands.
700     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
701     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
702       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
703         return *MappedOp;
704       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
705       return &G.getFwdReference(*cast<MDNode>(Old));
706     });
707 
708     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
709     M.mapToMetadata(N, NewN);
710 
711     // Nodes that were referenced out of order in the POT are involved in a
712     // uniquing cycle.
713     if (HadPlaceholder)
714       CyclicNodes.push_back(NewN);
715   }
716 
717   // Resolve cycles.
718   for (auto *N : CyclicNodes)
719     if (!N->isResolved())
720       N->resolveCycles();
721 }
722 
map(const MDNode & N)723 Metadata *MDNodeMapper::map(const MDNode &N) {
724   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
725   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
726          "MDNodeMapper::map assumes module-level changes");
727 
728   // Require resolved nodes whenever metadata might be remapped.
729   assert(N.isResolved() && "Unexpected unresolved node");
730 
731   Metadata *MappedN =
732       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
733   while (!DistinctWorklist.empty())
734     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
735       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
736         return *MappedOp;
737       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
738     });
739   return MappedN;
740 }
741 
mapTopLevelUniquedNode(const MDNode & FirstN)742 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
743   assert(FirstN.isUniqued() && "Expected uniqued node");
744 
745   // Create a post-order traversal of uniqued nodes under FirstN.
746   UniquedGraph G;
747   if (!createPOT(G, FirstN)) {
748     // Return early if no nodes have changed.
749     for (const MDNode *N : G.POT)
750       M.mapToSelf(N);
751     return &const_cast<MDNode &>(FirstN);
752   }
753 
754   // Update graph with all nodes that have changed.
755   G.propagateChanges();
756 
757   // Map all the nodes in the graph.
758   mapNodesInPOT(G);
759 
760   // Return the original node, remapped.
761   return *getMappedOp(&FirstN);
762 }
763 
764 namespace {
765 
766 struct MapMetadataDisabler {
767   ValueToValueMapTy &VM;
768 
MapMetadataDisabler__anond8860f520811::MapMetadataDisabler769   MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
770     VM.disableMapMetadata();
771   }
~MapMetadataDisabler__anond8860f520811::MapMetadataDisabler772   ~MapMetadataDisabler() { VM.enableMapMetadata(); }
773 };
774 
775 } // end namespace
776 
mapSimpleMetadata(const Metadata * MD)777 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
778   // If the value already exists in the map, use it.
779   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
780     return *NewMD;
781 
782   if (isa<MDString>(MD))
783     return const_cast<Metadata *>(MD);
784 
785   // This is a module-level metadata.  If nothing at the module level is
786   // changing, use an identity mapping.
787   if ((Flags & RF_NoModuleLevelChanges))
788     return const_cast<Metadata *>(MD);
789 
790   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
791     // Disallow recursion into metadata mapping through mapValue.
792     MapMetadataDisabler MMD(getVM());
793 
794     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
795     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
796     // reference is destructed.  These aren't super common, so the extra
797     // indirection isn't that expensive.
798     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
799   }
800 
801   assert(isa<MDNode>(MD) && "Expected a metadata node");
802 
803   return None;
804 }
805 
mapMetadata(const Metadata * MD)806 Metadata *Mapper::mapMetadata(const Metadata *MD) {
807   assert(MD && "Expected valid metadata");
808   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
809 
810   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
811     return *NewMD;
812 
813   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
814 }
815 
flush()816 void Mapper::flush() {
817   // Flush out the worklist of global values.
818   while (!Worklist.empty()) {
819     WorklistEntry E = Worklist.pop_back_val();
820     CurrentMCID = E.MCID;
821     switch (E.Kind) {
822     case WorklistEntry::MapGlobalInit:
823       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
824       break;
825     case WorklistEntry::MapAppendingVar: {
826       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
827       mapAppendingVariable(*E.Data.AppendingGV.GV,
828                            E.Data.AppendingGV.InitPrefix,
829                            E.AppendingGVIsOldCtorDtor,
830                            makeArrayRef(AppendingInits).slice(PrefixSize));
831       AppendingInits.resize(PrefixSize);
832       break;
833     }
834     case WorklistEntry::MapGlobalAliasee:
835       E.Data.GlobalAliasee.GA->setAliasee(
836           mapConstant(E.Data.GlobalAliasee.Aliasee));
837       break;
838     case WorklistEntry::RemapFunction:
839       remapFunction(*E.Data.RemapF);
840       break;
841     }
842   }
843   CurrentMCID = 0;
844 
845   // Finish logic for block addresses now that all global values have been
846   // handled.
847   while (!DelayedBBs.empty()) {
848     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
849     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
850     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
851   }
852 }
853 
remapInstruction(Instruction * I)854 void Mapper::remapInstruction(Instruction *I) {
855   // Remap operands.
