1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalAlias.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 using namespace llvm;
28
29 // Out of line method to get vtable etc for class.
anchor()30 void ValueMapTypeRemapper::anchor() {}
anchor()31 void ValueMaterializer::anchor() {}
32
33 namespace {
34
35 /// A basic block used in a BlockAddress whose function body is not yet
36 /// materialized.
37 struct DelayedBasicBlock {
38 BasicBlock *OldBB;
39 std::unique_ptr<BasicBlock> TempBB;
40
41 // Explicit move for MSVC.
DelayedBasicBlock__anond8860f520111::DelayedBasicBlock42 DelayedBasicBlock(DelayedBasicBlock &&X)
43 : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {}
operator =__anond8860f520111::DelayedBasicBlock44 DelayedBasicBlock &operator=(DelayedBasicBlock &&X) {
45 OldBB = std::move(X.OldBB);
46 TempBB = std::move(X.TempBB);
47 return *this;
48 }
49
DelayedBasicBlock__anond8860f520111::DelayedBasicBlock50 DelayedBasicBlock(const BlockAddress &Old)
51 : OldBB(Old.getBasicBlock()),
52 TempBB(BasicBlock::Create(Old.getContext())) {}
53 };
54
55 struct WorklistEntry {
56 enum EntryKind {
57 MapGlobalInit,
58 MapAppendingVar,
59 MapGlobalAliasee,
60 RemapFunction
61 };
62 struct GVInitTy {
63 GlobalVariable *GV;
64 Constant *Init;
65 };
66 struct AppendingGVTy {
67 GlobalVariable *GV;
68 Constant *InitPrefix;
69 };
70 struct GlobalAliaseeTy {
71 GlobalAlias *GA;
72 Constant *Aliasee;
73 };
74
75 unsigned Kind : 2;
76 unsigned MCID : 29;
77 unsigned AppendingGVIsOldCtorDtor : 1;
78 unsigned AppendingGVNumNewMembers;
79 union {
80 GVInitTy GVInit;
81 AppendingGVTy AppendingGV;
82 GlobalAliaseeTy GlobalAliasee;
83 Function *RemapF;
84 } Data;
85 };
86
87 struct MappingContext {
88 ValueToValueMapTy *VM;
89 ValueMaterializer *Materializer = nullptr;
90
91 /// Construct a MappingContext with a value map and materializer.
MappingContext__anond8860f520111::MappingContext92 explicit MappingContext(ValueToValueMapTy &VM,
93 ValueMaterializer *Materializer = nullptr)
94 : VM(&VM), Materializer(Materializer) {}
95 };
96
97 class MDNodeMapper;
98 class Mapper {
99 friend class MDNodeMapper;
100
101 #ifndef NDEBUG
102 DenseSet<GlobalValue *> AlreadyScheduled;
103 #endif
104
105 RemapFlags Flags;
106 ValueMapTypeRemapper *TypeMapper;
107 unsigned CurrentMCID = 0;
108 SmallVector<MappingContext, 2> MCs;
109 SmallVector<WorklistEntry, 4> Worklist;
110 SmallVector<DelayedBasicBlock, 1> DelayedBBs;
111 SmallVector<Constant *, 16> AppendingInits;
112
113 public:
Mapper(ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)114 Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
115 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
116 : Flags(Flags), TypeMapper(TypeMapper),
117 MCs(1, MappingContext(VM, Materializer)) {}
118
119 /// ValueMapper should explicitly call \a flush() before destruction.
~Mapper()120 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
121
hasWorkToDo() const122 bool hasWorkToDo() const { return !Worklist.empty(); }
123
124 unsigned
registerAlternateMappingContext(ValueToValueMapTy & VM,ValueMaterializer * Materializer=nullptr)125 registerAlternateMappingContext(ValueToValueMapTy &VM,
126 ValueMaterializer *Materializer = nullptr) {
127 MCs.push_back(MappingContext(VM, Materializer));
128 return MCs.size() - 1;
129 }
130
131 void addFlags(RemapFlags Flags);
132
133 Value *mapValue(const Value *V);
134 void remapInstruction(Instruction *I);
135 void remapFunction(Function &F);
136
mapConstant(const Constant * C)137 Constant *mapConstant(const Constant *C) {
138 return cast_or_null<Constant>(mapValue(C));
139 }
140
141 /// Map metadata.
142 ///
143 /// Find the mapping for MD. Guarantees that the return will be resolved
144 /// (not an MDNode, or MDNode::isResolved() returns true).
