1 /* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
2 * Use of this source code is governed by a BSD-style license that can be
3 * found in the LICENSE file.
4 */
5
6 #define _BSD_SOURCE
7 #define _DEFAULT_SOURCE
8 #define _GNU_SOURCE
9
10 #include <asm/unistd.h>
11 #include <ctype.h>
12 #include <dirent.h>
13 #include <errno.h>
14 #include <fcntl.h>
15 #include <grp.h>
16 #include <inttypes.h>
17 #include <limits.h>
18 #include <linux/capability.h>
19 #include <net/if.h>
20 #include <pwd.h>
21 #include <sched.h>
22 #include <signal.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25 #include <stddef.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/capability.h>
30 #include <sys/mount.h>
31 #include <sys/param.h>
32 #include <sys/prctl.h>
33 #include <sys/socket.h>
34 #include <sys/stat.h>
35 #include <sys/types.h>
36 #include <sys/user.h>
37 #include <sys/wait.h>
38 #include <syscall.h>
39 #include <unistd.h>
40
41 #include "libminijail.h"
42 #include "libminijail-private.h"
43
44 #include "signal_handler.h"
45 #include "syscall_filter.h"
46 #include "syscall_wrapper.h"
47 #include "util.h"
48
49 #ifdef HAVE_SECUREBITS_H
50 # include <linux/securebits.h>
51 #else
52 # define SECURE_ALL_BITS 0x55
53 # define SECURE_ALL_LOCKS (SECURE_ALL_BITS << 1)
54 #endif
55 /* For kernels < 4.3. */
56 #define OLD_SECURE_ALL_BITS 0x15
57 #define OLD_SECURE_ALL_LOCKS (OLD_SECURE_ALL_BITS << 1)
58
59 /*
60 * Assert the value of SECURE_ALL_BITS at compile-time.
61 * Brillo devices are currently compiled against 4.4 kernel headers. Kernel 4.3
62 * added a new securebit.
63 * When a new securebit is added, the new SECURE_ALL_BITS mask will return EPERM
64 * when used on older kernels. The compile-time assert will catch this situation
65 * at compile time.
66 */
67 #ifdef __BRILLO__
68 _Static_assert(SECURE_ALL_BITS == 0x55, "SECURE_ALL_BITS == 0x55.");
69 #endif
70
71 /* Until these are reliably available in linux/prctl.h. */
72 #ifndef PR_SET_SECCOMP
73 # define PR_SET_SECCOMP 22
74 #endif
75
76 #ifndef PR_ALT_SYSCALL
77 # define PR_ALT_SYSCALL 0x43724f53
78 #endif
79
80 /* Seccomp filter related flags. */
81 #ifndef PR_SET_NO_NEW_PRIVS
82 # define PR_SET_NO_NEW_PRIVS 38
83 #endif
84
85 #ifndef SECCOMP_MODE_FILTER
86 # define SECCOMP_MODE_FILTER 2 /* uses user-supplied filter. */
87 #endif
88
89 #ifndef SECCOMP_SET_MODE_STRICT
90 # define SECCOMP_SET_MODE_STRICT 0
91 #endif
92 #ifndef SECCOMP_SET_MODE_FILTER
93 # define SECCOMP_SET_MODE_FILTER 1
94 #endif
95
96 #ifndef SECCOMP_FILTER_FLAG_TSYNC
97 # define SECCOMP_FILTER_FLAG_TSYNC 1
98 #endif
99 /* End seccomp filter related flags. */
100
101 /* New cgroup namespace might not be in linux-headers yet. */
102 #ifndef CLONE_NEWCGROUP
103 # define CLONE_NEWCGROUP 0x02000000
104 #endif
105
106 #define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */
107
108 /* Keyctl commands. */
109 #define KEYCTL_JOIN_SESSION_KEYRING 1
110
111 struct mountpoint {
112 char *src;
113 char *dest;
114 char *type;
115 char *data;
116 int has_data;
117 unsigned long flags;
118 struct mountpoint *next;
119 };
120
121 struct minijail {
122 /*
123 * WARNING: if you add a flag here you need to make sure it's
124 * accounted for in minijail_pre{enter|exec}() below.