856   for (Use &Op : I->operands()) {
857     Value *V = mapValue(Op);
858     // If we aren't ignoring missing entries, assert that something happened.
859     if (V)
860       Op = V;
861     else
862       assert((Flags & RF_IgnoreMissingLocals) &&
863              "Referenced value not in value map!");
864   }
865 
866   // Remap phi nodes' incoming blocks.
867   if (PHINode *PN = dyn_cast<PHINode>(I)) {
868     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
869       Value *V = mapValue(PN->getIncomingBlock(i));
870       // If we aren't ignoring missing entries, assert that something happened.
871       if (V)
872         PN->setIncomingBlock(i, cast<BasicBlock>(V));
873       else
874         assert((Flags & RF_IgnoreMissingLocals) &&
875                "Referenced block not in value map!");
876     }
877   }
878 
879   // Remap attached metadata.
880   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
881   I->getAllMetadata(MDs);
882   for (const auto &MI : MDs) {
883     MDNode *Old = MI.second;
884     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
885     if (New != Old)
886       I->setMetadata(MI.first, New);
887   }
888 
889   if (!TypeMapper)
890     return;
891 
892   // If the instruction's type is being remapped, do so now.
893   if (auto CS = CallSite(I)) {
894     SmallVector<Type *, 3> Tys;
895     FunctionType *FTy = CS.getFunctionType();
896     Tys.reserve(FTy->getNumParams());
897     for (Type *Ty : FTy->params())
898       Tys.push_back(TypeMapper->remapType(Ty));
899     CS.mutateFunctionType(FunctionType::get(
900         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
901     return;
902   }
903   if (auto *AI = dyn_cast<AllocaInst>(I))
904     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
905   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
906     GEP->setSourceElementType(
907         TypeMapper->remapType(GEP->getSourceElementType()));
908     GEP->setResultElementType(
909         TypeMapper->remapType(GEP->getResultElementType()));
910   }
911   I->mutateType(TypeMapper->remapType(I->getType()));
912 }
913 
remapFunction(Function & F)914 void Mapper::remapFunction(Function &F) {
915   // Remap the operands.
916   for (Use &Op : F.operands())
917     if (Op)
918       Op = mapValue(Op);
919 
920   // Remap the metadata attachments.
921   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
922   F.getAllMetadata(MDs);
923   F.clearMetadata();
924   for (const auto &I : MDs)
925     F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
926 
927   // Remap the argument types.
928   if (TypeMapper)
929     for (Argument &A : F.args())
930       A.mutateType(TypeMapper->remapType(A.getType()));
931 
932   // Remap the instructions.
933   for (BasicBlock &BB : F)
934     for (Instruction &I : BB)
935       remapInstruction(&I);
936 }
937 
mapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers)938 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
939                                   bool IsOldCtorDtor,
940                                   ArrayRef<Constant *> NewMembers) {
941   SmallVector<Constant *, 16> Elements;
942   if (InitPrefix) {
943     unsigned NumElements =
944         cast<ArrayType>(InitPrefix->getType())->getNumElements();
945     for (unsigned I = 0; I != NumElements; ++I)
946       Elements.push_back(InitPrefix->getAggregateElement(I));
947   }
948 
949   PointerType *VoidPtrTy;
950   Type *EltTy;
951   if (IsOldCtorDtor) {
952     // FIXME: This upgrade is done during linking to support the C API.  See
953     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
954     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
955     auto &ST = *cast<StructType>(NewMembers.front()->getType());
956     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
957     EltTy = StructType::get(GV.getContext(), Tys, false);
958   }
959 
960   for (auto *V : NewMembers) {
961     Constant *NewV;
962     if (IsOldCtorDtor) {
963       auto *S = cast<ConstantStruct>(V);
964       auto *E1 = mapValue(S->getOperand(0));
965       auto *E2 = mapValue(S->getOperand(1));
966       Value *Null = Constant::getNullValue(VoidPtrTy);
967       NewV =
968           ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
969     } else {
970       NewV = cast_or_null<Constant>(mapValue(V));
971     }
972     Elements.push_back(NewV);
973   }
974 
975   GV.setInitializer(ConstantArray::get(
976       cast<ArrayType>(GV.getType()->getElementType()), Elements));
977 }
978 
scheduleMapGlobalInitializer(GlobalVariable & GV,Constant & Init,unsigned MCID)979 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
980                                           unsigned MCID) {
981   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
982   assert(MCID < MCs.size() && "Invalid mapping context");
983 
984   WorklistEntry WE;
985   WE.Kind = WorklistEntry::MapGlobalInit;
986   WE.MCID = MCID;
987   WE.Data.GVInit.GV = &GV;
988   WE.Data.GVInit.Init = &Init;
989   Worklist.push_back(WE);
990 }
991 
scheduleMapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers,unsigned MCID)992 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
993                                           Constant *InitPrefix,
994                                           bool IsOldCtorDtor,
995                                           ArrayRef<Constant *> NewMembers,
