1; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 | FileCheck %s -check-prefix=X64 2; RUN: llc < %s -O3 -march=x86 -mcpu=core2 | FileCheck %s -check-prefix=X32 3; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 -addr-sink-using-gep=1 | FileCheck %s -check-prefix=X64 4; RUN: llc < %s -O3 -march=x86 -mcpu=core2 -addr-sink-using-gep=1 | FileCheck %s -check-prefix=X32 5 6; @simple is the most basic chain of address induction variables. Chaining 7; saves at least one register and avoids complex addressing and setup 8; code. 9; 10; X64: @simple 11; %x * 4 12; X64: shlq $2 13; no other address computation in the preheader 14; X64-NEXT: xorl 15; X64-NEXT: .p2align 16; X64: %loop 17; no complex address modes 18; X64-NOT: (%{{[^)]+}},%{{[^)]+}}, 19; 20; X32: @simple 21; no expensive address computation in the preheader 22; X32-NOT: imul 23; X32: %loop 24; no complex address modes 25; X32-NOT: (%{{[^)]+}},%{{[^)]+}}, 26define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind { 27entry: 28 br label %loop 29loop: 30 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] 31 %s = phi i32 [ 0, %entry ], [ %s4, %loop ] 32 %v = load i32, i32* %iv 33 %iv1 = getelementptr inbounds i32, i32* %iv, i32 %x 34 %v1 = load i32, i32* %iv1 35 %iv2 = getelementptr inbounds i32, i32* %iv1, i32 %x 36 %v2 = load i32, i32* %iv2 37 %iv3 = getelementptr inbounds i32, i32* %iv2, i32 %x 38 %v3 = load i32, i32* %iv3 39 %s1 = add i32 %s, %v 40 %s2 = add i32 %s1, %v1 41 %s3 = add i32 %s2, %v2 42 %s4 = add i32 %s3, %v3 43 %iv4 = getelementptr inbounds i32, i32* %iv3, i32 %x 44 %cmp = icmp eq i32* %iv4, %b 45 br i1 %cmp, label %exit, label %loop 46exit: 47 ret i32 %s4 48} 49 50; @user is not currently chained because the IV is live across memory ops. 51; 52; X64: @user 53; X64: shlq $4 54; X64: lea 55; X64: lea 56; X64: %loop 57; complex address modes 58; X64: (%{{[^)]+}},%{{[^)]+}}, 59; 60; X32: @user 61; expensive address computation in the preheader 62; X32: shll $4 63; X32: lea 64; X32: lea 65; X32: %loop 66; complex address modes 67; X32: (%{{[^)]+}},%{{[^)]+}}, 68define i32 @user(i32* %a, i32* %b, i32 %x) nounwind { 69entry: 70 br label %loop 71loop: 72 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] 73 %s = phi i32 [ 0, %entry ], [ %s4, %loop ] 74 %v = load i32, i32* %iv 75 %iv1 = getelementptr inbounds i32, i32* %iv, i32 %x 76 %v1 = load i32, i32* %iv1 77 %iv2 = getelementptr inbounds i32, i32* %iv1, i32 %x 78 %v2 = load i32, i32* %iv2 79 %iv3 = getelementptr inbounds i32, i32* %iv2, i32 %x 80 %v3 = load i32, i32* %iv3 81 %s1 = add i32 %s, %v 82 %s2 = add i32 %s1, %v1 83 %s3 = add i32 %s2, %v2 84 %s4 = add i32 %s3, %v3 85 %iv4 = getelementptr inbounds i32, i32* %iv3, i32 %x 86 store i32 %s4, i32* %iv 87 %cmp = icmp eq i32* %iv4, %b 88 br i1 %cmp, label %exit, label %loop 89exit: 90 ret i32 %s4 91} 92 93; @extrastride is a slightly more interesting case of a single 94; complete chain with multiple strides. The test case IR is what LSR 95; used to do, and exactly what we don't want to do. LSR's new IV 96; chaining feature should now undo the damage. 97; 98; X64: extrastride: 99; We currently don't handle this on X64 because the sexts cause 100; strange increment expressions like this: 101; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 102; 103; X32: extrastride: 104; no spills in the preheader 105; X32-NOT: mov{{.