125 */
126 struct {
127 int uid : 1;
128 int gid : 1;
129 int inherit_suppl_gids : 1;
130 int set_suppl_gids : 1;
131 int keep_suppl_gids : 1;
132 int use_caps : 1;
133 int capbset_drop : 1;
134 int vfs : 1;
135 int enter_vfs : 1;
136 int skip_remount_private : 1;
137 int pids : 1;
138 int ipc : 1;
139 int net : 1;
140 int enter_net : 1;
141 int ns_cgroups : 1;
142 int userns : 1;
143 int disable_setgroups : 1;
144 int seccomp : 1;
145 int remount_proc_ro : 1;
146 int no_new_privs : 1;
147 int seccomp_filter : 1;
148 int seccomp_filter_tsync : 1;
149 int seccomp_filter_logging : 1;
150 int chroot : 1;
151 int pivot_root : 1;
152 int mount_tmp : 1;
153 int do_init : 1;
154 int pid_file : 1;
155 int cgroups : 1;
156 int alt_syscall : 1;
157 int reset_signal_mask : 1;
158 int close_open_fds : 1;
159 int new_session_keyring : 1;
160 } flags;
161 uid_t uid;
162 gid_t gid;
163 gid_t usergid;
164 char *user;
165 size_t suppl_gid_count;
166 gid_t *suppl_gid_list;
167 uint64_t caps;
168 uint64_t cap_bset;
169 pid_t initpid;
170 int mountns_fd;
171 int netns_fd;
172 char *chrootdir;
173 char *pid_file_path;
174 char *uidmap;
175 char *gidmap;
176 size_t filter_len;
177 struct sock_fprog *filter_prog;
178 char *alt_syscall_table;
179 struct mountpoint *mounts_head;
180 struct mountpoint *mounts_tail;
181 size_t mounts_count;
182 size_t tmpfs_size;
183 char *cgroups[MAX_CGROUPS];
184 size_t cgroup_count;
185 };
186
187 /*
188 * Strip out flags meant for the parent.
189 * We keep things that are not inherited across execve(2) (e.g. capabilities),
190 * or are easier to set after execve(2) (e.g. seccomp filters).
191 */
minijail_preenter(struct minijail * j)192 void minijail_preenter(struct minijail *j)
193 {
194 j->flags.vfs = 0;
195 j->flags.enter_vfs = 0;
196 j->flags.skip_remount_private = 0;
197 j->flags.remount_proc_ro = 0;
198 j->flags.pids = 0;
199 j->flags.do_init = 0;
200 j->flags.pid_file = 0;
201 j->flags.cgroups = 0;
202 }
203
204 /*
205 * Strip out flags meant for the child.
206 * We keep things that are inherited across execve(2).
