1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 //   'addl' (immediate ...) (register ...)
26 //   'add' (immediate ...) (memory ...)
27 //   'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 //  - It may be ambiguous; many architectures can legally encode particular
34 //    variants of an instruction in different ways (for example, using a smaller
35 //    encoding for small immediates). Such ambiguities should never be
36 //    arbitrarily resolved by the assembler, the assembler is always responsible
37 //    for choosing the "best" available instruction.
38 //
39 //  - It may depend on the subtarget or the assembler context. Instructions
40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 //    an SSE instruction in a file being assembled for i486) should be accepted
42 //    and rejected by the assembler front end. However, if the proper encoding
43 //    for an instruction is dependent on the assembler context then the matcher
44 //    is responsible for selecting the correct machine instruction for the
45 //    current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 //   1. Classification: Each operand is mapped to the unique set which (a)
55 //      contains it, and (b) is the largest such subset for which a single
56 //      instruction could match all members.
57 //
58 //      For register classes, we can generate these subgroups automatically. For
59 //      arbitrary operands, we expect the user to define the classes and their
60 //      relations to one another (for example, 8-bit signed immediates as a
61 //      subset of 32-bit immediates).
62 //
63 //      By partitioning the operands in this way, we guarantee that for any
64 //      tuple of classes, any single instruction must match either all or none
65 //      of the sets of operands which could classify to that tuple.
66 //
67 //      In addition, the subset relation amongst classes induces a partial order
68 //      on such tuples, which we use to resolve ambiguities.
69 //
70 //   2. The input can now be treated as a tuple of classes (static tokens are
71 //      simple singleton sets). Each such tuple should generally map to a single
72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
73 //      which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 //  Some targets need a custom way to parse operands, some specific instructions
79 //  can contain arguments that can represent processor flags and other kinds of
80 //  identifiers that need to be mapped to specific values in the final encoded
81 //  instructions. The target specific custom operand parsing works in the
82 //  following way:
83 //
84 //   1. A operand match table is built, each entry contains a mnemonic, an
85 //      operand class, a mask for all operand positions for that same
86 //      class/mnemonic and target features to be checked while trying to match.
87 //
88 //   2. The operand matcher will try every possible entry with the same
89 //      mnemonic and will check if the target feature for this mnemonic also
90 //      matches. After that, if the operand to be matched has its index
91 //      present in the mask, a successful match occurs. Otherwise, fallback
92 //      to the regular operand parsing.
93 //
94 //   3. For a match success, each operand class that has a 'ParserMethod'
95 //      becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98 
99 #include "CodeGenTarget.h"
100 #include "llvm/ADT/PointerUnion.h"
101 #include "llvm/ADT/STLExtras.h"
102 #include "llvm/ADT/SmallPtrSet.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/ADT/StringExtras.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/TableGen/Error.h"
109 #include "llvm/TableGen/Record.h"
110 #include "llvm/TableGen/StringMatcher.h"
111 #include "llvm/TableGen/StringToOffsetTable.h"
112 #include "llvm/TableGen/TableGenBackend.h"
113 #include <cassert>
114 #include <cctype>
115 #include <forward_list>
116 #include <map>
117 #include <set>
118 
119 using namespace llvm;
120 
121 #define DEBUG_TYPE "asm-matcher-emitter"
122 
123 static cl::opt<std::string>
124 MatchPrefix("match-prefix", cl::init(""),
125             cl::desc("Only match instructions with the given prefix"));
126 
127 namespace {
128 class AsmMatcherInfo;
129 struct SubtargetFeatureInfo;
130 
131 // Register sets are used as keys in some second-order sets TableGen creates
132 // when generating its data structures. This means that the order of two
133 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
134 // can even affect compiler output (at least seen in diagnostics produced when
135 // all matches fail). So we use a type that sorts them consistently.
136 typedef std::set<Record*, LessRecordByID> RegisterSet;
137 
138 class AsmMatcherEmitter {
139   RecordKeeper &Records;
140 public:
AsmMatcherEmitter(RecordKeeper & R)141   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
142 
143   void run(raw_ostream &o);
144 };
145 
146 /// ClassInfo - Helper class for storing the information about a particular
147 /// class of operands which can be matched.
148 struct ClassInfo {
149   enum ClassInfoKind {
150     /// Invalid kind, for use as a sentinel value.
151     Invalid = 0,
152 
153     /// The class for a particular token.
154     Token,
155 
156     /// The (first) register class, subsequent register classes are
157     /// RegisterClass0+1, and so on.
158     RegisterClass0,
159 
160     /// The (first) user defined class, subsequent user defined classes are
161     /// UserClass0+1, and so on.
162     UserClass0 = 1<<16
163   };
164 
165   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
166   /// N) for the Nth user defined class.
167   unsigned Kind;
168 
169   /// SuperClasses - The super classes of this class. Note that for simplicities
170   /// sake user operands only record their immediate super class, while register
171   /// operands include all superclasses.
172   std::vector<ClassInfo*> SuperClasses;
173 
174   /// Name - The full class name, suitable for use in an enum.
175   std::string Name;
176 
177   /// ClassName - The unadorned generic name for this class (e.g., Token).
178   std::string ClassName;
179 
180   /// ValueName - The name of the value this class represents; for a token this
181   /// is the literal token string, for an operand it is the TableGen class (or
182   /// empty if this is a derived class).
183   std::string ValueName;
184 
185   /// PredicateMethod - The name of the operand method to test whether the
186   /// operand matches this class; this is not valid for Token or register kinds.
187   std::string PredicateMethod;
188 
189   /// RenderMethod - The name of the operand method to add this operand to an
190   /// MCInst; this is not valid for Token or register kinds.
191   std::string RenderMethod;
192 
193   /// ParserMethod - The name of the operand method to do a target specific
194   /// parsing on the operand.
195   std::string ParserMethod;
196 
197   /// For register classes: the records for all the registers in this class.
198   RegisterSet Registers;
199 
200   /// For custom match classes: the diagnostic kind for when the predicate fails.
201   std::string DiagnosticType;
202 
203   /// Is this operand optional and not always required.
204   bool IsOptional;
205 
206   /// DefaultMethod - The name of the method that returns the default operand
207   /// for optional operand
208   std::string DefaultMethod;
209 
210 public:
211   /// isRegisterClass() - Check if this is a register class.
isRegisterClass__anon51f7b9bc0111::ClassInfo212   bool isRegisterClass() const {
213     return Kind >= RegisterClass0 && Kind < UserClass0;
214   }
215 
216   /// isUserClass() - Check if this is a user defined class.
isUserClass__anon51f7b9bc0111::ClassInfo217   bool isUserClass() const {
218     return Kind >= UserClass0;
219   }
220 
221   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
222   /// are related if they are in the same class hierarchy.
isRelatedTo__anon51f7b9bc0111::ClassInfo223   bool isRelatedTo(const ClassInfo &RHS) const {
224     // Tokens are only related to tokens.
225     if (Kind == Token || RHS.Kind == Token)
226       return Kind == Token && RHS.Kind == Token;
227 
228     // Registers classes are only related to registers classes, and only if
229     // their intersection is non-empty.
230     if (isRegisterClass() || RHS.isRegisterClass()) {
231       if (!isRegisterClass() || !RHS.isRegisterClass())
232         return false;
233 
234       RegisterSet Tmp;
235       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
236       std::set_intersection(Registers.begin(), Registers.end(),
237                             RHS.Registers.begin(), RHS.Registers.end(),
238                             II, LessRecordByID());
239 
240       return !Tmp.empty();
241     }
242 
243     // Otherwise we have two users operands; they are related if they are in the
244     // same class hierarchy.
245     //
246     // FIXME: This is an oversimplification, they should only be related if they
247     // intersect, however we don't have that information.
248     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
249     const ClassInfo *Root = this;
250     while (!Root->SuperClasses.empty())
251       Root = Root->SuperClasses.front();
252 
253     const ClassInfo *RHSRoot = &RHS;
254     while (!RHSRoot->SuperClasses.empty())
255       RHSRoot = RHSRoot->SuperClasses.front();
256 
257     return Root == RHSRoot;
258   }
259 
260   /// isSubsetOf - Test whether this class is a subset of \p RHS.
isSubsetOf__anon51f7b9bc0111::ClassInfo261   bool isSubsetOf(const ClassInfo &RHS) const {
262     // This is a subset of RHS if it is the same class...
263     if (this == &RHS)
264       return true;
265 
266     // ... or if any of its super classes are a subset of RHS.
267     for (const ClassInfo *CI : SuperClasses)
268       if (CI->isSubsetOf(RHS))
269         return true;
270 
271     return false;
272   }
273 
getTreeDepth__anon51f7b9bc0111::ClassInfo274   int getTreeDepth() const {
275     int Depth = 0;
276     const ClassInfo *Root = this;
277     while (!Root->SuperClasses.empty()) {
278       Depth++;
279       Root = Root->SuperClasses.front();
280     }
281     return Depth;
282   }
283 
findRoot__anon51f7b9bc0111::ClassInfo284   const ClassInfo *findRoot() const {
285     const ClassInfo *Root = this;
286     while (!Root->SuperClasses.empty())
287       Root = Root->SuperClasses.front();
288     return Root;
289   }
290 
291   /// Compare two classes. This does not produce a total ordering, but does
292   /// guarantee that subclasses are sorted before their parents, and that the
293   /// ordering is transitive.
operator <__anon51f7b9bc0111::ClassInfo294   bool operator<(const ClassInfo &RHS) const {
295     if (this == &RHS)
296       return false;
297 
298     // First, enforce the ordering between the three different types of class.
299     // Tokens sort before registers, which sort before user classes.
300     if (Kind == Token) {
301       if (RHS.Kind != Token)
302         return true;
303       assert(RHS.Kind == Token);
304     } else if (isRegisterClass()) {
305       if (RHS.Kind == Token)
306         return false;
307       else if (RHS.isUserClass())
308         return true;
309       assert(RHS.isRegisterClass());
310     } else if (isUserClass()) {
311       if (!RHS.isUserClass())
312         return false;
313       assert(RHS.isUserClass());
314     } else {
315       llvm_unreachable("Unknown ClassInfoKind");
316     }
317 
318     if (Kind == Token || isUserClass()) {
319       // Related tokens and user classes get sorted by depth in the inheritence
320       // tree (so that subclasses are before their parents).
321       if (isRelatedTo(RHS)) {
322         if (getTreeDepth() > RHS.getTreeDepth())
323           return true;
324         if (getTreeDepth() < RHS.getTreeDepth())
325           return false;
326       } else {
327         // Unrelated tokens and user classes are ordered by the name of their
328         // root nodes, so that there is a consistent ordering between
329         // unconnected trees.
330         return findRoot()->ValueName < RHS.findRoot()->ValueName;
331       }
332     } else if (isRegisterClass()) {
333       // For register sets, sort by number of registers. This guarantees that
334       // a set will always sort before all of it's strict supersets.
335       if (Registers.size() != RHS.Registers.size())
336         return Registers.size() < RHS.Registers.size();
337     } else {
338       llvm_unreachable("Unknown ClassInfoKind");
339     }
340 
341     // FIXME: We should be able to just return false here, as we only need a
342     // partial order (we use stable sorts, so this is deterministic) and the
343     // name of a class shouldn't be significant. However, some of the backends
344     // accidentally rely on this behaviour, so it will have to stay like this
345     // until they are fixed.
346     return ValueName < RHS.ValueName;
347   }
348 };
349 
350 class AsmVariantInfo {
351 public:
352   std::string RegisterPrefix;
353   std::string TokenizingCharacters;
354   std::string SeparatorCharacters;
355   std::string BreakCharacters;
356   int AsmVariantNo;
357 };
358 
359 /// MatchableInfo - Helper class for storing the necessary information for an
360 /// instruction or alias which is capable of being matched.
361 struct MatchableInfo {
362   struct AsmOperand {
363     /// Token - This is the token that the operand came from.
364     StringRef Token;
365 
366     /// The unique class instance this operand should match.
367     ClassInfo *Class;
368 
369     /// The operand name this is, if anything.
370     StringRef SrcOpName;
371 
372     /// The suboperand index within SrcOpName, or -1 for the entire operand.
373     int SubOpIdx;
374 
375     /// Whether the token is "isolated", i.e., it is preceded and followed
376     /// by separators.
377     bool IsIsolatedToken;
378 
379     /// Register record if this token is singleton register.
380     Record *SingletonReg;
381 
AsmOperand__anon51f7b9bc0111::MatchableInfo::AsmOperand382     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
383         : Token(T), Class(nullptr), SubOpIdx(-1),
384           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
385   };
386 
387   /// ResOperand - This represents a single operand in the result instruction
388   /// generated by the match.  In cases (like addressing modes) where a single
389   /// assembler operand expands to multiple MCOperands, this represents the
390   /// single assembler operand, not the MCOperand.
391   struct ResOperand {
392     enum {
393       /// RenderAsmOperand - This represents an operand result that is
394       /// generated by calling the render method on the assembly operand.  The
395       /// corresponding AsmOperand is specified by AsmOperandNum.
396       RenderAsmOperand,
397 
398       /// TiedOperand - This represents a result operand that is a duplicate of
399       /// a previous result operand.
400       TiedOperand,
401 
402       /// ImmOperand - This represents an immediate value that is dumped into
403       /// the operand.
404       ImmOperand,
405 
406       /// RegOperand - This represents a fixed register that is dumped in.
407       RegOperand
408     } Kind;
409 
410     union {
411       /// This is the operand # in the AsmOperands list that this should be
412       /// copied from.
413       unsigned AsmOperandNum;
414 
415       /// TiedOperandNum - This is the (earlier) result operand that should be
416       /// copied from.
417       unsigned TiedOperandNum;
418 
419       /// ImmVal - This is the immediate value added to the instruction.
420       int64_t ImmVal;
421 
422       /// Register - This is the register record.
423       Record *Register;
424     };
425 
426     /// MINumOperands - The number of MCInst operands populated by this
427     /// operand.