*}}(%esp){{$}} 106; X32: %for.body{{$}} 107; no complex address modes 108; X32-NOT: (%{{[^)]+}},%{{[^)]+}}, 109; no reloads 110; X32-NOT: (%esp) 111define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind { 112entry: 113 %cmp8 = icmp eq i32 %z, 0 114 br i1 %cmp8, label %for.end, label %for.body.lr.ph 115 116for.body.lr.ph: ; preds = %entry 117 %add.ptr.sum = shl i32 %main_stride, 1 ; s*2 118 %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3 119 %add.ptr2.sum = add i32 %x, %main_stride ; s + x 120 %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4 121 %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x 122 br label %for.body 123 124for.body: ; preds = %for.body.lr.ph, %for.body 125 %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ] 126 %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ] 127 %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ] 128 %0 = bitcast i8* %main.addr.011 to i32* 129 %1 = load i32, i32* %0, align 4 130 %add.ptr = getelementptr inbounds i8, i8* %main.addr.011, i32 %main_stride 131 %2 = bitcast i8* %add.ptr to i32* 132 %3 = load i32, i32* %2, align 4 133 %add.ptr1 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr.sum 134 %4 = bitcast i8* %add.ptr1 to i32* 135 %5 = load i32, i32* %4, align 4 136 %add.ptr2 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr1.sum 137 %6 = bitcast i8* %add.ptr2 to i32* 138 %7 = load i32, i32* %6, align 4 139 %add.ptr3 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr4.sum 140 %8 = bitcast i8* %add.ptr3 to i32* 141 %9 = load i32, i32* %8, align 4 142 %add = add i32 %3, %1 143 %add4 = add i32 %add, %5 144 %add5 = add i32 %add4, %7 145 %add6 = add i32 %add5, %9 146 store i32 %add6, i32* %res.addr.09, align 4 147 %add.ptr6 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr3.sum 148 %add.ptr7 = getelementptr inbounds i32, i32* %res.addr.09, i32 %y 149 %inc = add i32 %i.010, 1 150 %cmp = icmp eq i32 %inc, %z 151 br i1 %cmp, label %for.end, label %for.body 152 153for.end: ; preds = %for.body, %entry 154 ret void 155} 156 157; @foldedidx is an unrolled variant of this loop: 158; for (unsigned long i = 0; i < len; i += s) { 159; c[i] = a[i] + b[i]; 160; } 161; where 's' can be folded into the addressing mode. 162; Consequently, we should *not* form any chains. 163; 164; X64: foldedidx: 165; X64: movzbl -3( 166; 167; X32: foldedidx: 168; X32: movzbl -3( 169define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp { 170entry: 171 br label %for.body 172 173for.body: ; preds = %for.body, %entry 174 %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ] 175 %arrayidx = getelementptr inbounds i8, i8* %a, i32 %i.07 176 %0 = load i8, i8* %arrayidx, align 1 177 %conv5 = zext i8 %0 to i32 178 %arrayidx1 = getelementptr inbounds i8, i8* %b, i32 %i.07 179 %1 = load i8, i8* %arrayidx1, align 1 180 %conv26 = zext i8 %1 to i32 181 %add = add nsw i32 %conv26, %conv5 182 %conv3 = trunc i32 %add to i8 183 %arrayidx4 = getelementptr inbounds i8, i8* %c, i32 %i.07 184 store i8 %conv3, i8* %arrayidx4, align 1 185 %inc1 = or i32 %i.07, 1 186 %arrayidx.1 = getelementptr inbounds i8, i8* %a, i32 %inc1 187 %2 = load i8, i8* %arrayidx.1, align 1 188 %conv5.1 = zext i8 %2 to i32 189 %arrayidx1.1 = getelementptr inbounds i8, i8* %b, i32 %inc1 190 %3 = load i8, i8* %arrayidx1.1, align 1 191 %conv26.1 = zext i8 %3 to i32 192 %add.1 = add nsw i32 %conv26.1, %conv5.1 193 %conv3.1 = trunc i32 %add.1 to i8 194 %arrayidx4.1 = getelementptr inbounds i8, i8* %c, i32 %inc1 195 store i8 %conv3.1, i8* %arrayidx4.1, align 1 196 %inc.12 = or i32 %i.07, 2 197 %arrayidx.2 = getelementptr inbounds i8, i8* %a, i32 %inc.12 198 %4 = load i8, i8* %arrayidx.2, align 1 199 %conv5.2 = zext i8 %4 to i32 200 %arrayidx1.2 = getelementptr inbounds i8, i8* %b, i32 %inc.12 201 %5 = load i8, i8* %arrayidx1.2, align 1 202 %conv26.2 = zext i8 %5 to i32 203 %add.2 = add nsw i32 %conv26.2, %conv5.2 204 %conv3.2 = trunc i32 %add.2 to i8 205 %arrayidx4.2 = getelementptr inbounds i8, i8* %c, i32 %inc.12 206 store i8 %conv3.2, i8* %arrayidx4.2, align 1 207 %inc.23 = or i32 %i.07, 3 208 %arrayidx.3 = getelementptr inbounds i8, i8* %a, i32 %inc.23 209 %6 = load i8, i8* %arrayidx.3, align 1 210 %conv5.3 = zext i8 %6 to i32 211 %arrayidx1.3 = getelementptr inbounds i8, i8* %b, i32 %inc.23 212 %7 = load i8, i8* %arrayidx1.3, align 1 213 %conv26.3 = zext i8 %7 to i32 214 %add.3 = add nsw i32 %conv26.3, %conv5.3 215 %conv3.3 = trunc i32 %add.3 to i8 216 %arrayidx4.3 = getelementptr inbounds i8, i8* %c, i32 %inc.23 217 store i8 %conv3.3, i8* %arrayidx4.3, align 1 218 %inc.3 = add nsw i32 %i.07, 4 219 %exitcond.3 = icmp eq i32 %inc.3, 400 220 br i1 %exitcond.3, label %for.end, label %for.body 221 222for.end: ; preds = %for.body 223 ret void 224} 225 226; @multioper tests instructions with multiple IV user operands. We 227; should be able to chain them independent of each other. 228; 229; X64: @multioper 230; X64: %for.body 231; X64: movl %{{.*}},4) 232; X64-NEXT: leal 1( 233; X64-NEXT: movl %{{.*}},4) 234; X64-NEXT: leal 2( 235; X64-NEXT: movl %{{.*}},4) 236; X64-NEXT: leal 3( 237; X64-NEXT: movl %{{.*}},4) 238; 239; X32: @multioper 240; X32: %for.body 241; X32: movl %{{.*}},4) 242; X32-NEXT: leal 1( 243; X32-NEXT: movl %{{.*}},4) 244; X32-NEXT: leal 2( 245; X32-NEXT: movl %{{.*}},4) 246; X32-NEXT: leal 3( 247; X32-NEXT: movl %{{.*}},4) 248define void @multioper(i32* %a, i32 %n) nounwind { 249entry: 250 br label %for.body 251 252for.body: 253 %p = phi i32* [ %p.next, %for.body ], [ %a, %entry ] 254 %i = phi i32 [ %inc4, %for.body ], [ 0, %entry ] 255 store i32 %i, i32* %p, align 4 256 %inc1 = or i32 %i, 1 257 %add.ptr.i1 = getelementptr inbounds i32, i32* %p, i32 1 258 store i32 %inc1, i32* %add.ptr.i1, align 4 259 %inc2 = add nsw i32 %i, 2 260 %add.ptr.i2 = getelementptr inbounds i32, i32* %p, i32 2 261 store i32 %inc2, i32* %add.ptr.i2, align 4 262 %inc3 = add nsw i32 %i, 3 263 %add.ptr.i3 = getelementptr inbounds i32, i32* %p, i32 3 264 store i32 %inc3, i32* %add.ptr.i3, align 4 265 %p.next = getelementptr inbounds i32, i32* %p, i32 4 266 %inc4 = add nsw i32 %i, 4 267 %cmp = icmp slt i32 %inc4, %n 268 br i1 %cmp, label %for.body, label %exit 269 270exit: 271 ret void 272} 273 274; @testCmpZero has a ICmpZero LSR use that should not be hidden from 275; LSR. Profitable chains should have more than one nonzero increment 276; anyway. 277; 278; X32: @testCmpZero 279; X32: %for.body82.us 280; X32: dec 281; X32: jne 282define void @testCmpZero(i8* %src, i8* %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp { 283entry: 284 %dest0 = getelementptr inbounds i8, i8* %src, i32 %srcidx 285 %source0 = getelementptr inbounds i8, i8* %dst, i32 %dstidx 286 %add.ptr79.us.sum = add i32 %srcidx, %len 287 %lftr.limit = getelementptr i8, i8* %src, i32 %add.ptr79.us.sum 288 br label %for.body82.us 289 290for.body82.us: 291 %dest = phi i8* [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ] 292 %source = phi i8* [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ] 293 %0 = bitcast i8* %source to i32* 294 %1 = load i32, i32* %0, align 4 295 %trunc = trunc i32 %1 to i8 296 %add.ptr83.us = getelementptr inbounds i8, i8* %source, i32 4 297 %incdec.ptr91.us = getelementptr inbounds i8, i8* %dest, i32 1 298 store i8 %trunc, i8* %dest, align 1 299 %exitcond = icmp eq i8* %incdec.ptr91.us, %lftr.limit 300 br i1 %exitcond, label %return, label %for.body82.us 301 302return: 303 ret void 304} 305