207 */
minijail_preexec(struct minijail * j)208 void minijail_preexec(struct minijail *j)
209 {
210 int vfs = j->flags.vfs;
211 int enter_vfs = j->flags.enter_vfs;
212 int skip_remount_private = j->flags.skip_remount_private;
213 int remount_proc_ro = j->flags.remount_proc_ro;
214 int userns = j->flags.userns;
215 if (j->user)
216 free(j->user);
217 j->user = NULL;
218 if (j->suppl_gid_list)
219 free(j->suppl_gid_list);
220 j->suppl_gid_list = NULL;
221 memset(&j->flags, 0, sizeof(j->flags));
222 /* Now restore anything we meant to keep. */
223 j->flags.vfs = vfs;
224 j->flags.enter_vfs = enter_vfs;
225 j->flags.skip_remount_private = skip_remount_private;
226 j->flags.remount_proc_ro = remount_proc_ro;
227 j->flags.userns = userns;
228 /* Note, |pids| will already have been used before this call. */
229 }
230
231 /* Minijail API. */
232
minijail_new(void)233 struct minijail API *minijail_new(void)
234 {
235 return calloc(1, sizeof(struct minijail));
236 }
237
minijail_change_uid(struct minijail * j,uid_t uid)238 void API minijail_change_uid(struct minijail *j, uid_t uid)
239 {
240 if (uid == 0)
241 die("useless change to uid 0");
242 j->uid = uid;
243 j->flags.uid = 1;
244 }
245
minijail_change_gid(struct minijail * j,gid_t gid)246 void API minijail_change_gid(struct minijail *j, gid_t gid)
247 {
248 if (gid == 0)
249 die("useless change to gid 0");
250 j->gid = gid;
251 j->flags.gid = 1;
252 }
253
minijail_set_supplementary_gids(struct minijail * j,size_t size,const gid_t * list)254 void API minijail_set_supplementary_gids(struct minijail *j, size_t size,
255 const gid_t *list)
256 {
257 size_t i;
258
259 if (j->flags.inherit_suppl_gids)
260 die("cannot inherit *and* set supplementary groups");
261 if (j->flags.keep_suppl_gids)
262 die("cannot keep *and* set supplementary groups");
263
264 if (size == 0) {
265 /* Clear supplementary groups. */
266 j->suppl_gid_list = NULL;
267 j->suppl_gid_count = 0;
268 j->flags.set_suppl_gids = 1;
269 return;
270 }
271
272 /* Copy the gid_t array. */
273 j->suppl_gid_list = calloc(size, sizeof(gid_t));
274 if (!j->suppl_gid_list) {
275 die("failed to allocate internal supplementary group array");
276 }
277 for (i = 0; i < size; i++) {
278 j->suppl_gid_list[i] = list[i];
279 }
280 j->suppl_gid_count = size;
281 j->flags.set_suppl_gids = 1;
282 }
283
minijail_keep_supplementary_gids(struct minijail * j)284 void API minijail_keep_supplementary_gids(struct minijail *j) {
285 j->flags.keep_suppl_gids = 1;
286 }
287
minijail_change_user(struct minijail * j,const char * user)288 int API minijail_change_user(struct minijail *j, const char *user)
289 {
290 char *buf = NULL;
291 struct passwd pw;
292 struct passwd *ppw = NULL;
293 ssize_t sz = sysconf(_SC_GETPW_R_SIZE_MAX);
294 if (sz == -1)
295 sz = 65536; /* your guess is as good as mine... */
296
297 /*
298 * sysconf(_SC_GETPW_R_SIZE_MAX), under glibc, is documented to return
299 * the maximum needed size of the buffer, so we don't have to search.
300 */
301 buf = malloc(sz);
302 if (!buf)
303 return -ENOMEM;
304 getpwnam_r(user, &pw, buf, sz, &ppw);
305 /*
306 * We're safe to free the buffer here. The strings inside |pw| point
307 * inside |buf|, but we don't use any of them; this leaves the pointers
308 * dangling but it's safe. |ppw| points at |pw| if getpwnam_r(3)
309 * succeeded.
310 */
311 free(buf);
312 /* getpwnam_r(3) does *not* set errno when |ppw| is NULL. */
313 if (!ppw)
314 return -1;
315 minijail_change_uid(j, ppw->pw_uid);
316 j->user = strdup(user);
317 if (!j->user)
318 return -ENOMEM;
319 j->usergid = ppw->pw_gid;
320 return 0;
321 }
322
minijail_change_group(struct minijail * j,const char * group)323 int API minijail_change_group(struct minijail *j, const char *group)
324 {
325 char *buf = NULL;
326 struct group gr;
327 struct group *pgr = NULL;
328 ssize_t sz = sysconf(_SC_GETGR_R_SIZE_MAX);
329 if (sz == -1)
330 sz = 65536; /* and mine is as good as yours, really */
331
332 /*
333 * sysconf(_SC_GETGR_R_SIZE_MAX), under glibc, is documented to return
334 * the maximum needed size of the buffer, so we don't have to search.