428     unsigned MINumOperands;
429 
getRenderedOp__anon51f7b9bc0111::MatchableInfo::ResOperand430     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
431       ResOperand X;
432       X.Kind = RenderAsmOperand;
433       X.AsmOperandNum = AsmOpNum;
434       X.MINumOperands = NumOperands;
435       return X;
436     }
437 
getTiedOp__anon51f7b9bc0111::MatchableInfo::ResOperand438     static ResOperand getTiedOp(unsigned TiedOperandNum) {
439       ResOperand X;
440       X.Kind = TiedOperand;
441       X.TiedOperandNum = TiedOperandNum;
442       X.MINumOperands = 1;
443       return X;
444     }
445 
getImmOp__anon51f7b9bc0111::MatchableInfo::ResOperand446     static ResOperand getImmOp(int64_t Val) {
447       ResOperand X;
448       X.Kind = ImmOperand;
449       X.ImmVal = Val;
450       X.MINumOperands = 1;
451       return X;
452     }
453 
getRegOp__anon51f7b9bc0111::MatchableInfo::ResOperand454     static ResOperand getRegOp(Record *Reg) {
455       ResOperand X;
456       X.Kind = RegOperand;
457       X.Register = Reg;
458       X.MINumOperands = 1;
459       return X;
460     }
461   };
462 
463   /// AsmVariantID - Target's assembly syntax variant no.
464   int AsmVariantID;
465 
466   /// AsmString - The assembly string for this instruction (with variants
467   /// removed), e.g. "movsx $src, $dst".
468   std::string AsmString;
469 
470   /// TheDef - This is the definition of the instruction or InstAlias that this
471   /// matchable came from.
472   Record *const TheDef;
473 
474   /// DefRec - This is the definition that it came from.
475   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
476 
getResultInst__anon51f7b9bc0111::MatchableInfo477   const CodeGenInstruction *getResultInst() const {
478     if (DefRec.is<const CodeGenInstruction*>())
479       return DefRec.get<const CodeGenInstruction*>();
480     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
481   }
482 
483   /// ResOperands - This is the operand list that should be built for the result
484   /// MCInst.
485   SmallVector<ResOperand, 8> ResOperands;
486 
487   /// Mnemonic - This is the first token of the matched instruction, its
488   /// mnemonic.
489   StringRef Mnemonic;
490 
491   /// AsmOperands - The textual operands that this instruction matches,
492   /// annotated with a class and where in the OperandList they were defined.
493   /// This directly corresponds to the tokenized AsmString after the mnemonic is
494   /// removed.
495   SmallVector<AsmOperand, 8> AsmOperands;
496 
497   /// Predicates - The required subtarget features to match this instruction.
498   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
499 
500   /// ConversionFnKind - The enum value which is passed to the generated
501   /// convertToMCInst to convert parsed operands into an MCInst for this
502   /// function.
503   std::string ConversionFnKind;
504 
505   /// If this instruction is deprecated in some form.
506   bool HasDeprecation;
507 
508   /// If this is an alias, this is use to determine whether or not to using
509   /// the conversion function defined by the instruction's AsmMatchConverter
510   /// or to use the function generated by the alias.
511   bool UseInstAsmMatchConverter;
512 
MatchableInfo__anon51f7b9bc0111::MatchableInfo513   MatchableInfo(const CodeGenInstruction &CGI)
514     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
515       UseInstAsmMatchConverter(true) {
516   }
517 
MatchableInfo__anon51f7b9bc0111::MatchableInfo518   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
519     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
520       DefRec(Alias.release()),
521       UseInstAsmMatchConverter(
522         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
523   }
524 
525   // Could remove this and the dtor if PointerUnion supported unique_ptr
526   // elements with a dynamic failure/assertion (like the one below) in the case
527   // where it was copied while being in an owning state.
MatchableInfo__anon51f7b9bc0111::MatchableInfo528   MatchableInfo(const MatchableInfo &RHS)
529       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
530         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
531         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
532         RequiredFeatures(RHS.RequiredFeatures),
533         ConversionFnKind(RHS.ConversionFnKind),
534         HasDeprecation(RHS.HasDeprecation),
535         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
536     assert(!DefRec.is<const CodeGenInstAlias *>());
537   }
538 
~MatchableInfo__anon51f7b9bc0111::MatchableInfo539   ~MatchableInfo() {
540     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
541   }
542 
543   // Two-operand aliases clone from the main matchable, but mark the second
544   // operand as a tied operand of the first for purposes of the assembler.
545   void formTwoOperandAlias(StringRef Constraint);
546 
547   void initialize(const AsmMatcherInfo &Info,
548                   SmallPtrSetImpl<Record*> &SingletonRegisters,
549                   AsmVariantInfo const &Variant,
550                   bool HasMnemonicFirst);
551 
552   /// validate - Return true if this matchable is a valid thing to match against
553   /// and perform a bunch of validity checking.
554   bool validate(StringRef CommentDelimiter, bool Hack) const;
555 
556   /// findAsmOperand - Find the AsmOperand with the specified name and
557   /// suboperand index.
findAsmOperand__anon51f7b9bc0111::MatchableInfo558   int findAsmOperand(StringRef N, int SubOpIdx) const {
559     auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(),
560                           [&](const AsmOperand &Op) {
561                             return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
562                           });
563     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
564   }
565 
566   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
567   /// This does not check the suboperand index.
findAsmOperandNamed__anon51f7b9bc0111::MatchableInfo568   int findAsmOperandNamed(StringRef N) const {
569     auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(),
570                           [&](const AsmOperand &Op) {
571                             return Op.SrcOpName == N;
572                           });
573     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
574   }
575 
576   void buildInstructionResultOperands();
577   void buildAliasResultOperands();
578 
579   /// operator< - Compare two matchables.
operator <__anon51f7b9bc0111::MatchableInfo580   bool operator<(const MatchableInfo &RHS) const {
581     // The primary comparator is the instruction mnemonic.
582     if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
583       return Cmp == -1;
584 
585     if (AsmOperands.size() != RHS.AsmOperands.size())
586       return AsmOperands.size() < RHS.AsmOperands.size();
587 
588     // Compare lexicographically by operand. The matcher validates that other
589     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
590     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
591       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
592         return true;
593       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
594         return false;
595     }
596 
597     // Give matches that require more features higher precedence. This is useful
598     // because we cannot define AssemblerPredicates with the negation of
599     // processor features. For example, ARM v6 "nop" may be either a HINT or
600     // MOV. With v6, we want to match HINT. The assembler has no way to
601     // predicate MOV under "NoV6", but HINT will always match first because it
602     // requires V6 while MOV does not.
603     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
604       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
605 
606     return false;
607   }
608 
609   /// couldMatchAmbiguouslyWith - Check whether this matchable could
610   /// ambiguously match the same set of operands as \p RHS (without being a
611   /// strictly superior match).
couldMatchAmbiguouslyWith__anon51f7b9bc0111::MatchableInfo612   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
613     // The primary comparator is the instruction mnemonic.
614     if (Mnemonic != RHS.Mnemonic)
615       return false;
616 
617     // The number of operands is unambiguous.
618     if (AsmOperands.size() != RHS.AsmOperands.size())
619       return false;
620 
621     // Otherwise, make sure the ordering of the two instructions is unambiguous
622     // by checking that either (a) a token or operand kind discriminates them,
623     // or (b) the ordering among equivalent kinds is consistent.
624 
625     // Tokens and operand kinds are unambiguous (assuming a correct target
626     // specific parser).
627     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
628       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
629           AsmOperands[i].Class->Kind == ClassInfo::Token)
630         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
631             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
632           return false;
633 
634     // Otherwise, this operand could commute if all operands are equivalent, or
635     // there is a pair of operands that compare less than and a pair that
636     // compare greater than.
637     bool HasLT = false, HasGT = false;
638     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
639       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
640         HasLT = true;
641       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
642         HasGT = true;
643     }
644 
645     return HasLT == HasGT;
646   }
647 
648   void dump() const;
649 
650 private:
651   void tokenizeAsmString(AsmMatcherInfo const &Info,
652                          AsmVariantInfo const &Variant);
653   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
654 };
655 
656 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
657 /// feature which participates in instruction matching.
658 struct SubtargetFeatureInfo {
659   /// \brief The predicate record for this feature.
660   Record *TheDef;
661 
662   /// \brief An unique index assigned to represent this feature.
663   uint64_t Index;
664 
SubtargetFeatureInfo__anon51f7b9bc0111::SubtargetFeatureInfo665   SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
666 
667   /// \brief The name of the enumerated constant identifying this feature.
getEnumName__anon51f7b9bc0111::SubtargetFeatureInfo668   std::string getEnumName() const {
669     return "Feature_" + TheDef->getName();
670   }
671 
dump__anon51f7b9bc0111::SubtargetFeatureInfo672   void dump() const {
673     errs() << getEnumName() << " " << Index << "\n";
674     TheDef->dump();
675   }
676 };
677 
678 struct OperandMatchEntry {
679   unsigned OperandMask;
680   const MatchableInfo* MI;
681   ClassInfo *CI;
682 
create__anon51f7b9bc0111::OperandMatchEntry683   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
684                                   unsigned opMask) {
685     OperandMatchEntry X;
686     X.OperandMask = opMask;
687     X.CI = ci;
688     X.MI = mi;
689     return X;
690   }
691 };
692 
693 class AsmMatcherInfo {
694 public:
695   /// Tracked Records
696   RecordKeeper &Records;
697 
698   /// The tablegen AsmParser record.
699   Record *AsmParser;
700 
701   /// Target - The target information.
702   CodeGenTarget &Target;
703 
704   /// The classes which are needed for matching.
705   std::forward_list<ClassInfo> Classes;
706 
707   /// The information on the matchables to match.
708   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
709 
710   /// Info for custom matching operands by user defined methods.
711   std::vector<OperandMatchEntry> OperandMatchInfo;
712 
713   /// Map of Register records to their class information.
714   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
715   RegisterClassesTy RegisterClasses;
716 
717   /// Map of Predicate records to their subtarget information.
718   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
719 
720   /// Map of AsmOperandClass records to their class information.
721   std::map<Record*, ClassInfo*> AsmOperandClasses;
722 
723 private:
724   /// Map of token to class information which has already been constructed.
725   std::map<std::string, ClassInfo*> TokenClasses;
726 
727   /// Map of RegisterClass records to their class information.
728   std::map<Record*, ClassInfo*> RegisterClassClasses;
729 
730 private:
731   /// getTokenClass - Lookup or create the class for the given token.
732   ClassInfo *getTokenClass(StringRef Token);
733 
734   /// getOperandClass - Lookup or create the class for the given operand.
735   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
736                              int SubOpIdx);
737   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
738 
739   /// buildRegisterClasses - Build the ClassInfo* instances for register
740   /// classes.
741   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
742 
743   /// buildOperandClasses - Build the ClassInfo* instances for user defined
744   /// operand classes.
745   void buildOperandClasses();
746 
747   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
748                                         unsigned AsmOpIdx);
749   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
750                                   MatchableInfo::AsmOperand &Op);
751 
752 public:
753   AsmMatcherInfo(Record *AsmParser,
754                  CodeGenTarget &Target,
755                  RecordKeeper &Records);
756 
757   /// buildInfo - Construct the various tables used during matching.
758   void buildInfo();
759 
760   /// buildOperandMatchInfo - Build the necessary information to handle user
761   /// defined operand parsing methods.
762   void buildOperandMatchInfo();
763 
764   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
765   /// given operand.
getSubtargetFeature(Record * Def) const766   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
767     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
768     const auto &I = SubtargetFeatures.find(Def);
769     return I == SubtargetFeatures.end() ? nullptr : &I->second;
770   }
771 
getRecords() const772   RecordKeeper &getRecords() const {
773     return Records;
774   }
775 
hasOptionalOperands() const776   bool hasOptionalOperands() const {
777     return std::find_if(Classes.begin(), Classes.end(),
778                         [](const ClassInfo& Class){ return Class.IsOptional; })
779               != Classes.end();
780   }
781 };
782 
783 } // end anonymous namespace
784 
dump() const785 void MatchableInfo::dump() const {
786   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
787 
788   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
789     const AsmOperand &Op = AsmOperands[i];
790     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
791     errs() << '\"' << Op.Token << "\"\n";
792   }
793 }
794 
795 static std::pair<StringRef, StringRef>
parseTwoOperandConstraint(StringRef S,ArrayRef<SMLoc> Loc)796 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
797   // Split via the '='.
798   std::pair<StringRef, StringRef> Ops = S.split('=');
799   if (Ops.second == "")
800     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
801   // Trim whitespace and the leading '$' on the operand names.
802   size_t start = Ops.first.find_first_of('$');
803   if (start == std::string::npos)
804     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
805   Ops.first = Ops.first.slice(start + 1, std::string::npos);
806   size_t end = Ops.first.find_last_of(" \t");
807   Ops.first = Ops.first.slice(0, end);
808   // Now the second operand.
809   start = Ops.second.find_first_of('$');
810   if (start == std::string::npos)
811     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
812   Ops.second = Ops.second.slice(start + 1, std::string::npos);
813   end = Ops.second.find_last_of(" \t");
814   Ops.first = Ops.first.slice(0, end);
815   return Ops;
816 }
817 
formTwoOperandAlias(StringRef Constraint)818 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
819   // Figure out which operands are aliased and mark them as tied.
820   std::pair<StringRef, StringRef> Ops =
821     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
822 
823   // Find the AsmOperands that refer to the operands we're aliasing.
824   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
825   int DstAsmOperand = findAsmOperandNamed(Ops.second);
826   if (SrcAsmOperand == -1)
827     PrintFatalError(TheDef->getLoc(),
828                     "unknown source two-operand alias operand '" + Ops.first +
829                     "'.");
830   if (DstAsmOperand == -1)
831     PrintFatalError(TheDef->getLoc(),
832                     "unknown destination two-operand alias operand '" +
833                     Ops.second + "'.");
834 
835   // Find the ResOperand that refers to the operand we're aliasing away
836   // and update it to refer to the combined operand instead.
837   for (ResOperand &Op : ResOperands) {
838     if (Op.Kind == ResOperand::RenderAsmOperand &&
839         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
840       Op.AsmOperandNum = DstAsmOperand;
841       break;
842     }
843   }
844   // Remove the AsmOperand for the alias operand.
845   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
846   // Adjust the ResOperand references to any AsmOperands that followed
847   // the one we just deleted.
848   for (ResOperand &Op : ResOperands) {
849     switch(Op.Kind) {
850     default:
851       // Nothing to do for operands that don't reference AsmOperands.