145 Metadata *mapMetadata(const Metadata *MD);
146
147 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
148 unsigned MCID);
149 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
150 bool IsOldCtorDtor,
151 ArrayRef<Constant *> NewMembers,
152 unsigned MCID);
153 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
154 unsigned MCID);
155 void scheduleRemapFunction(Function &F, unsigned MCID);
156
157 void flush();
158
159 private:
160 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
161 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
162 bool IsOldCtorDtor,
163 ArrayRef<Constant *> NewMembers);
164 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
165 void remapFunction(Function &F, ValueToValueMapTy &VM);
166
getVM()167 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
getMaterializer()168 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
169
170 Value *mapBlockAddress(const BlockAddress &BA);
171
172 /// Map metadata that doesn't require visiting operands.
173 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
174
175 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
176 Metadata *mapToSelf(const Metadata *MD);
177 };
178
179 class MDNodeMapper {
180 Mapper &M;
181
182 /// Data about a node in \a UniquedGraph.
183 struct Data {
184 bool HasChanged = false;
185 unsigned ID = ~0u;
186 TempMDNode Placeholder;
187
Data__anond8860f520111::MDNodeMapper::Data188 Data() {}
Data__anond8860f520111::MDNodeMapper::Data189 Data(Data &&X)
190 : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)),
191 Placeholder(std::move(X.Placeholder)) {}
operator =__anond8860f520111::MDNodeMapper::Data192 Data &operator=(Data &&X) {
193 HasChanged = std::move(X.HasChanged);
194 ID = std::move(X.ID);
195 Placeholder = std::move(X.Placeholder);
196 return *this;
197 }
198 };
199
200 /// A graph of uniqued nodes.
201 struct UniquedGraph {
202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203 SmallVector<MDNode *, 16> POT; // Post-order traversal.
204
205 /// Propagate changed operands through the post-order traversal.
206 ///
207 /// Iteratively update \a Data::HasChanged for each node based on \a
208 /// Data::HasChanged of its operands, until fixed point.
209 void propagateChanges();
210
211 /// Get a forward reference to a node to use as an operand.
212 Metadata &getFwdReference(MDNode &Op);
213 };
214
215 /// Worklist of distinct nodes whose operands need to be remapped.
216 SmallVector<MDNode *, 16> DistinctWorklist;
217
218 // Storage for a UniquedGraph.
219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220 SmallVector<MDNode *, 16> POTStorage;
221
222 public:
MDNodeMapper(Mapper & M)223 MDNodeMapper(Mapper &M) : M(M) {}
224
225 /// Map a metadata node (and its transitive operands).
226 ///
227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
228 /// algorithm handles distinct nodes and uniqued node subgraphs using
229 /// different strategies.
230 ///
231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232 /// using \a mapDistinctNode(). Their mapping can always be computed
233 /// immediately without visiting operands, even if their operands change.
234 ///
235 /// The mapping for uniqued nodes depends on whether their operands change.
236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
238 /// added to \a DistinctWorklist with \a mapDistinctNode().
239 ///
240 /// After mapping \c N itself, this function remaps the operands of the
241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242 /// N has been mapped.
243 Metadata *map(const MDNode &N);
244
245 private:
246 /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247 ///
248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251 /// operands uses the identity mapping.
252 ///
253 /// The algorithm works as follows:
254 ///
255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256 /// save the post-order traversal in the given \a UniquedGraph, tracking
257 /// nodes' operands change.
258 ///
259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
260 /// through the \a UniquedGraph until fixed point, following the rule
261 /// that if a node changes, any node that references must also change.
262 ///
263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264 /// (referencing new operands) where necessary.
265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266
267 /// Try to map the operand of an \a MDNode.
268 ///
269 /// If \c Op is already mapped, return the mapping. If it's not an \a
270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
271 /// return the result of \a mapDistinctNode().
272 ///
273 /// \return None if \c Op is an unmapped uniqued \a MDNode.
274 /// \post getMappedOp(Op) only returns None if this returns None.
275 Optional<Metadata *> tryToMapOperand(const Metadata *Op);
276
277 /// Map a distinct node.
278 ///
279 /// Return the mapping for the distinct node \c N, saving the result in \a
280 /// DistinctWorklist for later remapping.
281 ///
282 /// \pre \c N is not yet mapped.
283 /// \pre \c N.isDistinct().
284 MDNode *mapDistinctNode(const MDNode &N);
285
286 /// Get a previously mapped node.
287 Optional<Metadata *> getMappedOp(const Metadata *Op) const;
288
289 /// Create a post-order traversal of an unmapped uniqued node subgraph.
290 ///
291 /// This traverses the metadata graph deeply enough to map \c FirstN. It
292 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
293 /// metadata that has already been mapped will not be part of the POT.
294 ///
295 /// Each node that has a changed operand from outside the graph (e.g., a
296 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
297 /// is marked with \a Data::HasChanged.
298 ///
299 /// \return \c true if any nodes in \c G have \a Data::HasChanged.