335 */
336 buf = malloc(sz);
337 if (!buf)
338 return -ENOMEM;
339 getgrnam_r(group, &gr, buf, sz, &pgr);
340 /*
341 * We're safe to free the buffer here. The strings inside gr point
342 * inside buf, but we don't use any of them; this leaves the pointers
343 * dangling but it's safe. pgr points at gr if getgrnam_r succeeded.
344 */
345 free(buf);
346 /* getgrnam_r(3) does *not* set errno when |pgr| is NULL. */
347 if (!pgr)
348 return -1;
349 minijail_change_gid(j, pgr->gr_gid);
350 return 0;
351 }
352
minijail_use_seccomp(struct minijail * j)353 void API minijail_use_seccomp(struct minijail *j)
354 {
355 j->flags.seccomp = 1;
356 }
357
minijail_no_new_privs(struct minijail * j)358 void API minijail_no_new_privs(struct minijail *j)
359 {
360 j->flags.no_new_privs = 1;
361 }
362
minijail_use_seccomp_filter(struct minijail * j)363 void API minijail_use_seccomp_filter(struct minijail *j)
364 {
365 j->flags.seccomp_filter = 1;
366 }
367
minijail_set_seccomp_filter_tsync(struct minijail * j)368 void API minijail_set_seccomp_filter_tsync(struct minijail *j)
369 {
370 if (j->filter_len > 0 && j->filter_prog != NULL) {
371 die("minijail_set_seccomp_filter_tsync() must be called "
372 "before minijail_parse_seccomp_filters()");
373 }
374 j->flags.seccomp_filter_tsync = 1;
375 }
376
minijail_log_seccomp_filter_failures(struct minijail * j)377 void API minijail_log_seccomp_filter_failures(struct minijail *j)
378 {
379 if (j->filter_len > 0 && j->filter_prog != NULL) {
380 die("minijail_log_seccomp_filter_failures() must be called "
381 "before minijail_parse_seccomp_filters()");
382 }
383 j->flags.seccomp_filter_logging = 1;
384 }
385
minijail_use_caps(struct minijail * j,uint64_t capmask)386 void API minijail_use_caps(struct minijail *j, uint64_t capmask)
387 {
388 /*
389 * 'minijail_use_caps' configures a runtime-capabilities-only
390 * environment, including a bounding set matching the thread's runtime
391 * (permitted|inheritable|effective) sets.
392 * Therefore, it will override any existing bounding set configurations
393 * since the latter would allow gaining extra runtime capabilities from
394 * file capabilities.
395 */
396 if (j->flags.capbset_drop) {
397 warn("overriding bounding set configuration");
398 j->cap_bset = 0;
399 j->flags.capbset_drop = 0;
400 }
401 j->caps = capmask;
402 j->flags.use_caps = 1;
403 }
404
minijail_capbset_drop(struct minijail * j,uint64_t capmask)405 void API minijail_capbset_drop(struct minijail *j, uint64_t capmask)
406 {
407 if (j->flags.use_caps) {
408 /*
409 * 'minijail_use_caps' will have already configured a capability
410 * bounding set matching the (permitted|inheritable|effective)
411 * sets. Abort if the user tries to configure a separate
412 * bounding set. 'minijail_capbset_drop' and 'minijail_use_caps'
413 * are mutually exclusive.