852       break;
853     case ResOperand::RenderAsmOperand:
854       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
855         --Op.AsmOperandNum;
856       break;
857     case ResOperand::TiedOperand:
858       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
859         --Op.TiedOperandNum;
860       break;
861     }
862   }
863 }
864 
865 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
866 /// if present, from specified token.
867 static void
extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand & Op,const AsmMatcherInfo & Info,StringRef RegisterPrefix)868 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
869                                       const AsmMatcherInfo &Info,
870                                       StringRef RegisterPrefix) {
871   StringRef Tok = Op.Token;
872 
873   // If this token is not an isolated token, i.e., it isn't separated from
874   // other tokens (e.g. with whitespace), don't interpret it as a register name.
875   if (!Op.IsIsolatedToken)
876     return;
877 
878   if (RegisterPrefix.empty()) {
879     std::string LoweredTok = Tok.lower();
880     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
881       Op.SingletonReg = Reg->TheDef;
882     return;
883   }
884 
885   if (!Tok.startswith(RegisterPrefix))
886     return;
887 
888   StringRef RegName = Tok.substr(RegisterPrefix.size());
889   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
890     Op.SingletonReg = Reg->TheDef;
891 
892   // If there is no register prefix (i.e. "%" in "%eax"), then this may
893   // be some random non-register token, just ignore it.
894 }
895 
initialize(const AsmMatcherInfo & Info,SmallPtrSetImpl<Record * > & SingletonRegisters,AsmVariantInfo const & Variant,bool HasMnemonicFirst)896 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
897                                SmallPtrSetImpl<Record*> &SingletonRegisters,
898                                AsmVariantInfo const &Variant,
899                                bool HasMnemonicFirst) {
900   AsmVariantID = Variant.AsmVariantNo;
901   AsmString =
902     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
903                                                  Variant.AsmVariantNo);
904 
905   tokenizeAsmString(Info, Variant);
906 
907   // The first token of the instruction is the mnemonic, which must be a
908   // simple string, not a $foo variable or a singleton register.
909   if (AsmOperands.empty())
910     PrintFatalError(TheDef->getLoc(),
911                   "Instruction '" + TheDef->getName() + "' has no tokens");
912 
913   assert(!AsmOperands[0].Token.empty());
914   if (HasMnemonicFirst) {
915     Mnemonic = AsmOperands[0].Token;
916     if (Mnemonic[0] == '$')
917       PrintFatalError(TheDef->getLoc(),
918                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
919 
920     // Remove the first operand, it is tracked in the mnemonic field.
921     AsmOperands.erase(AsmOperands.begin());
922   } else if (AsmOperands[0].Token[0] != '$')
923     Mnemonic = AsmOperands[0].Token;
924 
925   // Compute the require features.
926   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
927     if (const SubtargetFeatureInfo *Feature =
928             Info.getSubtargetFeature(Predicate))
929       RequiredFeatures.push_back(Feature);
930 
931   // Collect singleton registers, if used.
932   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
933     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
934     if (Record *Reg = Op.SingletonReg)
935       SingletonRegisters.insert(Reg);
936   }
937 
938   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
939   if (!DepMask)
940     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
941 
942   HasDeprecation =
943       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
944 }
945 
946 /// Append an AsmOperand for the given substring of AsmString.
addAsmOperand(StringRef Token,bool IsIsolatedToken)947 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
948   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
949 }
950 
951 /// tokenizeAsmString - Tokenize a simplified assembly string.
tokenizeAsmString(const AsmMatcherInfo & Info,AsmVariantInfo const & Variant)952 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
953                                       AsmVariantInfo const &Variant) {
954   StringRef String = AsmString;
955   size_t Prev = 0;
956   bool InTok = false;
957   bool IsIsolatedToken = true;
958   for (size_t i = 0, e = String.size(); i != e; ++i) {
959     char Char = String[i];
960     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
961       if (InTok) {
962         addAsmOperand(String.slice(Prev, i), false);
963         Prev = i;
964         IsIsolatedToken = false;
965       }
966       InTok = true;
967       continue;
968     }
969     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
970       if (InTok) {
971         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
972         InTok = false;
973         IsIsolatedToken = false;
974       }
975       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
976       Prev = i + 1;
977       IsIsolatedToken = true;
978       continue;
979     }
980     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
981       if (InTok) {
982         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
983         InTok = false;
984       }
985       Prev = i + 1;
986       IsIsolatedToken = true;
987       continue;
988     }
989 
990     switch (Char) {
991     case '\\':
992       if (InTok) {
993         addAsmOperand(String.slice(Prev, i), false);
994         InTok = false;
995         IsIsolatedToken = false;
996       }
997       ++i;
998       assert(i != String.size() && "Invalid quoted character");
999       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1000       Prev = i + 1;
1001       IsIsolatedToken = false;
1002       break;
1003 
1004     case '$': {
1005       if (InTok) {
1006         addAsmOperand(String.slice(Prev, i), false);
1007         InTok = false;
1008         IsIsolatedToken = false;
1009       }
1010 
1011       // If this isn't "${", start new identifier looking like "$xxx"
1012       if (i + 1 == String.size() || String[i + 1] != '{') {
1013         Prev = i;
1014         break;
1015       }
1016 
1017       size_t EndPos = String.find('}', i);
1018       assert(EndPos != StringRef::npos &&
1019              "Missing brace in operand reference!");
1020       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1021       Prev = EndPos + 1;
1022       i = EndPos;
1023       IsIsolatedToken = false;
1024       break;
1025     }
1026 
1027     default:
1028       InTok = true;
1029       break;
1030     }
1031   }
1032   if (InTok && Prev != String.size())
1033     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1034 }
1035 
validate(StringRef CommentDelimiter,bool Hack) const1036 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
1037   // Reject matchables with no .s string.
1038   if (AsmString.empty())
1039     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1040 
1041   // Reject any matchables with a newline in them, they should be marked
1042   // isCodeGenOnly if they are pseudo instructions.
1043   if (AsmString.find('\n') != std::string::npos)
1044     PrintFatalError(TheDef->getLoc(),
1045                   "multiline instruction is not valid for the asmparser, "
1046                   "mark it isCodeGenOnly");
1047 
1048   // Remove comments from the asm string.  We know that the asmstring only
1049   // has one line.
1050   if (!CommentDelimiter.empty() &&
1051       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1052     PrintFatalError(TheDef->getLoc(),
1053                   "asmstring for instruction has comment character in it, "
1054                   "mark it isCodeGenOnly");
1055 
1056   // Reject matchables with operand modifiers, these aren't something we can
1057   // handle, the target should be refactored to use operands instead of
1058   // modifiers.
1059   //
1060   // Also, check for instructions which reference the operand multiple times;
1061   // this implies a constraint we would not honor.
1062   std::set<std::string> OperandNames;
1063   for (const AsmOperand &Op : AsmOperands) {
1064     StringRef Tok = Op.Token;
1065     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1066       PrintFatalError(TheDef->getLoc(),
1067                       "matchable with operand modifier '" + Tok +
1068                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
1069 
1070     // Verify that any operand is only mentioned once.
1071     // We reject aliases and ignore instructions for now.
1072     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1073       if (!Hack)
1074         PrintFatalError(TheDef->getLoc(),
1075                         "ERROR: matchable with tied operand '" + Tok +
1076                         "' can never be matched!");
1077       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
1078       // bunch of instructions.  It is unclear what the right answer is.
1079       DEBUG({
1080         errs() << "warning: '" << TheDef->getName() << "': "
1081                << "ignoring instruction with tied operand '"
1082                << Tok << "'\n";
1083       });
1084       return false;
1085     }
1086   }
1087 
1088   return true;
1089 }
1090 
getEnumNameForToken(StringRef Str)1091 static std::string getEnumNameForToken(StringRef Str) {
1092   std::string Res;
1093 
1094   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1095     switch (*it) {
1096     case '*': Res += "_STAR_"; break;
1097     case '%': Res += "_PCT_"; break;
1098     case ':': Res += "_COLON_"; break;
1099     case '!': Res += "_EXCLAIM_"; break;
1100     case '.': Res += "_DOT_"; break;
1101     case '<': Res += "_LT_"; break;
1102     case '>': Res += "_GT_"; break;
1103     case '-': Res += "_MINUS_"; break;
1104     default:
1105       if ((*it >= 'A' && *it <= 'Z') ||
1106           (*it >= 'a' && *it <= 'z') ||
1107           (*it >= '0' && *it <= '9'))
1108         Res += *it;
1109       else
1110         Res += "_" + utostr((unsigned) *it) + "_";
1111     }
1112   }
1113 
1114   return Res;
1115 }
1116 
getTokenClass(StringRef Token)1117 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1118   ClassInfo *&Entry = TokenClasses[Token];
1119 
1120   if (!Entry) {
1121     Classes.emplace_front();
1122     Entry = &Classes.front();
1123     Entry->Kind = ClassInfo::Token;
1124     Entry->ClassName = "Token";
1125     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1126     Entry->ValueName = Token;
1127     Entry->PredicateMethod = "<invalid>";
1128     Entry->RenderMethod = "<invalid>";
1129     Entry->ParserMethod = "";
1130     Entry->DiagnosticType = "";
1131     Entry->IsOptional = false;
1132     Entry->DefaultMethod = "<invalid>";
1133   }
1134 
1135   return Entry;
1136 }
1137 
1138 ClassInfo *
getOperandClass(const CGIOperandList::OperandInfo & OI,int SubOpIdx)1139 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1140                                 int SubOpIdx) {
1141   Record *Rec = OI.Rec;
1142   if (SubOpIdx != -1)
1143     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1144   return getOperandClass(Rec, SubOpIdx);
1145 }
1146 
1147 ClassInfo *
getOperandClass(Record * Rec,int SubOpIdx)1148 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1149   if (Rec->isSubClassOf("RegisterOperand")) {
1150     // RegisterOperand may have an associated ParserMatchClass. If it does,
1151     // use it, else just fall back to the underlying register class.
1152     const RecordVal *R = Rec->getValue("ParserMatchClass");
1153     if (!R || !R->getValue())
1154       PrintFatalError("Record `" + Rec->getName() +
1155         "' does not have a ParserMatchClass!\n");
1156 
1157     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1158       Record *MatchClass = DI->getDef();
1159       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1160         return CI;
1161     }
1162 
1163     // No custom match class. Just use the register class.
1164     Record *ClassRec = Rec->getValueAsDef("RegClass");
1165     if (!ClassRec)
1166       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1167                     "' has no associated register class!\n");
1168     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1169       return CI;
1170     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1171   }
1172 
1173   if (Rec->isSubClassOf("RegisterClass")) {
1174     if (ClassInfo *CI = RegisterClassClasses[Rec])
1175       return CI;
1176     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1177   }
1178 
1179   if (!Rec->isSubClassOf("Operand"))
1180     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1181                   "' does not derive from class Operand!\n");
1182   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1183   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1184     return CI;
1185 
1186   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1187 }
1188 
1189 struct LessRegisterSet {
operator ()LessRegisterSet1190   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1191     // std::set<T> defines its own compariso "operator<", but it
1192     // performs a lexicographical comparison by T's innate comparison
1193     // for some reason. We don't want non-deterministic pointer
1194     // comparisons so use this instead.
1195     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1196                                         RHS.begin(), RHS.end(),
1197                                         LessRecordByID());
1198   }
1199 };
1200 
1201 void AsmMatcherInfo::
buildRegisterClasses(SmallPtrSetImpl<Record * > & SingletonRegisters)1202 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1203   const auto &Registers = Target.getRegBank().getRegisters();
1204   auto &RegClassList = Target.getRegBank().getRegClasses();
1205 
1206   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1207 
1208   // The register sets used for matching.
1209   RegisterSetSet RegisterSets;
1210 
1211   // Gather the defined sets.
1212   for (const CodeGenRegisterClass &RC : RegClassList)
1213     RegisterSets.insert(
1214         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1215 
1216   // Add any required singleton sets.
1217   for (Record *Rec : SingletonRegisters) {
1218     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1219   }
1220 
1221   // Introduce derived sets where necessary (when a register does not determine
1222   // a unique register set class), and build the mapping of registers to the set
1223   // they should classify to.
1224   std::map<Record*, RegisterSet> RegisterMap;
1225   for (const CodeGenRegister &CGR : Registers) {
1226     // Compute the intersection of all sets containing this register.
1227     RegisterSet ContainingSet;
1228 
1229     for (const RegisterSet &RS : RegisterSets) {
1230       if (!RS.count(CGR.TheDef))
1231         continue;
1232 
1233       if (ContainingSet.empty()) {
1234         ContainingSet = RS;
1235         continue;
1236       }
1237 
1238       RegisterSet Tmp;
1239       std::swap(Tmp, ContainingSet);
1240       std::insert_iterator<RegisterSet> II(ContainingSet,
1241                                            ContainingSet.begin());
1242       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1243                             LessRecordByID());
1244     }
1245 
1246     if (!ContainingSet.empty()) {
1247       RegisterSets.insert(ContainingSet);
1248       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1249     }
1250   }
1251 
1252   // Construct the register classes.
1253   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1254   unsigned Index = 0;
1255   for (const RegisterSet &RS : RegisterSets) {
1256     Classes.emplace_front();
1257     ClassInfo *CI = &Classes.front();
1258     CI->Kind = ClassInfo::RegisterClass0 + Index;
1259     CI->ClassName = "Reg" + utostr(Index);
1260     CI->Name = "MCK_Reg" + utostr(Index);
1261     CI->ValueName = "";
1262     CI->PredicateMethod = ""; // unused
1263     CI->RenderMethod = "addRegOperands";
1264     CI->Registers = RS;
1265     // FIXME: diagnostic type.
1266     CI->DiagnosticType = "";
1267     CI->IsOptional = false;
1268     CI->DefaultMethod = ""; // unused
1269     RegisterSetClasses.insert(std::make_pair(RS, CI));
1270     ++Index;
1271   }
1272 
1273   // Find the superclasses; we could compute only the subgroup lattice edges,
1274   // but there isn't really a point.
1275   for (const RegisterSet &RS : RegisterSets) {
1276     ClassInfo *CI = RegisterSetClasses[RS];
1277     for (const RegisterSet &RS2 : RegisterSets)
1278       if (RS != RS2 &&
1279           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1280                         LessRecordByID()))
1281         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1282   }
1283 
1284   // Name the register classes which correspond to a user defined RegisterClass.