300 /// \post \c G.POT is a post-order traversal ending with \c FirstN.
301 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
302 /// to change because of operands outside the graph.
303 bool createPOT(UniquedGraph &G, const MDNode &FirstN);
304
305 /// Visit the operands of a uniqued node in the POT.
306 ///
307 /// Visit the operands in the range from \c I to \c E, returning the first
308 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
309 /// where to continue the loop through the operands.
310 ///
311 /// This sets \c HasChanged if any of the visited operands change.
312 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
313 MDNode::op_iterator E, bool &HasChanged);
314
315 /// Map all the nodes in the given uniqued graph.
316 ///
317 /// This visits all the nodes in \c G in post-order, using the identity
318 /// mapping or creating a new node depending on \a Data::HasChanged.
319 ///
320 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
321 /// their operands outside of \c G.
322 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
323 /// operands have changed.
324 /// \post \a getMappedOp() returns the mapped node for every node in \c G.
325 void mapNodesInPOT(UniquedGraph &G);
326
327 /// Remap a node's operands using the given functor.
328 ///
329 /// Iterate through the operands of \c N and update them in place using \c
330 /// mapOperand.
331 ///
332 /// \pre N.isDistinct() or N.isTemporary().
333 template <class OperandMapper>
334 void remapOperands(MDNode &N, OperandMapper mapOperand);
335 };
336
337 } // end namespace
338
mapValue(const Value * V)339 Value *Mapper::mapValue(const Value *V) {
340 ValueToValueMapTy::iterator I = getVM().find(V);
341
342 // If the value already exists in the map, use it.
343 if (I != getVM().end()) {
344 assert(I->second && "Unexpected null mapping");
345 return I->second;
346 }
347
348 // If we have a materializer and it can materialize a value, use that.
349 if (auto *Materializer = getMaterializer()) {
350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351 getVM()[V] = NewV;
352 return NewV;
353 }
354 }
355
356 // Global values do not need to be seeded into the VM if they
357 // are using the identity mapping.
358 if (isa<GlobalValue>(V)) {
359 if (Flags & RF_NullMapMissingGlobalValues)
360 return nullptr;
361 return getVM()[V] = const_cast<Value *>(V);
362 }
363
364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365 // Inline asm may need *type* remapping.
366 FunctionType *NewTy = IA->getFunctionType();
367 if (TypeMapper) {
368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369
370 if (NewTy != IA->getFunctionType())
371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372 IA->hasSideEffects(), IA->isAlignStack());
373 }
374
375 return getVM()[V] = const_cast<Value *>(V);
376 }
377
378 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
379 const Metadata *MD = MDV->getMetadata();
380
381 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
382 // Look through to grab the local value.
383 if (Value *LV = mapValue(LAM->getValue())) {
384 if (V == LAM->getValue())
385 return const_cast<Value *>(V);
386 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
387 }
388
389 // FIXME: always return nullptr once Verifier::verifyDominatesUse()
390 // ensures metadata operands only reference defined SSA values.
391 return (Flags & RF_IgnoreMissingLocals)
392 ? nullptr
393 : MetadataAsValue::get(V->getContext(),
394 MDTuple::get(V->getContext(), None));
395 }
396
397 // If this is a module-level metadata and we know that nothing at the module
398 // level is changing, then use an identity mapping.
399 if (Flags & RF_NoModuleLevelChanges)
400 return getVM()[V] = const_cast<Value *>(V);
401
402 // Map the metadata and turn it into a value.
403 auto *MappedMD = mapMetadata(MD);
404 if (MD == MappedMD)
405 return getVM()[V] = const_cast<Value *>(V);
406 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
407 }
408
409 // Okay, this either must be a constant (which may or may not be mappable) or
410 // is something that is not in the mapping table.
411 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
412 if (!C)
413 return nullptr;
414
415 if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
416 return mapBlockAddress(*BA);
417
418 auto mapValueOrNull = [this](Value *V) {
419 auto Mapped = mapValue(V);
420 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
421 "Unexpected null mapping for constant operand without "
422 "NullMapMissingGlobalValues flag");
423 return Mapped;
424 };
425
426 // Otherwise, we have some other constant to remap. Start by checking to see
427 // if all operands have an identity remapping.
428 unsigned OpNo = 0, NumOperands = C->getNumOperands();
429 Value *Mapped = nullptr;
430 for (; OpNo != NumOperands; ++OpNo) {
431 Value *Op = C->getOperand(OpNo);
432 Mapped = mapValueOrNull(Op);
433 if (!Mapped)
434 return nullptr;
435 if (Mapped != Op)
436 break;
437 }
438
439 // See if the type mapper wants to remap the type as well.