414 */
415 die("runtime capabilities already configured, can't drop "
416 "bounding set separately");
417 }
418 j->cap_bset = capmask;
419 j->flags.capbset_drop = 1;
420 }
421
minijail_reset_signal_mask(struct minijail * j)422 void API minijail_reset_signal_mask(struct minijail *j)
423 {
424 j->flags.reset_signal_mask = 1;
425 }
426
minijail_namespace_vfs(struct minijail * j)427 void API minijail_namespace_vfs(struct minijail *j)
428 {
429 j->flags.vfs = 1;
430 }
431
minijail_namespace_enter_vfs(struct minijail * j,const char * ns_path)432 void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path)
433 {
434 int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
435 if (ns_fd < 0) {
436 pdie("failed to open namespace '%s'", ns_path);
437 }
438 j->mountns_fd = ns_fd;
439 j->flags.enter_vfs = 1;
440 }
441
minijail_new_session_keyring(struct minijail * j)442 void API minijail_new_session_keyring(struct minijail *j)
443 {
444 j->flags.new_session_keyring = 1;
445 }
446
minijail_skip_remount_private(struct minijail * j)447 void API minijail_skip_remount_private(struct minijail *j)
448 {
449 j->flags.skip_remount_private = 1;
450 }
451
minijail_namespace_pids(struct minijail * j)452 void API minijail_namespace_pids(struct minijail *j)
453 {
454 j->flags.vfs = 1;
455 j->flags.remount_proc_ro = 1;
456 j->flags.pids = 1;
457 j->flags.do_init = 1;
458 }
459
minijail_namespace_ipc(struct minijail * j)460 void API minijail_namespace_ipc(struct minijail *j)
461 {
462 j->flags.ipc = 1;
463 }
464
minijail_namespace_net(struct minijail * j)465 void API minijail_namespace_net(struct minijail *j)
466 {
467 j->flags.net = 1;
468 }
469
minijail_namespace_enter_net(struct minijail * j,const char * ns_path)470 void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path)
471 {
472 int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
473 if (ns_fd < 0) {
474 pdie("failed to open namespace '%s'", ns_path);
475 }
476 j->netns_fd = ns_fd;
477 j->flags.enter_net = 1;
478 }
479
minijail_namespace_cgroups(struct minijail * j)480 void API minijail_namespace_cgroups(struct minijail *j)
481 {
482 j->flags.ns_cgroups = 1;
483 }
484
minijail_close_open_fds(struct minijail * j)485 void API minijail_close_open_fds(struct minijail *j)
486 {
487 j->flags.close_open_fds = 1;
488 }
489
minijail_remount_proc_readonly(struct minijail * j)490 void API minijail_remount_proc_readonly(struct minijail *j)
491 {
492 j->flags.vfs = 1;
493 j->flags.remount_proc_ro = 1;
494 }
495
minijail_namespace_user(struct minijail * j)496 void API minijail_namespace_user(struct minijail *j)
497 {
498 j->flags.userns = 1;
499 }
500
minijail_namespace_user_disable_setgroups(struct minijail * j)501 void API minijail_namespace_user_disable_setgroups(struct minijail *j)
502 {
503 j->flags.disable_setgroups = 1;
504 }
505
minijail_uidmap(struct minijail * j,const char * uidmap)506 int API minijail_uidmap(struct minijail *j, const char *uidmap)
507 {
508 j->uidmap = strdup(uidmap);
509 if (!j->uidmap)
510 return -ENOMEM;
511 char *ch;
512 for (ch = j->uidmap; *ch; ch++) {
513 if (*ch == ',')
514 *ch = '\n';
515 }
516 return 0;
517 }
518
minijail_gidmap(struct minijail * j,const char * gidmap)519 int API minijail_gidmap(struct minijail *j, const char *gidmap)
520 {
521 j->gidmap = strdup(gidmap);
522 if (!j->gidmap)
523 return -ENOMEM;
524 char *ch;
525 for (ch = j->gidmap; *ch; ch++) {
526 if (*ch == ',')
527 *ch = '\n';
528 }
529 return 0;
530 }
531
minijail_inherit_usergroups(struct minijail * j)532 void API minijail_inherit_usergroups(struct minijail *j)
533 {
534 j->flags.inherit_suppl_gids = 1;
535 }
536
minijail_run_as_init(struct minijail * j)537 void API minijail_run_as_init(struct minijail *j)
538 {
539 /*
540 * Since the jailed program will become 'init' in the new PID namespace,
541 * Minijail does not need to fork an 'init' process.