1285   for (const CodeGenRegisterClass &RC : RegClassList) {
1286     // Def will be NULL for non-user defined register classes.
1287     Record *Def = RC.getDef();
1288     if (!Def)
1289       continue;
1290     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1291                                                    RC.getOrder().end())];
1292     if (CI->ValueName.empty()) {
1293       CI->ClassName = RC.getName();
1294       CI->Name = "MCK_" + RC.getName();
1295       CI->ValueName = RC.getName();
1296     } else
1297       CI->ValueName = CI->ValueName + "," + RC.getName();
1298 
1299     RegisterClassClasses.insert(std::make_pair(Def, CI));
1300   }
1301 
1302   // Populate the map for individual registers.
1303   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1304          ie = RegisterMap.end(); it != ie; ++it)
1305     RegisterClasses[it->first] = RegisterSetClasses[it->second];
1306 
1307   // Name the register classes which correspond to singleton registers.
1308   for (Record *Rec : SingletonRegisters) {
1309     ClassInfo *CI = RegisterClasses[Rec];
1310     assert(CI && "Missing singleton register class info!");
1311 
1312     if (CI->ValueName.empty()) {
1313       CI->ClassName = Rec->getName();
1314       CI->Name = "MCK_" + Rec->getName();
1315       CI->ValueName = Rec->getName();
1316     } else
1317       CI->ValueName = CI->ValueName + "," + Rec->getName();
1318   }
1319 }
1320 
buildOperandClasses()1321 void AsmMatcherInfo::buildOperandClasses() {
1322   std::vector<Record*> AsmOperands =
1323     Records.getAllDerivedDefinitions("AsmOperandClass");
1324 
1325   // Pre-populate AsmOperandClasses map.
1326   for (Record *Rec : AsmOperands) {
1327     Classes.emplace_front();
1328     AsmOperandClasses[Rec] = &Classes.front();
1329   }
1330 
1331   unsigned Index = 0;
1332   for (Record *Rec : AsmOperands) {
1333     ClassInfo *CI = AsmOperandClasses[Rec];
1334     CI->Kind = ClassInfo::UserClass0 + Index;
1335 
1336     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1337     for (Init *I : Supers->getValues()) {
1338       DefInit *DI = dyn_cast<DefInit>(I);
1339       if (!DI) {
1340         PrintError(Rec->getLoc(), "Invalid super class reference!");
1341         continue;
1342       }
1343 
1344       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1345       if (!SC)
1346         PrintError(Rec->getLoc(), "Invalid super class reference!");
1347       else
1348         CI->SuperClasses.push_back(SC);
1349     }
1350     CI->ClassName = Rec->getValueAsString("Name");
1351     CI->Name = "MCK_" + CI->ClassName;
1352     CI->ValueName = Rec->getName();
1353 
1354     // Get or construct the predicate method name.
1355     Init *PMName = Rec->getValueInit("PredicateMethod");
1356     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1357       CI->PredicateMethod = SI->getValue();
1358     } else {
1359       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1360       CI->PredicateMethod = "is" + CI->ClassName;
1361     }
1362 
1363     // Get or construct the render method name.
1364     Init *RMName = Rec->getValueInit("RenderMethod");
1365     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1366       CI->RenderMethod = SI->getValue();
1367     } else {
1368       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1369       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1370     }
1371 
1372     // Get the parse method name or leave it as empty.
1373     Init *PRMName = Rec->getValueInit("ParserMethod");
1374     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1375       CI->ParserMethod = SI->getValue();
1376 
1377     // Get the diagnostic type or leave it as empty.
1378     // Get the parse method name or leave it as empty.
1379     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1380     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1381       CI->DiagnosticType = SI->getValue();
1382 
1383     Init *IsOptional = Rec->getValueInit("IsOptional");
1384     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1385       CI->IsOptional = BI->getValue();
1386 
1387     // Get or construct the default method name.
1388     Init *DMName = Rec->getValueInit("DefaultMethod");
1389     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1390       CI->DefaultMethod = SI->getValue();
1391     } else {
1392       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1393       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1394     }
1395 
1396     ++Index;
1397   }
1398 }
1399 
AsmMatcherInfo(Record * asmParser,CodeGenTarget & target,RecordKeeper & records)1400 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1401                                CodeGenTarget &target,
1402                                RecordKeeper &records)
1403   : Records(records), AsmParser(asmParser), Target(target) {
1404 }
1405 
1406 /// buildOperandMatchInfo - Build the necessary information to handle user
1407 /// defined operand parsing methods.
buildOperandMatchInfo()1408 void AsmMatcherInfo::buildOperandMatchInfo() {
1409 
1410   /// Map containing a mask with all operands indices that can be found for
1411   /// that class inside a instruction.
1412   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1413   OpClassMaskTy OpClassMask;
1414 
1415   for (const auto &MI : Matchables) {
1416     OpClassMask.clear();
1417 
1418     // Keep track of all operands of this instructions which belong to the
1419     // same class.
1420     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1421       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1422       if (Op.Class->ParserMethod.empty())
1423         continue;
1424       unsigned &OperandMask = OpClassMask[Op.Class];
1425       OperandMask |= (1 << i);
1426     }
1427 
1428     // Generate operand match info for each mnemonic/operand class pair.
1429     for (const auto &OCM : OpClassMask) {
1430       unsigned OpMask = OCM.second;
1431       ClassInfo *CI = OCM.first;
1432       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1433                                                            OpMask));
1434     }
1435   }
1436 }
1437 
buildInfo()1438 void AsmMatcherInfo::buildInfo() {
1439   // Build information about all of the AssemblerPredicates.
1440   std::vector<Record*> AllPredicates =
1441     Records.getAllDerivedDefinitions("Predicate");
1442   for (Record *Pred : AllPredicates) {
1443     // Ignore predicates that are not intended for the assembler.
1444     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1445       continue;
1446 
1447     if (Pred->getName().empty())
1448       PrintFatalError(Pred->getLoc(), "Predicate has no name!");
1449 
1450     SubtargetFeatures.insert(std::make_pair(
1451         Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
1452     DEBUG(SubtargetFeatures.find(Pred)->second.dump());
1453     assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1454   }
1455 
1456   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1457 
1458   // Parse the instructions; we need to do this first so that we can gather the
1459   // singleton register classes.
1460   SmallPtrSet<Record*, 16> SingletonRegisters;
1461   unsigned VariantCount = Target.getAsmParserVariantCount();
1462   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1463     Record *AsmVariant = Target.getAsmParserVariant(VC);
1464     std::string CommentDelimiter =
1465       AsmVariant->getValueAsString("CommentDelimiter");
1466     AsmVariantInfo Variant;
1467     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1468     Variant.TokenizingCharacters =
1469         AsmVariant->getValueAsString("TokenizingCharacters");
1470     Variant.SeparatorCharacters =
1471         AsmVariant->getValueAsString("SeparatorCharacters");
1472     Variant.BreakCharacters =
1473         AsmVariant->getValueAsString("BreakCharacters");
1474     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1475 
1476     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1477 
1478       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1479       // filter the set of instructions we consider.
1480       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1481         continue;
1482 
1483       // Ignore "codegen only" instructions.
1484       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1485         continue;
1486 
1487       auto II = llvm::make_unique<MatchableInfo>(*CGI);
1488 
1489       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1490 
1491       // Ignore instructions which shouldn't be matched and diagnose invalid
1492       // instruction definitions with an error.
1493       if (!II->validate(CommentDelimiter, true))
1494         continue;
1495 
1496       Matchables.push_back(std::move(II));
1497     }
1498 
1499     // Parse all of the InstAlias definitions and stick them in the list of
1500     // matchables.
1501     std::vector<Record*> AllInstAliases =
1502       Records.getAllDerivedDefinitions("InstAlias");
1503     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1504       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1505                                                        Variant.AsmVariantNo,
1506                                                        Target);
1507 
1508       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1509       // filter the set of instruction aliases we consider, based on the target
1510       // instruction.
1511       if (!StringRef(Alias->ResultInst->TheDef->getName())
1512             .startswith( MatchPrefix))
1513         continue;
1514 
1515       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
1516 
1517       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1518 
1519       // Validate the alias definitions.
1520       II->validate(CommentDelimiter, false);
1521 
1522       Matchables.push_back(std::move(II));
1523     }
1524   }
1525 
1526   // Build info for the register classes.
1527   buildRegisterClasses(SingletonRegisters);
1528 
1529   // Build info for the user defined assembly operand classes.
1530   buildOperandClasses();
1531 
1532   // Build the information about matchables, now that we have fully formed
1533   // classes.
1534   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1535   for (auto &II : Matchables) {
1536     // Parse the tokens after the mnemonic.
1537     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1538     // don't precompute the loop bound.
1539     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1540       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1541       StringRef Token = Op.Token;
1542 
1543       // Check for singleton registers.
1544       if (Record *RegRecord = Op.SingletonReg) {
1545         Op.Class = RegisterClasses[RegRecord];
1546         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1547                "Unexpected class for singleton register");
1548         continue;
1549       }
1550 
1551       // Check for simple tokens.
1552       if (Token[0] != '$') {
1553         Op.Class = getTokenClass(Token);
1554         continue;
1555       }
1556 
1557       if (Token.size() > 1 && isdigit(Token[1])) {
1558         Op.Class = getTokenClass(Token);
1559         continue;
1560       }
1561 
1562       // Otherwise this is an operand reference.
1563       StringRef OperandName;
1564       if (Token[1] == '{')
1565         OperandName = Token.substr(2, Token.size() - 3);
1566       else
1567         OperandName = Token.substr(1);
1568 
1569       if (II->DefRec.is<const CodeGenInstruction*>())
1570         buildInstructionOperandReference(II.get(), OperandName, i);
1571       else
1572         buildAliasOperandReference(II.get(), OperandName, Op);
1573     }
1574 
1575     if (II->DefRec.is<const CodeGenInstruction*>()) {
1576       II->buildInstructionResultOperands();
1577       // If the instruction has a two-operand alias, build up the
1578       // matchable here. We'll add them in bulk at the end to avoid
1579       // confusing this loop.
1580       std::string Constraint =
1581         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1582       if (Constraint != "") {
1583         // Start by making a copy of the original matchable.
1584         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
1585 
1586         // Adjust it to be a two-operand alias.
1587         AliasII->formTwoOperandAlias(Constraint);
1588 
1589         // Add the alias to the matchables list.
1590         NewMatchables.push_back(std::move(AliasII));
1591       }
1592     } else
1593       II->buildAliasResultOperands();
1594   }
1595   if (!NewMatchables.empty())
1596     Matchables.insert(Matchables.end(),
1597                       std::make_move_iterator(NewMatchables.begin()),
1598                       std::make_move_iterator(NewMatchables.end()));
1599 
1600   // Process token alias definitions and set up the associated superclass
1601   // information.
1602   std::vector<Record*> AllTokenAliases =
1603     Records.getAllDerivedDefinitions("TokenAlias");
1604   for (Record *Rec : AllTokenAliases) {
1605     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1606     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1607     if (FromClass == ToClass)
1608       PrintFatalError(Rec->getLoc(),
1609                     "error: Destination value identical to source value.");
1610     FromClass->SuperClasses.push_back(ToClass);
1611   }
1612 
1613   // Reorder classes so that classes precede super classes.
1614   Classes.sort();
1615 
1616 #ifndef NDEBUG
1617   // Verify that the table is now sorted
1618   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1619     for (auto J = I; J != E; ++J) {
1620       assert(!(*J < *I));
1621       assert(I == J || !J->isSubsetOf(*I));
1622     }
1623   }
1624 #endif // NDEBUG
1625 }
1626 
1627 /// buildInstructionOperandReference - The specified operand is a reference to a
1628 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1629 void AsmMatcherInfo::
buildInstructionOperandReference(MatchableInfo * II,StringRef OperandName,unsigned AsmOpIdx)1630 buildInstructionOperandReference(MatchableInfo *II,
1631                                  StringRef OperandName,
1632                                  unsigned AsmOpIdx) {
1633   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1634   const CGIOperandList &Operands = CGI.Operands;
1635   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1636 
1637   // Map this token to an operand.
1638   unsigned Idx;
1639   if (!Operands.hasOperandNamed(OperandName, Idx))
1640     PrintFatalError(II->TheDef->getLoc(),
1641                     "error: unable to find operand: '" + OperandName + "'");
1642 
1643   // If the instruction operand has multiple suboperands, but the parser
1644   // match class for the asm operand is still the default "ImmAsmOperand",
1645   // then handle each suboperand separately.
1646   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1647     Record *Rec = Operands[Idx].Rec;
1648     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1649     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1650     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1651       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1652       StringRef Token = Op->Token; // save this in case Op gets moved
1653       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1654         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1655         NewAsmOp.SubOpIdx = SI;
1656         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1657       }
1658       // Replace Op with first suboperand.
1659       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1660       Op->SubOpIdx = 0;
1661     }
1662   }
1663 
1664   // Set up the operand class.
1665   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1666 
1667   // If the named operand is tied, canonicalize it to the untied operand.
1668   // For example, something like:
1669   //   (outs GPR:$dst), (ins GPR:$src)
1670   // with an asmstring of
1671   //   "inc $src"
1672   // we want to canonicalize to:
1673   //   "inc $dst"
1674   // so that we know how to provide the $dst operand when filling in the result.
1675   int OITied = -1;
1676   if (Operands[Idx].MINumOperands == 1)
1677     OITied = Operands[Idx].getTiedRegister();
1678   if (OITied != -1) {
1679     // The tied operand index is an MIOperand index, find the operand that
1680     // contains it.
1681     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1682     OperandName = Operands[Idx.first].Name;
1683     Op->SubOpIdx = Idx.second;
1684   }
1685 
1686   Op->SrcOpName = OperandName;
1687 }
1688 
1689 /// buildAliasOperandReference - When parsing an operand reference out of the
1690 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1691 /// operand reference is by looking it up in the result pattern definition.
buildAliasOperandReference(MatchableInfo * II,StringRef OperandName,MatchableInfo::AsmOperand & Op)1692 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1693                                                 StringRef OperandName,
1694                                                 MatchableInfo::AsmOperand &Op) {
1695   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1696 
1697   // Set up the operand class.