440 Type *NewTy = C->getType();
441 if (TypeMapper)
442 NewTy = TypeMapper->remapType(NewTy);
443
444 // If the result type and all operands match up, then just insert an identity
445 // mapping.
446 if (OpNo == NumOperands && NewTy == C->getType())
447 return getVM()[V] = C;
448
449 // Okay, we need to create a new constant. We've already processed some or
450 // all of the operands, set them all up now.
451 SmallVector<Constant*, 8> Ops;
452 Ops.reserve(NumOperands);
453 for (unsigned j = 0; j != OpNo; ++j)
454 Ops.push_back(cast<Constant>(C->getOperand(j)));
455
456 // If one of the operands mismatch, push it and the other mapped operands.
457 if (OpNo != NumOperands) {
458 Ops.push_back(cast<Constant>(Mapped));
459
460 // Map the rest of the operands that aren't processed yet.
461 for (++OpNo; OpNo != NumOperands; ++OpNo) {
462 Mapped = mapValueOrNull(C->getOperand(OpNo));
463 if (!Mapped)
464 return nullptr;
465 Ops.push_back(cast<Constant>(Mapped));
466 }
467 }
468 Type *NewSrcTy = nullptr;
469 if (TypeMapper)
470 if (auto *GEPO = dyn_cast<GEPOperator>(C))
471 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
472
473 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
474 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
475 if (isa<ConstantArray>(C))
476 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
477 if (isa<ConstantStruct>(C))
478 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
479 if (isa<ConstantVector>(C))
480 return getVM()[V] = ConstantVector::get(Ops);
481 // If this is a no-operand constant, it must be because the type was remapped.
482 if (isa<UndefValue>(C))
483 return getVM()[V] = UndefValue::get(NewTy);
484 if (isa<ConstantAggregateZero>(C))
485 return getVM()[V] = ConstantAggregateZero::get(NewTy);
486 assert(isa<ConstantPointerNull>(C));
487 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
488 }
489
mapBlockAddress(const BlockAddress & BA)490 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
491 Function *F = cast<Function>(mapValue(BA.getFunction()));
492
493 // F may not have materialized its initializer. In that case, create a
494 // dummy basic block for now, and replace it once we've materialized all
495 // the initializers.
496 BasicBlock *BB;
497 if (F->empty()) {
498 DelayedBBs.push_back(DelayedBasicBlock(BA));
499 BB = DelayedBBs.back().TempBB.get();
500 } else {
501 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
502 }
503
504 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
505 }
506
mapToMetadata(const Metadata * Key,Metadata * Val)507 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
508 getVM().MD()[Key].reset(Val);
509 return Val;
510 }
511
mapToSelf(const Metadata * MD)512 Metadata *Mapper::mapToSelf(const Metadata *MD) {
513 return mapToMetadata(MD, const_cast<Metadata *>(MD));
514 }
515
tryToMapOperand(const Metadata * Op)516 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
517 if (!Op)
518 return nullptr;
519
520 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
521 #ifndef NDEBUG
522 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
523 assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
524 M.getVM().getMappedMD(Op)) &&
525 "Expected Value to be memoized");
526 else
527 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
528 "Expected result to be memoized");
529 #endif
530 return *MappedOp;
531 }
532
533 const MDNode &N = *cast<MDNode>(Op);
534 if (N.isDistinct())
535 return mapDistinctNode(N);
536 return None;
537 }
538
mapDistinctNode(const MDNode & N)539 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
540 assert(N.isDistinct() && "Expected a distinct node");
541 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
542 DistinctWorklist.push_back(cast<MDNode>(
543 (M.Flags & RF_MoveDistinctMDs)
544 ? M.mapToSelf(&N)
545 : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
546 return DistinctWorklist.back();
547 }
548
wrapConstantAsMetadata(const ConstantAsMetadata & CMD,Value * MappedV)549 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
550 Value *MappedV) {
551 if (CMD.getValue() == MappedV)
552 return const_cast<ConstantAsMetadata *>(&CMD);
553 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
554 }
555
getMappedOp(const Metadata * Op) const556 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
557 if (!Op)
558 return nullptr;
559
560 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
561 return *MappedOp;
562
563 if (isa<MDString>(Op))
564 return const_cast<Metadata *>(Op);
565
566 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
567 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
568
569 return None;
570 }
571
getFwdReference(MDNode & Op)572 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
573 auto Where = Info.find(&Op);
574 assert(Where != Info.end() && "Expected a valid reference");
575
576 auto &OpD = Where->second;
577 if (!OpD.HasChanged)
578 return Op;
579
580 // Lazily construct a temporary node.