996                                           unsigned MCID) {
997   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
998   assert(MCID < MCs.size() && "Invalid mapping context");
999 
1000   WorklistEntry WE;
1001   WE.Kind = WorklistEntry::MapAppendingVar;
1002   WE.MCID = MCID;
1003   WE.Data.AppendingGV.GV = &GV;
1004   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1005   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1006   WE.AppendingGVNumNewMembers = NewMembers.size();
1007   Worklist.push_back(WE);
1008   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1009 }
1010 
scheduleMapGlobalAliasee(GlobalAlias & GA,Constant & Aliasee,unsigned MCID)1011 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1012                                       unsigned MCID) {
1013   assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
1014   assert(MCID < MCs.size() && "Invalid mapping context");
1015 
1016   WorklistEntry WE;
1017   WE.Kind = WorklistEntry::MapGlobalAliasee;
1018   WE.MCID = MCID;
1019   WE.Data.GlobalAliasee.GA = &GA;
1020   WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1021   Worklist.push_back(WE);
1022 }
1023 
scheduleRemapFunction(Function & F,unsigned MCID)1024 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1025   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1026   assert(MCID < MCs.size() && "Invalid mapping context");
1027 
1028   WorklistEntry WE;
1029   WE.Kind = WorklistEntry::RemapFunction;
1030   WE.MCID = MCID;
1031   WE.Data.RemapF = &F;
1032   Worklist.push_back(WE);
1033 }
1034 
addFlags(RemapFlags Flags)1035 void Mapper::addFlags(RemapFlags Flags) {
1036   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1037   this->Flags = this->Flags | Flags;
1038 }
1039 
getAsMapper(void * pImpl)1040 static Mapper *getAsMapper(void *pImpl) {
1041   return reinterpret_cast<Mapper *>(pImpl);
1042 }
1043 
1044 namespace {
1045 
1046 class FlushingMapper {
1047   Mapper &M;
1048 
1049 public:
FlushingMapper(void * pImpl)1050   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1051     assert(!M.hasWorkToDo() && "Expected to be flushed");
1052   }
~FlushingMapper()1053   ~FlushingMapper() { M.flush(); }
operator ->() const1054   Mapper *operator->() const { return &M; }
1055 };
1056 
1057 } // end namespace
1058 
ValueMapper(ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)1059 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1060                          ValueMapTypeRemapper *TypeMapper,
1061                          ValueMaterializer *Materializer)
1062     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1063 
~ValueMapper()1064 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1065 
1066 unsigned
registerAlternateMappingContext(ValueToValueMapTy & VM,ValueMaterializer * Materializer)1067 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1068                                              ValueMaterializer *Materializer) {
1069   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1070 }
1071 
addFlags(RemapFlags Flags)1072 void ValueMapper::addFlags(RemapFlags Flags) {
1073   FlushingMapper(pImpl)->addFlags(Flags);
1074 }
1075 
mapValue(const Value & V)1076 Value *ValueMapper::mapValue(const Value &V) {
1077   return FlushingMapper(pImpl)->mapValue(&V);
1078 }
1079 
mapConstant(const Constant & C)1080 Constant *ValueMapper::mapConstant(const Constant &C) {
1081   return cast_or_null<Constant>(mapValue(C));
1082 }
1083 
mapMetadata(const Metadata & MD)1084 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1085   return FlushingMapper(pImpl)->mapMetadata(&MD);
1086 }
1087 
mapMDNode(const MDNode & N)1088 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1089   return cast_or_null<MDNode>(mapMetadata(N));
1090 }
1091 
remapInstruction(Instruction & I)1092 void ValueMapper::remapInstruction(Instruction &I) {
1093   FlushingMapper(pImpl)->remapInstruction(&I);
1094 }
1095 
remapFunction(Function & F)1096 void ValueMapper::remapFunction(Function &F) {
1097   FlushingMapper(pImpl)->remapFunction(F);
1098 }
1099 
scheduleMapGlobalInitializer(GlobalVariable & GV,Constant & Init,unsigned MCID)1100 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1101                                                Constant &Init,
1102                                                unsigned MCID) {
1103   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1104 }
1105 
scheduleMapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers,unsigned MCID)1106 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1107                                                Constant *InitPrefix,
1108                                                bool IsOldCtorDtor,
1109                                                ArrayRef<Constant *> NewMembers,
1110                                                unsigned MCID) {
1111   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1112       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1113 }
1114 
scheduleMapGlobalAliasee(GlobalAlias & GA,Constant & Aliasee,unsigned MCID)1115 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1116                                            unsigned MCID) {
1117   getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1118 }
1119 
scheduleRemapFunction(Function & F,unsigned MCID)1120 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1121   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1122 }
1123