1698   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1699     if (CGA.ResultOperands[i].isRecord() &&
1700         CGA.ResultOperands[i].getName() == OperandName) {
1701       // It's safe to go with the first one we find, because CodeGenInstAlias
1702       // validates that all operands with the same name have the same record.
1703       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1704       // Use the match class from the Alias definition, not the
1705       // destination instruction, as we may have an immediate that's
1706       // being munged by the match class.
1707       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1708                                  Op.SubOpIdx);
1709       Op.SrcOpName = OperandName;
1710       return;
1711     }
1712 
1713   PrintFatalError(II->TheDef->getLoc(),
1714                   "error: unable to find operand: '" + OperandName + "'");
1715 }
1716 
buildInstructionResultOperands()1717 void MatchableInfo::buildInstructionResultOperands() {
1718   const CodeGenInstruction *ResultInst = getResultInst();
1719 
1720   // Loop over all operands of the result instruction, determining how to
1721   // populate them.
1722   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1723     // If this is a tied operand, just copy from the previously handled operand.
1724     int TiedOp = -1;
1725     if (OpInfo.MINumOperands == 1)
1726       TiedOp = OpInfo.getTiedRegister();
1727     if (TiedOp != -1) {
1728       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1729       continue;
1730     }
1731 
1732     // Find out what operand from the asmparser this MCInst operand comes from.
1733     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1734     if (OpInfo.Name.empty() || SrcOperand == -1) {
1735       // This may happen for operands that are tied to a suboperand of a
1736       // complex operand.  Simply use a dummy value here; nobody should
1737       // use this operand slot.
1738       // FIXME: The long term goal is for the MCOperand list to not contain
1739       // tied operands at all.
1740       ResOperands.push_back(ResOperand::getImmOp(0));
1741       continue;
1742     }
1743 
1744     // Check if the one AsmOperand populates the entire operand.
1745     unsigned NumOperands = OpInfo.MINumOperands;
1746     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1747       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1748       continue;
1749     }
1750 
1751     // Add a separate ResOperand for each suboperand.
1752     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1753       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1754              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1755              "unexpected AsmOperands for suboperands");
1756       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1757     }
1758   }
1759 }
1760 
buildAliasResultOperands()1761 void MatchableInfo::buildAliasResultOperands() {
1762   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1763   const CodeGenInstruction *ResultInst = getResultInst();
1764 
1765   // Loop over all operands of the result instruction, determining how to
1766   // populate them.
1767   unsigned AliasOpNo = 0;
1768   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1769   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1770     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1771 
1772     // If this is a tied operand, just copy from the previously handled operand.
1773     int TiedOp = -1;
1774     if (OpInfo->MINumOperands == 1)
1775       TiedOp = OpInfo->getTiedRegister();
1776     if (TiedOp != -1) {
1777       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1778       continue;
1779     }
1780 
1781     // Handle all the suboperands for this operand.
1782     const std::string &OpName = OpInfo->Name;
1783     for ( ; AliasOpNo <  LastOpNo &&
1784             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1785       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1786 
1787       // Find out what operand from the asmparser that this MCInst operand
1788       // comes from.
1789       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1790       case CodeGenInstAlias::ResultOperand::K_Record: {
1791         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1792         int SrcOperand = findAsmOperand(Name, SubIdx);
1793         if (SrcOperand == -1)
1794           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1795                         TheDef->getName() + "' has operand '" + OpName +
1796                         "' that doesn't appear in asm string!");
1797         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1798         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1799                                                         NumOperands));
1800         break;
1801       }
1802       case CodeGenInstAlias::ResultOperand::K_Imm: {
1803         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1804         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1805         break;
1806       }
1807       case CodeGenInstAlias::ResultOperand::K_Reg: {
1808         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1809         ResOperands.push_back(ResOperand::getRegOp(Reg));
1810         break;
1811       }
1812       }
1813     }
1814   }
1815 }
1816 
getConverterOperandID(const std::string & Name,SmallSetVector<std::string,16> & Table,bool & IsNew)1817 static unsigned getConverterOperandID(const std::string &Name,
1818                                       SmallSetVector<std::string, 16> &Table,
1819                                       bool &IsNew) {
1820   IsNew = Table.insert(Name);
1821 
1822   unsigned ID = IsNew ? Table.size() - 1 :
1823     std::find(Table.begin(), Table.end(), Name) - Table.begin();
1824 
1825   assert(ID < Table.size());
1826 
1827   return ID;
1828 }
1829 
emitConvertFuncs(CodeGenTarget & Target,StringRef ClassName,std::vector<std::unique_ptr<MatchableInfo>> & Infos,bool HasMnemonicFirst,bool HasOptionalOperands,raw_ostream & OS)1830 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1831                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1832                              bool HasMnemonicFirst, bool HasOptionalOperands,
1833                              raw_ostream &OS) {
1834   SmallSetVector<std::string, 16> OperandConversionKinds;
1835   SmallSetVector<std::string, 16> InstructionConversionKinds;
1836   std::vector<std::vector<uint8_t> > ConversionTable;
1837   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1838 
1839   // TargetOperandClass - This is the target's operand class, like X86Operand.
1840   std::string TargetOperandClass = Target.getName() + "Operand";
1841 
1842   // Write the convert function to a separate stream, so we can drop it after
1843   // the enum. We'll build up the conversion handlers for the individual
1844   // operand types opportunistically as we encounter them.
1845   std::string ConvertFnBody;
1846   raw_string_ostream CvtOS(ConvertFnBody);
1847   // Start the unified conversion function.
1848   if (HasOptionalOperands) {
1849     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1850           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1851           << "unsigned Opcode,\n"
1852           << "                const OperandVector &Operands,\n"
1853           << "                const SmallBitVector &OptionalOperandsMask) {\n";
1854   } else {
1855     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1856           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1857           << "unsigned Opcode,\n"
1858           << "                const OperandVector &Operands) {\n";
1859   }
1860   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1861   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1862   if (HasOptionalOperands) {
1863     CvtOS << "  unsigned NumDefaults = 0;\n";
1864   }
1865   CvtOS << "  unsigned OpIdx;\n";
1866   CvtOS << "  Inst.setOpcode(Opcode);\n";
1867   CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
1868   if (HasOptionalOperands) {
1869     CvtOS << "    OpIdx = *(p + 1) - NumDefaults;\n";
1870   } else {
1871     CvtOS << "    OpIdx = *(p + 1);\n";
1872   }
1873   CvtOS << "    switch (*p) {\n";
1874   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1875   CvtOS << "    case CVT_Reg:\n";
1876   CvtOS << "      static_cast<" << TargetOperandClass
1877         << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1878   CvtOS << "      break;\n";
1879   CvtOS << "    case CVT_Tied:\n";
1880   CvtOS << "      Inst.addOperand(Inst.getOperand(OpIdx));\n";
1881   CvtOS << "      break;\n";
1882 
1883   std::string OperandFnBody;
1884   raw_string_ostream OpOS(OperandFnBody);
1885   // Start the operand number lookup function.
1886   OpOS << "void " << Target.getName() << ClassName << "::\n"
1887        << "convertToMapAndConstraints(unsigned Kind,\n";
1888   OpOS.indent(27);
1889   OpOS << "const OperandVector &Operands) {\n"
1890        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1891        << "  unsigned NumMCOperands = 0;\n"
1892        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1893        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1894        << "    switch (*p) {\n"
1895        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1896        << "    case CVT_Reg:\n"
1897        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1898        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
1899        << "      ++NumMCOperands;\n"
1900        << "      break;\n"
1901        << "    case CVT_Tied:\n"
1902        << "      ++NumMCOperands;\n"
1903        << "      break;\n";
1904 
1905   // Pre-populate the operand conversion kinds with the standard always
1906   // available entries.
1907   OperandConversionKinds.insert("CVT_Done");
1908   OperandConversionKinds.insert("CVT_Reg");
1909   OperandConversionKinds.insert("CVT_Tied");
1910   enum { CVT_Done, CVT_Reg, CVT_Tied };
1911 
1912   for (auto &II : Infos) {
1913     // Check if we have a custom match function.
1914     std::string AsmMatchConverter =
1915       II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1916     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
1917       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1918       II->ConversionFnKind = Signature;
1919 
1920       // Check if we have already generated this signature.
1921       if (!InstructionConversionKinds.insert(Signature))
1922         continue;
1923 
1924       // Remember this converter for the kind enum.
1925       unsigned KindID = OperandConversionKinds.size();
1926       OperandConversionKinds.insert("CVT_" +
1927                                     getEnumNameForToken(AsmMatchConverter));
1928 
1929       // Add the converter row for this instruction.
1930       ConversionTable.emplace_back();
1931       ConversionTable.back().push_back(KindID);
1932       ConversionTable.back().push_back(CVT_Done);
1933 
1934       // Add the handler to the conversion driver function.
1935       CvtOS << "    case CVT_"
1936             << getEnumNameForToken(AsmMatchConverter) << ":\n"
1937             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1938             << "      break;\n";
1939 
1940       // FIXME: Handle the operand number lookup for custom match functions.
1941       continue;
1942     }
1943 
1944     // Build the conversion function signature.
1945     std::string Signature = "Convert";
1946 
1947     std::vector<uint8_t> ConversionRow;
1948 
1949     // Compute the convert enum and the case body.
1950     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
1951 
1952     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
1953       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
1954 
1955       // Generate code to populate each result operand.
1956       switch (OpInfo.Kind) {
1957       case MatchableInfo::ResOperand::RenderAsmOperand: {
1958         // This comes from something we parsed.
1959         const MatchableInfo::AsmOperand &Op =
1960           II->AsmOperands[OpInfo.AsmOperandNum];
1961 
1962         // Registers are always converted the same, don't duplicate the
1963         // conversion function based on them.
1964         Signature += "__";
1965         std::string Class;
1966         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1967         Signature += Class;
1968         Signature += utostr(OpInfo.MINumOperands);
1969         Signature += "_" + itostr(OpInfo.AsmOperandNum);
1970 
1971         // Add the conversion kind, if necessary, and get the associated ID
1972         // the index of its entry in the vector).
1973         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1974                                      Op.Class->RenderMethod);
1975         if (Op.Class->IsOptional) {
1976           // For optional operands we must also care about DefaultMethod
1977           assert(HasOptionalOperands);
1978           Name += "_" + Op.Class->DefaultMethod;
1979         }
1980         Name = getEnumNameForToken(Name);
1981 
1982         bool IsNewConverter = false;
1983         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1984                                             IsNewConverter);
1985 
1986         // Add the operand entry to the instruction kind conversion row.
1987         ConversionRow.push_back(ID);
1988         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
1989 
1990         if (!IsNewConverter)
1991           break;
1992 
1993         // This is a new operand kind. Add a handler for it to the
1994         // converter driver.
1995         CvtOS << "    case " << Name << ":\n";
1996         if (Op.Class->IsOptional) {
1997           // If optional operand is not present in actual instruction then we
1998           // should call its DefaultMethod before RenderMethod
1999           assert(HasOptionalOperands);
2000           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2001                 << "        " << Op.Class->DefaultMethod << "()"
2002                 << "->" << Op.Class->RenderMethod << "(Inst, "
2003                 << OpInfo.MINumOperands << ");\n"
2004                 << "        ++NumDefaults;\n"
2005                 << "      } else {\n"
2006                 << "        static_cast<" << TargetOperandClass
2007                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2008                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2009                 << "      }\n";
2010         } else {
2011           CvtOS << "      static_cast<" << TargetOperandClass
2012                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2013                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2014         }
2015         CvtOS << "      break;\n";
2016 
2017         // Add a handler for the operand number lookup.
2018         OpOS << "    case " << Name << ":\n"
2019              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2020 
2021         if (Op.Class->isRegisterClass())
2022           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2023         else
2024           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2025         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2026              << "      break;\n";
2027         break;
2028       }
2029       case MatchableInfo::ResOperand::TiedOperand: {
2030         // If this operand is tied to a previous one, just copy the MCInst
2031         // operand from the earlier one.We can only tie single MCOperand values.
2032         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2033         unsigned TiedOp = OpInfo.TiedOperandNum;
2034         assert(i > TiedOp && "Tied operand precedes its target!");
2035         Signature += "__Tie" + utostr(TiedOp);
2036         ConversionRow.push_back(CVT_Tied);
2037         ConversionRow.push_back(TiedOp);
2038         break;
2039       }
2040       case MatchableInfo::ResOperand::ImmOperand: {
2041         int64_t Val = OpInfo.ImmVal;
2042         std::string Ty = "imm_" + itostr(Val);
2043         Ty = getEnumNameForToken(Ty);
2044         Signature += "__" + Ty;
2045 
2046         std::string Name = "CVT_" + Ty;
2047         bool IsNewConverter = false;
2048         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2049                                             IsNewConverter);
2050         // Add the operand entry to the instruction kind conversion row.
2051         ConversionRow.push_back(ID);
2052         ConversionRow.push_back(0);
2053 
2054         if (!IsNewConverter)
2055           break;
2056 
2057         CvtOS << "    case " << Name << ":\n"
2058               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2059               << "      break;\n";
2060 
2061         OpOS << "    case " << Name << ":\n"
2062              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2063              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2064              << "      ++NumMCOperands;\n"
2065              << "      break;\n";
2066         break;
2067       }
2068       case MatchableInfo::ResOperand::RegOperand: {
2069         std::string Reg, Name;
2070         if (!OpInfo.Register) {
2071           Name = "reg0";
2072           Reg = "0";
2073         } else {
2074           Reg = getQualifiedName(OpInfo.Register);
2075           Name = "reg" + OpInfo.Register->getName();
2076         }
2077         Signature += "__" + Name;
2078         Name = "CVT_" + Name;
2079         bool IsNewConverter = false;
2080         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2081                                             IsNewConverter);
2082         // Add the operand entry to the instruction kind conversion row.
2083         ConversionRow.push_back(ID);
2084         ConversionRow.push_back(0);
2085 
2086         if (!IsNewConverter)
2087           break;
2088         CvtOS << "    case " << Name << ":\n"
2089               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2090               << "      break;\n";
2091 
2092         OpOS << "    case " << Name << ":\n"
2093              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2094              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2095              << "      ++NumMCOperands;\n"
2096              << "      break;\n";
2097       }
2098       }
2099     }
2100 
2101     // If there were no operands, add to the signature to that effect
2102     if (Signature == "Convert")
2103       Signature += "_NoOperands";
2104 
2105     II->ConversionFnKind = Signature;
2106 
2107     // Save the signature. If we already have it, don't add a new row
2108     // to the table.