581 if (!OpD.Placeholder)
582 OpD.Placeholder = Op.clone();
583
584 return *OpD.Placeholder;
585 }
586
587 template <class OperandMapper>
remapOperands(MDNode & N,OperandMapper mapOperand)588 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
589 assert(!N.isUniqued() && "Expected distinct or temporary nodes");
590 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
591 Metadata *Old = N.getOperand(I);
592 Metadata *New = mapOperand(Old);
593
594 if (Old != New)
595 N.replaceOperandWith(I, New);
596 }
597 }
598
599 namespace {
600 /// An entry in the worklist for the post-order traversal.
601 struct POTWorklistEntry {
602 MDNode *N; ///< Current node.
603 MDNode::op_iterator Op; ///< Current operand of \c N.
604
605 /// Keep a flag of whether operands have changed in the worklist to avoid
606 /// hitting the map in \a UniquedGraph.
607 bool HasChanged = false;
608
POTWorklistEntry__anond8860f520411::POTWorklistEntry609 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
610 };
611 } // end namespace
612
createPOT(UniquedGraph & G,const MDNode & FirstN)613 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
614 assert(G.Info.empty() && "Expected a fresh traversal");
615 assert(FirstN.isUniqued() && "Expected uniqued node in POT");
616
617 // Construct a post-order traversal of the uniqued subgraph under FirstN.
618 bool AnyChanges = false;
619 SmallVector<POTWorklistEntry, 16> Worklist;
620 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
621 (void)G.Info[&FirstN];
622 while (!Worklist.empty()) {
623 // Start or continue the traversal through the this node's operands.
624 auto &WE = Worklist.back();
625 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
626 // Push a new node to traverse first.
627 Worklist.push_back(POTWorklistEntry(*N));
628 continue;
629 }
630
631 // Push the node onto the POT.
632 assert(WE.N->isUniqued() && "Expected only uniqued nodes");
633 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
634 auto &D = G.Info[WE.N];
635 AnyChanges |= D.HasChanged = WE.HasChanged;
636 D.ID = G.POT.size();
637 G.POT.push_back(WE.N);
638
639 // Pop the node off the worklist.
640 Worklist.pop_back();
641 }
642 return AnyChanges;
643 }
644
visitOperands(UniquedGraph & G,MDNode::op_iterator & I,MDNode::op_iterator E,bool & HasChanged)645 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
646 MDNode::op_iterator E, bool &HasChanged) {
647 while (I != E) {
648 Metadata *Op = *I++; // Increment even on early return.
649 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
650 // Check if the operand changes.
651 HasChanged |= Op != *MappedOp;
652 continue;
653 }
654
655 // A uniqued metadata node.
656 MDNode &OpN = *cast<MDNode>(Op);
657 assert(OpN.isUniqued() &&
658 "Only uniqued operands cannot be mapped immediately");
659 if (G.Info.insert(std::make_pair(&OpN, Data())).second)
660 return &OpN; // This is a new one. Return it.
661 }
662 return nullptr;
663 }
664
propagateChanges()665 void MDNodeMapper::UniquedGraph::propagateChanges() {
666 bool AnyChanges;
667 do {
668 AnyChanges = false;
669 for (MDNode *N : POT) {
670 auto &D = Info[N];
671 if (D.HasChanged)
672 continue;
673
674 if (!llvm::any_of(N->operands(), [&](const Metadata *Op) {
675 auto Where = Info.find(Op);
676 return Where != Info.end() && Where->second.HasChanged;
677 }))
678 continue;
679
680 AnyChanges = D.HasChanged = true;
681 }
682 } while (AnyChanges);
683 }
684
mapNodesInPOT(UniquedGraph & G)685 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
686 // Construct uniqued nodes, building forward references as necessary.
687 SmallVector<MDNode *, 16> CyclicNodes;
688 for (auto *N : G.POT) {
689 auto &D = G.Info[N];
690 if (!D.HasChanged) {
691 // The node hasn't changed.
692 M.mapToSelf(N);
693 continue;
694 }
695
696 // Remember whether this node had a placeholder.
697 bool HadPlaceholder(D.Placeholder);
698
699 // Clone the uniqued node and remap the operands.
700 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
701 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
702 if (Optional<Metadata *> MappedOp = getMappedOp(Old))
703 return *MappedOp;
704 assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
705 return &G.getFwdReference(*cast<MDNode>(Old));
706 });
707
708 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
709 M.mapToMetadata(N, NewN);
710
711 // Nodes that were referenced out of order in the POT are involved in a
712 // uniquing cycle.
713 if (HadPlaceholder)
714 CyclicNodes.push_back(NewN);
715 }
716
717 // Resolve cycles.
718 for (auto *N : CyclicNodes)
719 if (!N->isResolved())
720 N->resolveCycles();
721 }
722
map(const MDNode & N)723 Metadata *MDNodeMapper::map(const MDNode &N) {
724 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
725 assert(!(M.Flags & RF_NoModuleLevelChanges) &&
726 "MDNodeMapper::map assumes module-level changes");
727
728 // Require resolved nodes whenever metadata might be remapped.
