1; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck %s
2
3; PR22428: https://llvm.org/bugs/show_bug.cgi?id=22428
4; f1, f2, f3, and f4 should use an integer logic instruction.
5; f9 and f10 should use an FP (SSE) logic instruction.
6;
7; f5, f6, f7, and f8 are less clear.
8;
9; For f5 and f6, we can save a register move by using an FP logic instruction,
10; but we may need to calculate the relative costs of an SSE op vs. int op vs.
11; scalar <-> SSE register moves.
12;
13; For f7 and f8, the SSE instructions don't take immediate operands, so if we
14; use one of those, we either have to load a constant from memory or move the
15; scalar immediate value from an integer register over to an SSE register.
16; Optimizing for size may affect that decision. Also, note that there are no
17; scalar versions of the FP logic ops, so if we want to fold a load into a
18; logic op, we have to load or splat a 16-byte vector constant.
19
20; 1 FP operand, 1 int operand, int result
21
22define i32 @f1(float %x, i32 %y) {
23; CHECK-LABEL: f1:
24; CHECK:       # BB#0:
25; CHECK-NEXT:    movd %xmm0, %eax
26; CHECK-NEXT:    andl %edi, %eax
27; CHECK-NEXT:    retq
28
29  %bc1 = bitcast float %x to i32
30  %and = and i32 %bc1, %y
31  ret i32 %and
32}
33
34; Swap operands of the logic op.
35
36define i32 @f2(float %x, i32 %y) {
37; CHECK-LABEL: f2:
38; CHECK:       # BB#0:
39; CHECK-NEXT:    movd %xmm0, %eax
40; CHECK-NEXT:    andl %edi, %eax
41; CHECK-NEXT:    retq
42
43  %bc1 = bitcast float %x to i32
44  %and = and i32 %y, %bc1
45  ret i32 %and
46}
47
48; 1 FP operand, 1 constant operand, int result
49
50define i32 @f3(float %x) {
51; CHECK-LABEL: f3:
52; CHECK:       # BB#0:
53; CHECK-NEXT:    movd %xmm0, %eax
54; CHECK-NEXT:    andl $1, %eax
55; CHECK-NEXT:    retq
56
57  %bc1 = bitcast float %x to i32
58  %and = and i32 %bc1, 1
59  ret i32 %and
60}
61
62; Swap operands of the logic op.
63
64define i32 @f4(float %x) {
65; CHECK-LABEL: f4:
66; CHECK:       # BB#0:
67; CHECK-NEXT:    movd %xmm0, %eax
68; CHECK-NEXT:    andl $2, %eax
69; CHECK-NEXT:    retq
70
71  %bc1 = bitcast float %x to i32
72  %and = and i32 2, %bc1
73  ret i32 %and
74}
75
76; 1 FP operand, 1 integer operand, FP result
77
78define float @f5(float %x, i32 %y) {
79; CHECK-LABEL: f5:
80; CHECK:       # BB#0:
81; CHECK-NEXT:    movd %xmm0, %eax
82; CHECK-NEXT:    andl %edi, %eax
83; CHECK-NEXT:    movd %eax, %xmm0
84; CHECK-NEXT:    retq
85
86  %bc1 = bitcast float %x to i32
87  %and = and i32 %bc1, %y
88  %bc2 = bitcast i32 %and to float
89  ret float %bc2
90}
91
92; Swap operands of the logic op.
93
94define float @f6(float %x, i32 %y) {
95; CHECK-LABEL: f6:
96; CHECK:       # BB#0:
97; CHECK-NEXT:    movd %xmm0, %eax
98; CHECK-NEXT:    andl %edi, %eax
99; CHECK-NEXT:    movd %eax, %xmm0
100; CHECK-NEXT:    retq
101
102  %bc1 = bitcast float %x to i32
103  %and = and i32 %y, %bc1
104  %bc2 = bitcast i32 %and to float
105  ret float %bc2
106}
107
108; 1 FP operand, 1 constant operand, FP result
109
110define float @f7(float %x) {
111; CHECK-LABEL: f7:
112; CHECK:       # BB#0:
113; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
114; CHECK-NEXT:    andps %xmm1, %xmm0
115; CHECK-NEXT:    retq
116
117  %bc1 = bitcast float %x to i32
118  %and = and i32 %bc1, 3
119  %bc2 = bitcast i32 %and to float
120  ret float %bc2
121}
122
123; Swap operands of the logic op.