2109     if (!InstructionConversionKinds.insert(Signature))
2110       continue;
2111 
2112     // Add the row to the table.
2113     ConversionTable.push_back(std::move(ConversionRow));
2114   }
2115 
2116   // Finish up the converter driver function.
2117   CvtOS << "    }\n  }\n}\n\n";
2118 
2119   // Finish up the operand number lookup function.
2120   OpOS << "    }\n  }\n}\n\n";
2121 
2122   OS << "namespace {\n";
2123 
2124   // Output the operand conversion kind enum.
2125   OS << "enum OperatorConversionKind {\n";
2126   for (const std::string &Converter : OperandConversionKinds)
2127     OS << "  " << Converter << ",\n";
2128   OS << "  CVT_NUM_CONVERTERS\n";
2129   OS << "};\n\n";
2130 
2131   // Output the instruction conversion kind enum.
2132   OS << "enum InstructionConversionKind {\n";
2133   for (const std::string &Signature : InstructionConversionKinds)
2134     OS << "  " << Signature << ",\n";
2135   OS << "  CVT_NUM_SIGNATURES\n";
2136   OS << "};\n\n";
2137 
2138   OS << "} // end anonymous namespace\n\n";
2139 
2140   // Output the conversion table.
2141   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2142      << MaxRowLength << "] = {\n";
2143 
2144   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2145     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2146     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2147     OS << "  { ";
2148     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
2149       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
2150          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2151     OS << "CVT_Done },\n";
2152   }
2153 
2154   OS << "};\n\n";
2155 
2156   // Spit out the conversion driver function.
2157   OS << CvtOS.str();
2158 
2159   // Spit out the operand number lookup function.
2160   OS << OpOS.str();
2161 }
2162 
2163 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
emitMatchClassEnumeration(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2164 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2165                                       std::forward_list<ClassInfo> &Infos,
2166                                       raw_ostream &OS) {
2167   OS << "namespace {\n\n";
2168 
2169   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2170      << "/// instruction matching.\n";
2171   OS << "enum MatchClassKind {\n";
2172   OS << "  InvalidMatchClass = 0,\n";
2173   OS << "  OptionalMatchClass = 1,\n";
2174   for (const auto &CI : Infos) {
2175     OS << "  " << CI.Name << ", // ";
2176     if (CI.Kind == ClassInfo::Token) {
2177       OS << "'" << CI.ValueName << "'\n";
2178     } else if (CI.isRegisterClass()) {
2179       if (!CI.ValueName.empty())
2180         OS << "register class '" << CI.ValueName << "'\n";
2181       else
2182         OS << "derived register class\n";
2183     } else {
2184       OS << "user defined class '" << CI.ValueName << "'\n";
2185     }
2186   }
2187   OS << "  NumMatchClassKinds\n";
2188   OS << "};\n\n";
2189 
2190   OS << "}\n\n";
2191 }
2192 
2193 /// emitValidateOperandClass - Emit the function to validate an operand class.
emitValidateOperandClass(AsmMatcherInfo & Info,raw_ostream & OS)2194 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2195                                      raw_ostream &OS) {
2196   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2197      << "MatchClassKind Kind) {\n";
2198   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2199      << Info.Target.getName() << "Operand&)GOp;\n";
2200 
2201   // The InvalidMatchClass is not to match any operand.
2202   OS << "  if (Kind == InvalidMatchClass)\n";
2203   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2204 
2205   // Check for Token operands first.
2206   // FIXME: Use a more specific diagnostic type.
2207   OS << "  if (Operand.isToken())\n";
2208   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2209      << "             MCTargetAsmParser::Match_Success :\n"
2210      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2211 
2212   // Check the user classes. We don't care what order since we're only
2213   // actually matching against one of them.
2214   OS << "  switch (Kind) {\n"
2215         "  default: break;\n";
2216   for (const auto &CI : Info.Classes) {
2217     if (!CI.isUserClass())
2218       continue;
2219 
2220     OS << "  // '" << CI.ClassName << "' class\n";
2221     OS << "  case " << CI.Name << ":\n";
2222     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2223     OS << "      return MCTargetAsmParser::Match_Success;\n";
2224     if (!CI.DiagnosticType.empty())
2225       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2226          << CI.DiagnosticType << ";\n";
2227     else
2228       OS << "    break;\n";
2229   }
2230   OS << "  } // end switch (Kind)\n\n";
2231 
2232   // Check for register operands, including sub-classes.
2233   OS << "  if (Operand.isReg()) {\n";
2234   OS << "    MatchClassKind OpKind;\n";
2235   OS << "    switch (Operand.getReg()) {\n";
2236   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2237   for (const auto &RC : Info.RegisterClasses)
2238     OS << "    case " << Info.Target.getName() << "::"
2239        << RC.first->getName() << ": OpKind = " << RC.second->Name
2240        << "; break;\n";
2241   OS << "    }\n";
2242   OS << "    return isSubclass(OpKind, Kind) ? "
2243      << "MCTargetAsmParser::Match_Success :\n                             "
2244      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2245 
2246   // Generic fallthrough match failure case for operands that don't have
2247   // specialized diagnostic types.
2248   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2249   OS << "}\n\n";
2250 }
2251 
2252 /// emitIsSubclass - Emit the subclass predicate function.
emitIsSubclass(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2253 static void emitIsSubclass(CodeGenTarget &Target,
2254                            std::forward_list<ClassInfo> &Infos,
2255                            raw_ostream &OS) {
2256   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2257   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2258   OS << "  if (A == B)\n";
2259   OS << "    return true;\n\n";
2260 
2261   bool EmittedSwitch = false;
2262   for (const auto &A : Infos) {
2263     std::vector<StringRef> SuperClasses;
2264     if (A.IsOptional)
2265       SuperClasses.push_back("OptionalMatchClass");
2266     for (const auto &B : Infos) {
2267       if (&A != &B && A.isSubsetOf(B))
2268         SuperClasses.push_back(B.Name);
2269     }
2270 
2271     if (SuperClasses.empty())
2272       continue;
2273 
2274     // If this is the first SuperClass, emit the switch header.
2275     if (!EmittedSwitch) {
2276       OS << "  switch (A) {\n";
2277       OS << "  default:\n";
2278       OS << "    return false;\n";
2279       EmittedSwitch = true;
2280     }
2281 
2282     OS << "\n  case " << A.Name << ":\n";
2283 
2284     if (SuperClasses.size() == 1) {
2285       OS << "    return B == " << SuperClasses.back() << ";\n";
2286       continue;
2287     }
2288 
2289     if (!SuperClasses.empty()) {
2290       OS << "    switch (B) {\n";
2291       OS << "    default: return false;\n";
2292       for (StringRef SC : SuperClasses)
2293         OS << "    case " << SC << ": return true;\n";
2294       OS << "    }\n";
2295     } else {
2296       // No case statement to emit
2297       OS << "    return false;\n";
2298     }
2299   }
2300 
2301   // If there were case statements emitted into the string stream write the
2302   // default.
2303   if (EmittedSwitch)
2304     OS << "  }\n";
2305   else
2306     OS << "  return false;\n";
2307 
2308   OS << "}\n\n";
2309 }
2310 
2311 /// emitMatchTokenString - Emit the function to match a token string to the
2312 /// appropriate match class value.
emitMatchTokenString(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2313 static void emitMatchTokenString(CodeGenTarget &Target,
2314                                  std::forward_list<ClassInfo> &Infos,
2315                                  raw_ostream &OS) {
2316   // Construct the match list.
2317   std::vector<StringMatcher::StringPair> Matches;
2318   for (const auto &CI : Infos) {
2319     if (CI.Kind == ClassInfo::Token)
2320       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2321   }
2322 
2323   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2324 
2325   StringMatcher("Name", Matches, OS).Emit();
2326 
2327   OS << "  return InvalidMatchClass;\n";
2328   OS << "}\n\n";
2329 }
2330 
2331 /// emitMatchRegisterName - Emit the function to match a string to the target
2332 /// specific register enum.
emitMatchRegisterName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2333 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2334                                   raw_ostream &OS) {
2335   // Construct the match list.
2336   std::vector<StringMatcher::StringPair> Matches;
2337   const auto &Regs = Target.getRegBank().getRegisters();
2338   for (const CodeGenRegister &Reg : Regs) {
2339     if (Reg.TheDef->getValueAsString("AsmName").empty())
2340       continue;
2341 
2342     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2343                          "return " + utostr(Reg.EnumValue) + ";");
2344   }
2345 
2346   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2347 
2348   StringMatcher("Name", Matches, OS).Emit();
2349 
2350   OS << "  return 0;\n";
2351   OS << "}\n\n";
2352 }
2353 
2354 /// Emit the function to match a string to the target
2355 /// specific register enum.
emitMatchRegisterAltName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2356 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2357                                      raw_ostream &OS) {
2358   // Construct the match list.
2359   std::vector<StringMatcher::StringPair> Matches;
2360   const auto &Regs = Target.getRegBank().getRegisters();
2361   for (const CodeGenRegister &Reg : Regs) {
2362 
2363     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2364 
2365     for (auto AltName : AltNames) {
2366       AltName = StringRef(AltName).trim();
2367 
2368       // don't handle empty alternative names
2369       if (AltName.empty())
2370         continue;
2371 
2372       Matches.emplace_back(AltName,
2373                            "return " + utostr(Reg.EnumValue) + ";");
2374     }
2375   }
2376 
2377   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2378 
2379   StringMatcher("Name", Matches, OS).Emit();
2380 
2381   OS << "  return 0;\n";
2382   OS << "}\n\n";
2383 }
2384 
getMinimalTypeForRange(uint64_t Range)2385 static const char *getMinimalTypeForRange(uint64_t Range) {
2386   assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
2387   if (Range > 0xFFFFFFFFULL)
2388     return "uint64_t";
2389   if (Range > 0xFFFF)
2390     return "uint32_t";
2391   if (Range > 0xFF)
2392     return "uint16_t";
2393   return "uint8_t";
2394 }
2395 
getMinimalRequiredFeaturesType(const AsmMatcherInfo & Info)2396 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
2397   uint64_t MaxIndex = Info.SubtargetFeatures.size();
2398   if (MaxIndex > 0)
2399     MaxIndex--;
2400   return getMinimalTypeForRange(1ULL << MaxIndex);
2401 }
2402 
2403 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2404 /// definitions.
emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo & Info,raw_ostream & OS)2405 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2406                                                 raw_ostream &OS) {
2407   OS << "// Flags for subtarget features that participate in "
2408      << "instruction matching.\n";
2409   OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
2410      << " {\n";
2411   for (const auto &SF : Info.SubtargetFeatures) {
2412     const SubtargetFeatureInfo &SFI = SF.second;
2413     OS << "  " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
2414   }
2415   OS << "  Feature_None = 0\n";
2416   OS << "};\n\n";
2417 }
2418 
2419 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
emitOperandDiagnosticTypes(AsmMatcherInfo & Info,raw_ostream & OS)2420 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2421   // Get the set of diagnostic types from all of the operand classes.
2422   std::set<StringRef> Types;
2423   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2424     if (!OpClassEntry.second->DiagnosticType.empty())
2425       Types.insert(OpClassEntry.second->DiagnosticType);
2426   }
2427 
2428   if (Types.empty()) return;
2429 
2430   // Now emit the enum entries.
2431   for (StringRef Type : Types)
2432     OS << "  Match_" << Type << ",\n";
2433   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2434 }
2435 
2436 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2437 /// user-level name for a subtarget feature.
emitGetSubtargetFeatureName(AsmMatcherInfo & Info,raw_ostream & OS)2438 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2439   OS << "// User-level names for subtarget features that participate in\n"
2440      << "// instruction matching.\n"
2441      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2442   if (!Info.SubtargetFeatures.empty()) {
2443     OS << "  switch(Val) {\n";
2444     for (const auto &SF : Info.SubtargetFeatures) {
2445       const SubtargetFeatureInfo &SFI = SF.second;
2446       // FIXME: Totally just a placeholder name to get the algorithm working.
2447       OS << "  case " << SFI.getEnumName() << ": return \""
2448          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2449     }
2450     OS << "  default: return \"(unknown)\";\n";
2451     OS << "  }\n";
2452   } else {
2453     // Nothing to emit, so skip the switch
2454     OS << "  return \"(unknown)\";\n";
2455   }
2456   OS << "}\n\n";
2457 }
2458 
2459 /// emitComputeAvailableFeatures - Emit the function to compute the list of
2460 /// available features given a subtarget.
emitComputeAvailableFeatures(AsmMatcherInfo & Info,raw_ostream & OS)2461 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2462                                          raw_ostream &OS) {
2463   std::string ClassName =
2464     Info.AsmParser->getValueAsString("AsmParserClassName");
2465 
2466   OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
2467      << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n";
2468   OS << "  uint64_t Features = 0;\n";
2469   for (const auto &SF : Info.SubtargetFeatures) {
2470     const SubtargetFeatureInfo &SFI = SF.second;
2471 
2472     OS << "  if (";
2473     std::string CondStorage =
2474       SFI.TheDef->getValueAsString("AssemblerCondString");
2475     StringRef Conds = CondStorage;
2476     std::pair<StringRef,StringRef> Comma = Conds.split(',');
2477     bool First = true;
2478     do {
2479       if (!First)
2480         OS << " && ";
2481 
2482       bool Neg = false;
2483       StringRef Cond = Comma.first;
2484       if (Cond[0] == '!') {
2485         Neg = true;
2486         Cond = Cond.substr(1);
2487       }
2488 
2489       OS << "(";
2490       if (Neg)
2491         OS << "!";
2492       OS << "FB[" << Info.Target.getName() << "::" << Cond << "])";
2493 
2494       if (Comma.second.empty())
2495         break;
2496 
2497       First = false;
2498       Comma = Comma.second.split(',');
2499     } while (true);
2500 
2501     OS << ")\n";
2502     OS << "    Features |= " << SFI.getEnumName() << ";\n";
2503   }
2504   OS << "  return Features;\n";
2505   OS << "}\n\n";
2506 }
2507 
GetAliasRequiredFeatures(Record * R,const AsmMatcherInfo & Info)2508 static std::string GetAliasRequiredFeatures(Record *R,
2509                                             const AsmMatcherInfo &Info) {
2510   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2511   std::string Result;
2512   unsigned NumFeatures = 0;
2513   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2514     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2515 
2516     if (!F)
2517       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2518                     "' is not marked as an AssemblerPredicate!");
2519 
2520     if (NumFeatures)
2521       Result += '|';
2522 
2523     Result += F->getEnumName();
2524     ++NumFeatures;
2525   }
2526 
2527   if (NumFeatures > 1)
2528     Result = '(' + Result + ')';
2529   return Result;
2530 }
2531 
emitMnemonicAliasVariant(raw_ostream & OS,const AsmMatcherInfo & Info,std::vector<Record * > & Aliases,unsigned Indent=0,StringRef AsmParserVariantName=StringRef ())2532 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2533                                      std::vector<Record*> &Aliases,
2534                                      unsigned Indent = 0,
2535                                   StringRef AsmParserVariantName = StringRef()){
2536   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2537   // iteration order of the map is stable.