729 assert(N.isResolved() && "Unexpected unresolved node");
730
731 Metadata *MappedN =
732 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
733 while (!DistinctWorklist.empty())
734 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
735 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
736 return *MappedOp;
737 return mapTopLevelUniquedNode(*cast<MDNode>(Old));
738 });
739 return MappedN;
740 }
741
mapTopLevelUniquedNode(const MDNode & FirstN)742 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
743 assert(FirstN.isUniqued() && "Expected uniqued node");
744
745 // Create a post-order traversal of uniqued nodes under FirstN.
746 UniquedGraph G;
747 if (!createPOT(G, FirstN)) {
748 // Return early if no nodes have changed.
749 for (const MDNode *N : G.POT)
750 M.mapToSelf(N);
751 return &const_cast<MDNode &>(FirstN);
752 }
753
754 // Update graph with all nodes that have changed.
755 G.propagateChanges();
756
757 // Map all the nodes in the graph.
758 mapNodesInPOT(G);
759
760 // Return the original node, remapped.
761 return *getMappedOp(&FirstN);
762 }
763
764 namespace {
765
766 struct MapMetadataDisabler {
767 ValueToValueMapTy &VM;
768
MapMetadataDisabler__anond8860f520811::MapMetadataDisabler769 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
770 VM.disableMapMetadata();
771 }
~MapMetadataDisabler__anond8860f520811::MapMetadataDisabler772 ~MapMetadataDisabler() { VM.enableMapMetadata(); }
773 };
774
775 } // end namespace
776
mapSimpleMetadata(const Metadata * MD)777 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
778 // If the value already exists in the map, use it.
779 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
780 return *NewMD;
781
782 if (isa<MDString>(MD))
783 return const_cast<Metadata *>(MD);
784
785 // This is a module-level metadata. If nothing at the module level is
786 // changing, use an identity mapping.
787 if ((Flags & RF_NoModuleLevelChanges))
788 return const_cast<Metadata *>(MD);
789
790 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
791 // Disallow recursion into metadata mapping through mapValue.
792 MapMetadataDisabler MMD(getVM());
793
794 // Don't memoize ConstantAsMetadata. Instead of lasting until the
795 // LLVMContext is destroyed, they can be deleted when the GlobalValue they
796 // reference is destructed. These aren't super common, so the extra
797 // indirection isn't that expensive.
798 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
799 }
800
801 assert(isa<MDNode>(MD) && "Expected a metadata node");
802
803 return None;
804 }
805
mapMetadata(const Metadata * MD)806 Metadata *Mapper::mapMetadata(const Metadata *MD) {
807 assert(MD && "Expected valid metadata");
808 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
809
810 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
811 return *NewMD;
812
813 return MDNodeMapper(*this).map(*cast<MDNode>(MD));
814 }
815
flush()816 void Mapper::flush() {
817 // Flush out the worklist of global values.
818 while (!Worklist.empty()) {
819 WorklistEntry E = Worklist.pop_back_val();
820 CurrentMCID = E.MCID;
821 switch (E.Kind) {
822 case WorklistEntry::MapGlobalInit:
823 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
824 break;
825 case WorklistEntry::MapAppendingVar: {
826 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
827 mapAppendingVariable(*E.Data.AppendingGV.GV,
828 E.Data.AppendingGV.InitPrefix,
829 E.AppendingGVIsOldCtorDtor,
830 makeArrayRef(AppendingInits).slice(PrefixSize));
831 AppendingInits.resize(PrefixSize);
832 break;
833 }
834 case WorklistEntry::MapGlobalAliasee:
835 E.Data.GlobalAliasee.GA->setAliasee(
836 mapConstant(E.Data.GlobalAliasee.Aliasee));
837 break;
838 case WorklistEntry::RemapFunction:
839 remapFunction(*E.Data.RemapF);
840 break;
841 }
842 }
843 CurrentMCID = 0;
844
845 // Finish logic for block addresses now that all global values have been
846 // handled.
847 while (!DelayedBBs.empty()) {
848 DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
849 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
850 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
851 }
852 }
853
remapInstruction(Instruction * I)854 void Mapper::remapInstruction(Instruction *I) {
855 // Remap operands.
856 for (Use &Op : I->operands()) {
857 Value *V = mapValue(Op);
858 // If we aren't ignoring missing entries, assert that something happened.
859 if (V)
860 Op = V;
861 else
862 assert((Flags & RF_IgnoreMissingLocals) &&
863 "Referenced value not in value map!");
864 }
865
866 // Remap phi nodes' incoming blocks.