124
125define float @f8(float %x) {
126; CHECK-LABEL: f8:
127; CHECK:       # BB#0:
128; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
129; CHECK-NEXT:    andps %xmm1, %xmm0
130; CHECK-NEXT:    retq
131
132  %bc1 = bitcast float %x to i32
133  %and = and i32 4, %bc1
134  %bc2 = bitcast i32 %and to float
135  ret float %bc2
136}
137
138; 2 FP operands, int result
139
140define i32 @f9(float %x, float %y) {
141; CHECK-LABEL: f9:
142; CHECK:       # BB#0:
143; CHECK-NEXT:    andps %xmm1, %xmm0
144; CHECK-NEXT:    movd %xmm0, %eax
145; CHECK-NEXT:    retq
146
147  %bc1 = bitcast float %x to i32
148  %bc2 = bitcast float %y to i32
149  %and = and i32 %bc1, %bc2
150  ret i32 %and
151}
152
153; 2 FP operands, FP result
154
155define float @f10(float %x, float %y) {
156; CHECK-LABEL: f10:
157; CHECK:       # BB#0:
158; CHECK-NEXT:    andps %xmm1, %xmm0
159; CHECK-NEXT:    retq
160
161  %bc1 = bitcast float %x to i32
162  %bc2 = bitcast float %y to i32
163  %and = and i32 %bc1, %bc2
164  %bc3 = bitcast i32 %and to float
165  ret float %bc3
166}
167
168define float @or(float %x, float %y) {
169; CHECK-LABEL: or:
170; CHECK:       # BB#0:
171; CHECK-NEXT:    orps %xmm1, %xmm0
172; CHECK-NEXT:    retq
173
174  %bc1 = bitcast float %x to i32
175  %bc2 = bitcast float %y to i32
176  %and = or i32 %bc1, %bc2
177  %bc3 = bitcast i32 %and to float
178  ret float %bc3
179}
180
181define float @xor(float %x, float %y) {
182; CHECK-LABEL: xor:
183; CHECK:       # BB#0:
184; CHECK-NEXT:    xorps %xmm1, %xmm0
185; CHECK-NEXT:    retq
186
187  %bc1 = bitcast float %x to i32
188  %bc2 = bitcast float %y to i32
189  %and = xor i32 %bc1, %bc2
190  %bc3 = bitcast i32 %and to float
191  ret float %bc3
192}
193
194define float @f7_or(float %x) {
195; CHECK-LABEL: f7_or:
196; CHECK:       # BB#0:
197; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
198; CHECK-NEXT:    orps %xmm1, %xmm0
199; CHECK-NEXT:    retq
200
201  %bc1 = bitcast float %x to i32
202  %and = or i32 %bc1, 3
203  %bc2 = bitcast i32 %and to float
204  ret float %bc2
205}
206
207define float @f7_xor(float %x) {
208; CHECK-LABEL: f7_xor:
209; CHECK:       # BB#0:
210; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
211; CHECK-NEXT:    xorps %xmm1, %xmm0
212; CHECK-NEXT:    retq
213
214  %bc1 = bitcast float %x to i32
215  %and = xor i32 %bc1, 3
216  %bc2 = bitcast i32 %and to float
217  ret float %bc2
218}
219
220; Make sure that doubles work too.
221
222define double @doubles(double %x, double %y) {
223; CHECK-LABEL: doubles:
224; CHECK:       # BB#0:
225; CHECK-NEXT:    andpd %xmm1, %xmm0
226; CHECK-NEXT:    retq
227
228  %bc1 = bitcast double %x to i64
229  %bc2 = bitcast double %y to i64
230  %and = and i64 %bc1, %bc2
231  %bc3 = bitcast i64 %and to double
232  ret double %bc3
233}
234
235define double @f7_double(double %x) {
236; CHECK-LABEL: f7_double:
237; CHECK:       # BB#0:
238; CHECK-NEXT:    movsd {{.*#+}} xmm1 = mem[0],zero
239; CHECK-NEXT:    andpd %xmm1, %xmm0
240; CHECK-NEXT:    retq
241
242  %bc1 = bitcast double %x to i64
243  %and = and i64 %bc1, 3
244  %bc2 = bitcast i64 %and to double
245  ret double %bc2
246}
247
248; Grabbing the sign bit is a special case that could be handled
249; by movmskps/movmskpd, but if we're not shifting it over, then
250; a simple FP logic op is cheaper.
251
252define float @movmsk(float %x) {
253; CHECK-LABEL: movmsk:
254; CHECK:       # BB#0:
255; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
256; CHECK-NEXT:    andps %xmm1, %xmm0
257; CHECK-NEXT:    retq
258
259  %bc1 = bitcast float %x to i32
260  %and = and i32 %bc1, 2147483648
261  %bc2 = bitcast i32 %and to float
262  ret float %bc2
263}
264
265define double @bitcast_fabs(double %x) {
266; CHECK-LABEL: bitcast_fabs:
267; CHECK:       # BB#0:
268; CHECK-NEXT:    andpd {{.*}}(%rip), %xmm0
269; CHECK-NEXT:    retq
270;
271  %bc1 = bitcast double %x to i64
272  %and = and i64 %bc1, 9223372036854775807
273  %bc2 = bitcast i64 %and to double
274  ret double %bc2
275}
276
277define float @bitcast_fneg(float %x) {
278; CHECK-LABEL: bitcast_fneg:
279; CHECK:       # BB#0:
280; CHECK-NEXT:    xorps {{.*}}(%rip), %xmm0
281; CHECK-NEXT:    retq
282;
283  %bc1 = bitcast float %x to i32
284  %xor = xor i32 %bc1, 2147483648
285  %bc2 = bitcast i32 %xor to float
286  ret float %bc2
287}
288
289define <2 x double> @bitcast_fabs_vec(<2 x double> %x) {
290; CHECK-LABEL: bitcast_fabs_vec:
291; CHECK:       # BB#0:
292; CHECK-NEXT:    andps {{.*}}(%rip), %xmm0
293; CHECK-NEXT:    retq
294;
295  %bc1 = bitcast <2 x double> %x to <2 x i64>
296  %and = and <2 x i64> %bc1, <i64 9223372036854775807, i64 9223372036854775807>
297  %bc2 = bitcast <2 x i64> %and to <2 x double>
298  ret <2 x double> %bc2
299}
300
301define <4 x float> @bitcast_fneg_vec(<4 x float> %x) {
302; CHECK-LABEL: bitcast_fneg_vec:
303; CHECK:       # BB#0:
304; CHECK-NEXT:    xorps {{.*}}(%rip), %xmm0
305; CHECK-NEXT:    retq
306;
307  %bc1 = bitcast <4 x float> %x to <4 x i32>
308  %xor = xor <4 x i32> %bc1, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648>
309  %bc2 = bitcast <4 x i32> %xor to <4 x float>
310  ret <4 x float> %bc2
311}
312
313