2538   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2539 
2540   for (Record *R : Aliases) {
2541     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2542     std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2543     if (AsmVariantName != AsmParserVariantName)
2544       continue;
2545     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2546   }
2547   if (AliasesFromMnemonic.empty())
2548     return;
2549 
2550   // Process each alias a "from" mnemonic at a time, building the code executed
2551   // by the string remapper.
2552   std::vector<StringMatcher::StringPair> Cases;
2553   for (const auto &AliasEntry : AliasesFromMnemonic) {
2554     const std::vector<Record*> &ToVec = AliasEntry.second;
2555 
2556     // Loop through each alias and emit code that handles each case.  If there
2557     // are two instructions without predicates, emit an error.  If there is one,
2558     // emit it last.
2559     std::string MatchCode;
2560     int AliasWithNoPredicate = -1;
2561 
2562     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2563       Record *R = ToVec[i];
2564       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2565 
2566       // If this unconditionally matches, remember it for later and diagnose
2567       // duplicates.
2568       if (FeatureMask.empty()) {
2569         if (AliasWithNoPredicate != -1) {
2570           // We can't have two aliases from the same mnemonic with no predicate.
2571           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2572                      "two MnemonicAliases with the same 'from' mnemonic!");
2573           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2574         }
2575 
2576         AliasWithNoPredicate = i;
2577         continue;
2578       }
2579       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2580         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2581 
2582       if (!MatchCode.empty())
2583         MatchCode += "else ";
2584       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2585       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2586     }
2587 
2588     if (AliasWithNoPredicate != -1) {
2589       Record *R = ToVec[AliasWithNoPredicate];
2590       if (!MatchCode.empty())
2591         MatchCode += "else\n  ";
2592       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2593     }
2594 
2595     MatchCode += "return;";
2596 
2597     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2598   }
2599   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2600 }
2601 
2602 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2603 /// emit a function for them and return true, otherwise return false.
emitMnemonicAliases(raw_ostream & OS,const AsmMatcherInfo & Info,CodeGenTarget & Target)2604 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2605                                 CodeGenTarget &Target) {
2606   // Ignore aliases when match-prefix is set.
2607   if (!MatchPrefix.empty())
2608     return false;
2609 
2610   std::vector<Record*> Aliases =
2611     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2612   if (Aliases.empty()) return false;
2613 
2614   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2615     "uint64_t Features, unsigned VariantID) {\n";
2616   OS << "  switch (VariantID) {\n";
2617   unsigned VariantCount = Target.getAsmParserVariantCount();
2618   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2619     Record *AsmVariant = Target.getAsmParserVariant(VC);
2620     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2621     std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2622     OS << "    case " << AsmParserVariantNo << ":\n";
2623     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2624                              AsmParserVariantName);
2625     OS << "    break;\n";
2626   }
2627   OS << "  }\n";
2628 
2629   // Emit aliases that apply to all variants.
2630   emitMnemonicAliasVariant(OS, Info, Aliases);
2631 
2632   OS << "}\n\n";
2633 
2634   return true;
2635 }
2636 
emitCustomOperandParsing(raw_ostream & OS,CodeGenTarget & Target,const AsmMatcherInfo & Info,StringRef ClassName,StringToOffsetTable & StringTable,unsigned MaxMnemonicIndex,bool HasMnemonicFirst)2637 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2638                               const AsmMatcherInfo &Info, StringRef ClassName,
2639                               StringToOffsetTable &StringTable,
2640                               unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
2641   unsigned MaxMask = 0;
2642   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2643     MaxMask |= OMI.OperandMask;
2644   }
2645 
2646   // Emit the static custom operand parsing table;
2647   OS << "namespace {\n";
2648   OS << "  struct OperandMatchEntry {\n";
2649   OS << "    " << getMinimalRequiredFeaturesType(Info)
2650                << " RequiredFeatures;\n";
2651   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2652                << " Mnemonic;\n";
2653   OS << "    " << getMinimalTypeForRange(std::distance(
2654                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2655   OS << "    " << getMinimalTypeForRange(MaxMask)
2656                << " OperandMask;\n\n";
2657   OS << "    StringRef getMnemonic() const {\n";
2658   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2659   OS << "                       MnemonicTable[Mnemonic]);\n";
2660   OS << "    }\n";
2661   OS << "  };\n\n";
2662 
2663   OS << "  // Predicate for searching for an opcode.\n";
2664   OS << "  struct LessOpcodeOperand {\n";
2665   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2666   OS << "      return LHS.getMnemonic()  < RHS;\n";
2667   OS << "    }\n";
2668   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2669   OS << "      return LHS < RHS.getMnemonic();\n";
2670   OS << "    }\n";
2671   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2672   OS << " const OperandMatchEntry &RHS) {\n";
2673   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2674   OS << "    }\n";
2675   OS << "  };\n";
2676 
2677   OS << "} // end anonymous namespace.\n\n";
2678 
2679   OS << "static const OperandMatchEntry OperandMatchTable["
2680      << Info.OperandMatchInfo.size() << "] = {\n";
2681 
2682   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2683   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2684     const MatchableInfo &II = *OMI.MI;
2685 
2686     OS << "  { ";
2687 
2688     // Write the required features mask.
2689     if (!II.RequiredFeatures.empty()) {
2690       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2691         if (i) OS << "|";
2692         OS << II.RequiredFeatures[i]->getEnumName();
2693       }
2694     } else
2695       OS << "0";
2696 
2697     // Store a pascal-style length byte in the mnemonic.
2698     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2699     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2700        << " /* " << II.Mnemonic << " */, ";
2701 
2702     OS << OMI.CI->Name;
2703 
2704     OS << ", " << OMI.OperandMask;
2705     OS << " /* ";
2706     bool printComma = false;
2707     for (int i = 0, e = 31; i !=e; ++i)
2708       if (OMI.OperandMask & (1 << i)) {
2709         if (printComma)
2710           OS << ", ";
2711         OS << i;
2712         printComma = true;
2713       }
2714     OS << " */";
2715 
2716     OS << " },\n";
2717   }
2718   OS << "};\n\n";
2719 
2720   // Emit the operand class switch to call the correct custom parser for
2721   // the found operand class.
2722   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2723      << Target.getName() << ClassName << "::\n"
2724      << "tryCustomParseOperand(OperandVector"
2725      << " &Operands,\n                      unsigned MCK) {\n\n"
2726      << "  switch(MCK) {\n";
2727 
2728   for (const auto &CI : Info.Classes) {
2729     if (CI.ParserMethod.empty())
2730       continue;
2731     OS << "  case " << CI.Name << ":\n"
2732        << "    return " << CI.ParserMethod << "(Operands);\n";
2733   }
2734 
2735   OS << "  default:\n";
2736   OS << "    return MatchOperand_NoMatch;\n";
2737   OS << "  }\n";
2738   OS << "  return MatchOperand_NoMatch;\n";
2739   OS << "}\n\n";
2740 
2741   // Emit the static custom operand parser. This code is very similar with
2742   // the other matcher. Also use MatchResultTy here just in case we go for
2743   // a better error handling.
2744   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2745      << Target.getName() << ClassName << "::\n"
2746      << "MatchOperandParserImpl(OperandVector"
2747      << " &Operands,\n                       StringRef Mnemonic) {\n";
2748 
2749   // Emit code to get the available features.
2750   OS << "  // Get the current feature set.\n";
2751   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2752 
2753   OS << "  // Get the next operand index.\n";
2754   OS << "  unsigned NextOpNum = Operands.size()"
2755      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2756 
2757   // Emit code to search the table.
2758   OS << "  // Search the table.\n";
2759   if (HasMnemonicFirst) {
2760     OS << "  auto MnemonicRange =\n";
2761     OS << "    std::equal_range(std::begin(OperandMatchTable), "
2762           "std::end(OperandMatchTable),\n";
2763     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2764   } else {
2765     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2766           " std::end(OperandMatchTable));\n";
2767     OS << "  if (!Mnemonic.empty())\n";
2768     OS << "    MnemonicRange =\n";
2769     OS << "      std::equal_range(std::begin(OperandMatchTable), "
2770           "std::end(OperandMatchTable),\n";
2771     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2772   }
2773 
2774   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2775   OS << "    return MatchOperand_NoMatch;\n\n";
2776 
2777   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2778      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2779 
2780   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2781   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2782 
2783   // Emit check that the required features are available.
2784   OS << "    // check if the available features match\n";
2785   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2786      << "!= it->RequiredFeatures) {\n";
2787   OS << "      continue;\n";
2788   OS << "    }\n\n";
2789 
2790   // Emit check to ensure the operand number matches.
2791   OS << "    // check if the operand in question has a custom parser.\n";
2792   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2793   OS << "      continue;\n\n";
2794 
2795   // Emit call to the custom parser method
2796   OS << "    // call custom parse method to handle the operand\n";
2797   OS << "    OperandMatchResultTy Result = ";
2798   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2799   OS << "    if (Result != MatchOperand_NoMatch)\n";
2800   OS << "      return Result;\n";
2801   OS << "  }\n\n";
2802 
2803   OS << "  // Okay, we had no match.\n";
2804   OS << "  return MatchOperand_NoMatch;\n";
2805   OS << "}\n\n";
2806 }
2807 
run(raw_ostream & OS)2808 void AsmMatcherEmitter::run(raw_ostream &OS) {
2809   CodeGenTarget Target(Records);
2810   Record *AsmParser = Target.getAsmParser();
2811   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2812 
2813   // Compute the information on the instructions to match.
2814   AsmMatcherInfo Info(AsmParser, Target, Records);
2815   Info.buildInfo();
2816 
2817   // Sort the instruction table using the partial order on classes. We use
2818   // stable_sort to ensure that ambiguous instructions are still
2819   // deterministically ordered.
2820   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2821                    [](const std::unique_ptr<MatchableInfo> &a,
2822                       const std::unique_ptr<MatchableInfo> &b){
2823                      return *a < *b;});
2824 
2825 #ifndef NDEBUG
2826   // Verify that the table is now sorted
2827   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2828        ++I) {
2829     for (auto J = I; J != E; ++J) {
2830       assert(!(**J < **I));
2831     }
2832   }
2833 #endif // NDEBUG
2834 
2835   DEBUG_WITH_TYPE("instruction_info", {
2836       for (const auto &MI : Info.Matchables)
2837         MI->dump();
2838     });
2839 
2840   // Check for ambiguous matchables.
2841   DEBUG_WITH_TYPE("ambiguous_instrs", {
2842     unsigned NumAmbiguous = 0;
2843     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2844          ++I) {
2845       for (auto J = std::next(I); J != E; ++J) {
2846         const MatchableInfo &A = **I;
2847         const MatchableInfo &B = **J;
2848 
2849         if (A.couldMatchAmbiguouslyWith(B)) {
2850           errs() << "warning: ambiguous matchables:\n";
2851           A.dump();
2852           errs() << "\nis incomparable with:\n";
2853           B.dump();
2854           errs() << "\n\n";
2855           ++NumAmbiguous;
2856         }
2857       }
2858     }
2859     if (NumAmbiguous)
2860       errs() << "warning: " << NumAmbiguous
2861              << " ambiguous matchables!\n";
2862   });
2863 
2864   // Compute the information on the custom operand parsing.
2865   Info.buildOperandMatchInfo();
2866 
2867   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
2868   bool HasOptionalOperands = Info.hasOptionalOperands();
2869 
2870   // Write the output.
2871 
2872   // Information for the class declaration.
2873   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2874   OS << "#undef GET_ASSEMBLER_HEADER\n";
2875   OS << "  // This should be included into the middle of the declaration of\n";
2876   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2877   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
2878   if (HasOptionalOperands) {
2879     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2880        << "unsigned Opcode,\n"
2881        << "                       const OperandVector &Operands,\n"
2882        << "                       const SmallBitVector &OptionalOperandsMask);\n";
2883   } else {
2884     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2885        << "unsigned Opcode,\n"
2886        << "                       const OperandVector &Operands);\n";
2887   }
2888   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
2889   OS << "           const OperandVector &Operands) override;\n";
2890   if (HasMnemonicFirst)
2891     OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n";
2892   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
2893      << "                                MCInst &Inst,\n"
2894      << "                                uint64_t &ErrorInfo,"
2895      << " bool matchingInlineAsm,\n"
2896      << "                                unsigned VariantID = 0);\n";
2897 
2898   if (!Info.OperandMatchInfo.empty()) {
2899     OS << "\n  enum OperandMatchResultTy {\n";
2900     OS << "    MatchOperand_Success,    // operand matched successfully\n";
2901     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2902     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2903     OS << "  };\n";
2904     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2905     OS << "    OperandVector &Operands,\n";
2906     OS << "    StringRef Mnemonic);\n";
2907 
2908     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2909     OS << "    OperandVector &Operands,\n";
2910     OS << "    unsigned MCK);\n\n";
2911   }
2912 
2913   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2914 
2915   // Emit the operand match diagnostic enum names.
2916   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2917   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2918   emitOperandDiagnosticTypes(Info, OS);
2919   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2920 
2921   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2922   OS << "#undef GET_REGISTER_MATCHER\n\n";
2923 
2924   // Emit the subtarget feature enumeration.
2925   emitSubtargetFeatureFlagEnumeration(Info, OS);
2926 
2927   // Emit the function to match a register name to number.