867 if (PHINode *PN = dyn_cast<PHINode>(I)) {
868 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
869 Value *V = mapValue(PN->getIncomingBlock(i));
870 // If we aren't ignoring missing entries, assert that something happened.
871 if (V)
872 PN->setIncomingBlock(i, cast<BasicBlock>(V));
873 else
874 assert((Flags & RF_IgnoreMissingLocals) &&
875 "Referenced block not in value map!");
876 }
877 }
878
879 // Remap attached metadata.
880 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
881 I->getAllMetadata(MDs);
882 for (const auto &MI : MDs) {
883 MDNode *Old = MI.second;
884 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
885 if (New != Old)
886 I->setMetadata(MI.first, New);
887 }
888
889 if (!TypeMapper)
890 return;
891
892 // If the instruction's type is being remapped, do so now.
893 if (auto CS = CallSite(I)) {
894 SmallVector<Type *, 3> Tys;
895 FunctionType *FTy = CS.getFunctionType();
896 Tys.reserve(FTy->getNumParams());
897 for (Type *Ty : FTy->params())
898 Tys.push_back(TypeMapper->remapType(Ty));
899 CS.mutateFunctionType(FunctionType::get(
900 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
901 return;
902 }
903 if (auto *AI = dyn_cast<AllocaInst>(I))
904 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
905 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
906 GEP->setSourceElementType(
907 TypeMapper->remapType(GEP->getSourceElementType()));
908 GEP->setResultElementType(
909 TypeMapper->remapType(GEP->getResultElementType()));
910 }
911 I->mutateType(TypeMapper->remapType(I->getType()));
912 }
913
remapFunction(Function & F)914 void Mapper::remapFunction(Function &F) {
915 // Remap the operands.
916 for (Use &Op : F.operands())
917 if (Op)
918 Op = mapValue(Op);
919
920 // Remap the metadata attachments.
921 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
922 F.getAllMetadata(MDs);
923 F.clearMetadata();
924 for (const auto &I : MDs)
925 F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
926
927 // Remap the argument types.
928 if (TypeMapper)
929 for (Argument &A : F.args())
930 A.mutateType(TypeMapper->remapType(A.getType()));
931
932 // Remap the instructions.
933 for (BasicBlock &BB : F)
934 for (Instruction &I : BB)
935 remapInstruction(&I);
936 }
937
mapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers)938 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
939 bool IsOldCtorDtor,
940 ArrayRef<Constant *> NewMembers) {
941 SmallVector<Constant *, 16> Elements;
942 if (InitPrefix) {
943 unsigned NumElements =
944 cast<ArrayType>(InitPrefix->getType())->getNumElements();
945 for (unsigned I = 0; I != NumElements; ++I)
946 Elements.push_back(InitPrefix->getAggregateElement(I));
947 }
948
949 PointerType *VoidPtrTy;
950 Type *EltTy;
951 if (IsOldCtorDtor) {
952 // FIXME: This upgrade is done during linking to support the C API. See
953 // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
954 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
955 auto &ST = *cast<StructType>(NewMembers.front()->getType());
956 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
957 EltTy = StructType::get(GV.getContext(), Tys, false);
958 }
959
960 for (auto *V : NewMembers) {
961 Constant *NewV;
962 if (IsOldCtorDtor) {
963 auto *S = cast<ConstantStruct>(V);
964 auto *E1 = mapValue(S->getOperand(0));
965 auto *E2 = mapValue(S->getOperand(1));
966 Value *Null = Constant::getNullValue(VoidPtrTy);
967 NewV =
968 ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
969 } else {
970 NewV = cast_or_null<Constant>(mapValue(V));
971 }
972 Elements.push_back(NewV);
973 }
974
975 GV.setInitializer(ConstantArray::get(
976 cast<ArrayType>(GV.getType()->getElementType()), Elements));
977 }
978
scheduleMapGlobalInitializer(GlobalVariable & GV,Constant & Init,unsigned MCID)979 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
980 unsigned MCID) {
981 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
982 assert(MCID < MCs.size() && "Invalid mapping context");
983
984 WorklistEntry WE;
985 WE.Kind = WorklistEntry::MapGlobalInit;
986 WE.MCID = MCID;
987 WE.Data.GVInit.GV = &GV;
988 WE.Data.GVInit.Init = &Init;
989 Worklist.push_back(WE);
990 }
991
scheduleMapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers,unsigned MCID)992 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
993 Constant *InitPrefix,
994 bool IsOldCtorDtor,
995 ArrayRef<Constant *> NewMembers,
996 unsigned MCID) {
997 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
998 assert(MCID < MCs.size() && "Invalid mapping context");
999
1000 WorklistEntry WE;
1001 WE.Kind = WorklistEntry::MapAppendingVar;
1002 WE.MCID = MCID;