2928   // This should be omitted for Mips target
2929   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2930     emitMatchRegisterName(Target, AsmParser, OS);
2931 
2932   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
2933     emitMatchRegisterAltName(Target, AsmParser, OS);
2934 
2935   OS << "#endif // GET_REGISTER_MATCHER\n\n";
2936 
2937   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2938   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2939 
2940   // Generate the helper function to get the names for subtarget features.
2941   emitGetSubtargetFeatureName(Info, OS);
2942 
2943   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2944 
2945   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2946   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2947 
2948   // Generate the function that remaps for mnemonic aliases.
2949   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
2950 
2951   // Generate the convertToMCInst function to convert operands into an MCInst.
2952   // Also, generate the convertToMapAndConstraints function for MS-style inline
2953   // assembly.  The latter doesn't actually generate a MCInst.
2954   emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
2955                    HasOptionalOperands, OS);
2956 
2957   // Emit the enumeration for classes which participate in matching.
2958   emitMatchClassEnumeration(Target, Info.Classes, OS);
2959 
2960   // Emit the routine to match token strings to their match class.
2961   emitMatchTokenString(Target, Info.Classes, OS);
2962 
2963   // Emit the subclass predicate routine.
2964   emitIsSubclass(Target, Info.Classes, OS);
2965 
2966   // Emit the routine to validate an operand against a match class.
2967   emitValidateOperandClass(Info, OS);
2968 
2969   // Emit the available features compute function.
2970   emitComputeAvailableFeatures(Info, OS);
2971 
2972   StringToOffsetTable StringTable;
2973 
2974   size_t MaxNumOperands = 0;
2975   unsigned MaxMnemonicIndex = 0;
2976   bool HasDeprecation = false;
2977   for (const auto &MI : Info.Matchables) {
2978     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
2979     HasDeprecation |= MI->HasDeprecation;
2980 
2981     // Store a pascal-style length byte in the mnemonic.
2982     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2983     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2984                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
2985   }
2986 
2987   OS << "static const char *const MnemonicTable =\n";
2988   StringTable.EmitString(OS);
2989   OS << ";\n\n";
2990 
2991   // Emit the static match table; unused classes get initalized to 0 which is
2992   // guaranteed to be InvalidMatchClass.
2993   //
2994   // FIXME: We can reduce the size of this table very easily. First, we change
2995   // it so that store the kinds in separate bit-fields for each index, which
2996   // only needs to be the max width used for classes at that index (we also need
2997   // to reject based on this during classification). If we then make sure to
2998   // order the match kinds appropriately (putting mnemonics last), then we
2999   // should only end up using a few bits for each class, especially the ones
3000   // following the mnemonic.
3001   OS << "namespace {\n";
3002   OS << "  struct MatchEntry {\n";
3003   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3004                << " Mnemonic;\n";
3005   OS << "    uint16_t Opcode;\n";
3006   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
3007                << " ConvertFn;\n";
3008   OS << "    " << getMinimalRequiredFeaturesType(Info)
3009                << " RequiredFeatures;\n";
3010   OS << "    " << getMinimalTypeForRange(
3011                       std::distance(Info.Classes.begin(), Info.Classes.end()))
3012      << " Classes[" << MaxNumOperands << "];\n";
3013   OS << "    StringRef getMnemonic() const {\n";
3014   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3015   OS << "                       MnemonicTable[Mnemonic]);\n";
3016   OS << "    }\n";
3017   OS << "  };\n\n";
3018 
3019   OS << "  // Predicate for searching for an opcode.\n";
3020   OS << "  struct LessOpcode {\n";
3021   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3022   OS << "      return LHS.getMnemonic() < RHS;\n";
3023   OS << "    }\n";
3024   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3025   OS << "      return LHS < RHS.getMnemonic();\n";
3026   OS << "    }\n";
3027   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3028   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3029   OS << "    }\n";
3030   OS << "  };\n";
3031 
3032   OS << "} // end anonymous namespace.\n\n";
3033 
3034   unsigned VariantCount = Target.getAsmParserVariantCount();
3035   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3036     Record *AsmVariant = Target.getAsmParserVariant(VC);
3037     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3038 
3039     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3040 
3041     for (const auto &MI : Info.Matchables) {
3042       if (MI->AsmVariantID != AsmVariantNo)
3043         continue;
3044 
3045       // Store a pascal-style length byte in the mnemonic.
3046       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3047       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3048          << " /* " << MI->Mnemonic << " */, "
3049          << Target.getName() << "::"
3050          << MI->getResultInst()->TheDef->getName() << ", "
3051          << MI->ConversionFnKind << ", ";
3052 
3053       // Write the required features mask.
3054       if (!MI->RequiredFeatures.empty()) {
3055         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
3056           if (i) OS << "|";
3057           OS << MI->RequiredFeatures[i]->getEnumName();
3058         }
3059       } else
3060         OS << "0";
3061 
3062       OS << ", { ";
3063       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3064         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3065 
3066         if (i) OS << ", ";
3067         OS << Op.Class->Name;
3068       }
3069       OS << " }, },\n";
3070     }
3071 
3072     OS << "};\n\n";
3073   }
3074 
3075   // A method to determine if a mnemonic is in the list.
3076   if (HasMnemonicFirst) {
3077     OS << "bool " << Target.getName() << ClassName << "::\n"
3078        << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
3079     OS << "  // Find the appropriate table for this asm variant.\n";
3080     OS << "  const MatchEntry *Start, *End;\n";
3081     OS << "  switch (VariantID) {\n";
3082     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3083     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3084       Record *AsmVariant = Target.getAsmParserVariant(VC);
3085       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3086       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3087          << "); End = std::end(MatchTable" << VC << "); break;\n";
3088     }
3089     OS << "  }\n";
3090     OS << "  // Search the table.\n";
3091     OS << "  auto MnemonicRange = ";
3092     OS << "std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
3093     OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
3094     OS << "}\n\n";
3095   }
3096 
3097   // Finally, build the match function.
3098   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3099      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3100   OS << "                     MCInst &Inst, uint64_t &ErrorInfo,\n"
3101      << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3102 
3103   OS << "  // Eliminate obvious mismatches.\n";
3104   OS << "  if (Operands.size() > "
3105      << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3106   OS << "    ErrorInfo = "
3107      << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3108   OS << "    return Match_InvalidOperand;\n";
3109   OS << "  }\n\n";
3110 
3111   // Emit code to get the available features.
3112   OS << "  // Get the current feature set.\n";
3113   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
3114 
3115   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3116   if (HasMnemonicFirst) {
3117     OS << "  StringRef Mnemonic = ((" << Target.getName()
3118        << "Operand&)*Operands[0]).getToken();\n\n";
3119   } else {
3120     OS << "  StringRef Mnemonic;\n";
3121     OS << "  if (Operands[0]->isToken())\n";
3122     OS << "    Mnemonic = ((" << Target.getName()
3123        << "Operand&)*Operands[0]).getToken();\n\n";
3124   }
3125 
3126   if (HasMnemonicAliases) {
3127     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3128     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3129   }
3130 
3131   // Emit code to compute the class list for this operand vector.
3132   OS << "  // Some state to try to produce better error messages.\n";
3133   OS << "  bool HadMatchOtherThanFeatures = false;\n";
3134   OS << "  bool HadMatchOtherThanPredicate = false;\n";
3135   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3136   OS << "  uint64_t MissingFeatures = ~0ULL;\n";
3137   if (HasOptionalOperands) {
3138     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3139   }
3140   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3141   OS << "  // wrong for all instances of the instruction.\n";
3142   OS << "  ErrorInfo = ~0ULL;\n";
3143 
3144   // Emit code to search the table.
3145   OS << "  // Find the appropriate table for this asm variant.\n";
3146   OS << "  const MatchEntry *Start, *End;\n";
3147   OS << "  switch (VariantID) {\n";
3148   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3149   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3150     Record *AsmVariant = Target.getAsmParserVariant(VC);
3151     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3152     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3153        << "); End = std::end(MatchTable" << VC << "); break;\n";
3154   }
3155   OS << "  }\n";
3156 
3157   OS << "  // Search the table.\n";
3158   if (HasMnemonicFirst) {
3159     OS << "  auto MnemonicRange = "
3160           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3161   } else {
3162     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3163     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3164     OS << "  if (!Mnemonic.empty())\n";
3165     OS << "    MnemonicRange = "
3166           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3167   }
3168 
3169   OS << "  // Return a more specific error code if no mnemonics match.\n";
3170   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3171   OS << "    return Match_MnemonicFail;\n\n";
3172 
3173   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3174      << "*ie = MnemonicRange.second;\n";
3175   OS << "       it != ie; ++it) {\n";
3176 
3177   if (HasMnemonicFirst) {
3178     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3179     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3180   }
3181 
3182   // Emit check that the subclasses match.
3183   OS << "    bool OperandsValid = true;\n";
3184   if (HasOptionalOperands) {
3185     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3186   }
3187   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3188      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3189      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3190   OS << "      auto Formal = "
3191      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3192   OS << "      if (ActualIdx >= Operands.size()) {\n";
3193   OS << "        OperandsValid = (Formal == " <<"InvalidMatchClass) || "
3194                                  "isSubclass(Formal, OptionalMatchClass);\n";
3195   OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3196   if (HasOptionalOperands) {
3197     OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3198        << ");\n";
3199   }
3200   OS << "        break;\n";
3201   OS << "      }\n";
3202   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3203   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3204   OS << "      if (Diag == Match_Success) {\n";
3205   OS << "        ++ActualIdx;\n";
3206   OS << "        continue;\n";
3207   OS << "      }\n";
3208   OS << "      // If the generic handler indicates an invalid operand\n";
3209   OS << "      // failure, check for a special case.\n";
3210   OS << "      if (Diag == Match_InvalidOperand) {\n";
3211   OS << "        Diag = validateTargetOperandClass(Actual, Formal);\n";
3212   OS << "        if (Diag == Match_Success) {\n";
3213   OS << "          ++ActualIdx;\n";
3214   OS << "          continue;\n";
3215   OS << "        }\n";
3216   OS << "      }\n";
3217   OS << "      // If current formal operand wasn't matched and it is optional\n"
3218      << "      // then try to match next formal operand\n";
3219   OS << "      if (Diag == Match_InvalidOperand "
3220      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3221   if (HasOptionalOperands) {
3222     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3223   }
3224   OS << "        continue;\n";
3225   OS << "      }\n";
3226   OS << "      // If this operand is broken for all of the instances of this\n";
3227   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3228   OS << "      // If we already had a match that only failed due to a\n";
3229   OS << "      // target predicate, that diagnostic is preferred.\n";
3230   OS << "      if (!HadMatchOtherThanPredicate &&\n";
3231   OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3232   OS << "        ErrorInfo = ActualIdx;\n";
3233   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
3234   OS << "        if (Diag != Match_InvalidOperand)\n";
3235   OS << "          RetCode = Diag;\n";
3236   OS << "      }\n";
3237   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3238   OS << "      OperandsValid = false;\n";
3239   OS << "      break;\n";
3240   OS << "    }\n\n";
3241 
3242   OS << "    if (!OperandsValid) continue;\n";
3243 
3244   // Emit check that the required features are available.
3245   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
3246      << "!= it->RequiredFeatures) {\n";
3247   OS << "      HadMatchOtherThanFeatures = true;\n";
3248   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
3249         "~AvailableFeatures;\n";
3250   OS << "      if (countPopulation(NewMissingFeatures) <=\n"
3251         "          countPopulation(MissingFeatures))\n";
3252   OS << "        MissingFeatures = NewMissingFeatures;\n";
3253   OS << "      continue;\n";
3254   OS << "    }\n";
3255   OS << "\n";
3256   OS << "    Inst.clear();\n\n";
3257   OS << "    if (matchingInlineAsm) {\n";
3258   OS << "      Inst.setOpcode(it->Opcode);\n";
3259   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3260   OS << "      return Match_Success;\n";
3261   OS << "    }\n\n";
3262   OS << "    // We have selected a definite instruction, convert the parsed\n"
3263      << "    // operands into the appropriate MCInst.\n";
3264   if (HasOptionalOperands) {
3265     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3266        << "                    OptionalOperandsMask);\n";
3267   } else {
3268     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3269   }
3270   OS << "\n";
3271 
3272   // Verify the instruction with the target-specific match predicate function.
3273   OS << "    // We have a potential match. Check the target predicate to\n"
3274      << "    // handle any context sensitive constraints.\n"
3275      << "    unsigned MatchResult;\n"
3276      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3277      << " Match_Success) {\n"
3278      << "      Inst.clear();\n"
3279      << "      RetCode = MatchResult;\n"
3280      << "      HadMatchOtherThanPredicate = true;\n"
3281      << "      continue;\n"
3282      << "    }\n\n";
3283 
3284   // Call the post-processing function, if used.
3285   std::string InsnCleanupFn =
3286     AsmParser->getValueAsString("AsmParserInstCleanup");
3287   if (!InsnCleanupFn.empty())
3288     OS << "    " << InsnCleanupFn << "(Inst);\n";
3289 
3290   if (HasDeprecation) {
3291     OS << "    std::string Info;\n";
3292     OS << "    if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3293     OS << "      SMLoc Loc = ((" << Target.getName()
3294        << "Operand&)*Operands[0]).getStartLoc();\n";
3295     OS << "      getParser().Warning(Loc, Info, None);\n";
3296     OS << "    }\n";
3297   }
3298 
3299   OS << "    return Match_Success;\n";
3300   OS << "  }\n\n";
3301 
3302   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3303   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3304   OS << "    return RetCode;\n\n";
3305   OS << "  // Missing feature matches return which features were missing\n";
3306   OS << "  ErrorInfo = MissingFeatures;\n";
3307   OS << "  return Match_MissingFeature;\n";
3308   OS << "}\n\n";
3309 
3310   if (!Info.OperandMatchInfo.empty())
3311     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3312                              MaxMnemonicIndex, HasMnemonicFirst);
3313 
3314   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3315 }
3316 
3317 namespace llvm {
3318 
EmitAsmMatcher(RecordKeeper & RK,raw_ostream & OS)3319 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3320   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3321   AsmMatcherEmitter(RK).run(OS);
3322 }
3323 
3324 } // end namespace llvm
3325