1003 WE.Data.AppendingGV.GV = &GV;
1004 WE.Data.AppendingGV.InitPrefix = InitPrefix;
1005 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1006 WE.AppendingGVNumNewMembers = NewMembers.size();
1007 Worklist.push_back(WE);
1008 AppendingInits.append(NewMembers.begin(), NewMembers.end());
1009 }
1010
scheduleMapGlobalAliasee(GlobalAlias & GA,Constant & Aliasee,unsigned MCID)1011 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1012 unsigned MCID) {
1013 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
1014 assert(MCID < MCs.size() && "Invalid mapping context");
1015
1016 WorklistEntry WE;
1017 WE.Kind = WorklistEntry::MapGlobalAliasee;
1018 WE.MCID = MCID;
1019 WE.Data.GlobalAliasee.GA = &GA;
1020 WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1021 Worklist.push_back(WE);
1022 }
1023
scheduleRemapFunction(Function & F,unsigned MCID)1024 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1025 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1026 assert(MCID < MCs.size() && "Invalid mapping context");
1027
1028 WorklistEntry WE;
1029 WE.Kind = WorklistEntry::RemapFunction;
1030 WE.MCID = MCID;
1031 WE.Data.RemapF = &F;
1032 Worklist.push_back(WE);
1033 }
1034
addFlags(RemapFlags Flags)1035 void Mapper::addFlags(RemapFlags Flags) {
1036 assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1037 this->Flags = this->Flags | Flags;
1038 }
1039
getAsMapper(void * pImpl)1040 static Mapper *getAsMapper(void *pImpl) {
1041 return reinterpret_cast<Mapper *>(pImpl);
1042 }
1043
1044 namespace {
1045
1046 class FlushingMapper {
1047 Mapper &M;
1048
1049 public:
FlushingMapper(void * pImpl)1050 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1051 assert(!M.hasWorkToDo() && "Expected to be flushed");
1052 }
~FlushingMapper()1053 ~FlushingMapper() { M.flush(); }
operator ->() const1054 Mapper *operator->() const { return &M; }
1055 };
1056
1057 } // end namespace
1058
ValueMapper(ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)1059 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1060 ValueMapTypeRemapper *TypeMapper,
1061 ValueMaterializer *Materializer)
1062 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1063
~ValueMapper()1064 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1065
1066 unsigned
registerAlternateMappingContext(ValueToValueMapTy & VM,ValueMaterializer * Materializer)1067 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1068 ValueMaterializer *Materializer) {
1069 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1070 }
1071
addFlags(RemapFlags Flags)1072 void ValueMapper::addFlags(RemapFlags Flags) {
1073 FlushingMapper(pImpl)->addFlags(Flags);
1074 }
1075
mapValue(const Value & V)1076 Value *ValueMapper::mapValue(const Value &V) {
1077 return FlushingMapper(pImpl)->mapValue(&V);
1078 }
1079
mapConstant(const Constant & C)1080 Constant *ValueMapper::mapConstant(const Constant &C) {
1081 return cast_or_null<Constant>(mapValue(C));
1082 }
1083
mapMetadata(const Metadata & MD)1084 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1085 return FlushingMapper(pImpl)->mapMetadata(&MD);
1086 }
1087
mapMDNode(const MDNode & N)1088 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1089 return cast_or_null<MDNode>(mapMetadata(N));
1090 }
1091
remapInstruction(Instruction & I)1092 void ValueMapper::remapInstruction(Instruction &I) {
1093 FlushingMapper(pImpl)->remapInstruction(&I);
1094 }
1095
remapFunction(Function & F)1096 void ValueMapper::remapFunction(Function &F) {
1097 FlushingMapper(pImpl)->remapFunction(F);
1098 }
1099
scheduleMapGlobalInitializer(GlobalVariable & GV,Constant & Init,unsigned MCID)1100 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1101 Constant &Init,
1102 unsigned MCID) {
1103 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1104 }
1105
scheduleMapAppendingVariable(GlobalVariable & GV,Constant * InitPrefix,bool IsOldCtorDtor,ArrayRef<Constant * > NewMembers,unsigned MCID)1106 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1107 Constant *InitPrefix,
1108 bool IsOldCtorDtor,
1109 ArrayRef<Constant *> NewMembers,
1110 unsigned MCID) {
1111 getAsMapper(pImpl)->scheduleMapAppendingVariable(
1112 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1113 }
1114
scheduleMapGlobalAliasee(GlobalAlias & GA,Constant & Aliasee,unsigned MCID)1115 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1116 unsigned MCID) {
1117 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1118 }
1119
scheduleRemapFunction(Function & F,unsigned MCID)1120 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1121 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1122 }
1123