542 */
543 j->flags.do_init = 0;
544 }
545
minijail_enter_chroot(struct minijail * j,const char * dir)546 int API minijail_enter_chroot(struct minijail *j, const char *dir)
547 {
548 if (j->chrootdir)
549 return -EINVAL;
550 j->chrootdir = strdup(dir);
551 if (!j->chrootdir)
552 return -ENOMEM;
553 j->flags.chroot = 1;
554 return 0;
555 }
556
minijail_enter_pivot_root(struct minijail * j,const char * dir)557 int API minijail_enter_pivot_root(struct minijail *j, const char *dir)
558 {
559 if (j->chrootdir)
560 return -EINVAL;
561 j->chrootdir = strdup(dir);
562 if (!j->chrootdir)
563 return -ENOMEM;
564 j->flags.pivot_root = 1;
565 return 0;
566 }
567
minijail_get_original_path(struct minijail * j,const char * path_inside_chroot)568 char API *minijail_get_original_path(struct minijail *j,
569 const char *path_inside_chroot)
570 {
571 struct mountpoint *b;
572
573 b = j->mounts_head;
574 while (b) {
575 /*
576 * If |path_inside_chroot| is the exact destination of a
577 * mount, then the original path is exactly the source of
578 * the mount.
579 * for example: "-b /some/path/exe,/chroot/path/exe"
580 * mount source = /some/path/exe, mount dest =
581 * /chroot/path/exe Then when getting the original path of
582 * "/chroot/path/exe", the source of that mount,
583 * "/some/path/exe" is what should be returned.
584 */
585 if (!strcmp(b->dest, path_inside_chroot))
586 return strdup(b->src);
587
588 /*
589 * If |path_inside_chroot| is within the destination path of a
590 * mount, take the suffix of the chroot path relative to the
591 * mount destination path, and append it to the mount source
592 * path.
593 */
594 if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) {
595 const char *relative_path =
596 path_inside_chroot + strlen(b->dest);
597 return path_join(b->src, relative_path);
598 }
599 b = b->next;
600 }
601
602 /* If there is a chroot path, append |path_inside_chroot| to that. */
603 if (j->chrootdir)
604 return path_join(j->chrootdir, path_inside_chroot);
605
606 /* No chroot, so the path outside is the same as it is inside. */
607 return strdup(path_inside_chroot);
608 }
609
minijail_get_tmpfs_size(const struct minijail * j)610 size_t minijail_get_tmpfs_size(const struct minijail *j)
611 {
612 return j->tmpfs_size;
613 }
614
minijail_mount_tmp(struct minijail * j)615 void API minijail_mount_tmp(struct minijail *j)
616 {
617 minijail_mount_tmp_size(j, 64 * 1024 * 1024);
618 }
619
minijail_mount_tmp_size(struct minijail * j,size_t size)620 void API minijail_mount_tmp_size(struct minijail *j, size_t size)
621 {
622 j->tmpfs_size = size;
623 j->flags.mount_tmp = 1;
624 }
625
minijail_write_pid_file(struct minijail * j,const char * path)626 int API minijail_write_pid_file(struct minijail *j, const char *path)
627 {
628 j->pid_file_path = strdup(path);
629 if (!j->pid_file_path)
630 return -ENOMEM;
631 j->flags.pid_file = 1;
632 return 0;
633 }
634
minijail_add_to_cgroup(struct minijail * j,const char * path)635 int API minijail_add_to_cgroup(struct minijail *j, const char *path)
636 {
637 if (j->cgroup_count >= MAX_CGROUPS)
638 return -ENOMEM;
639 j->cgroups[j->cgroup_count] = strdup(path);
640 if (!j->cgroups[j->cgroup_count])
641 return -ENOMEM;
642 j->cgroup_count++;
643 j->flags.cgroups = 1;
644 return 0;
645 }
646
minijail_mount_with_data(struct minijail * j,const char * src,const char * dest,const char * type,unsigned long flags,const char * data)647 int API minijail_mount_with_data(struct minijail *j, const char *src,
648 const char *dest, const char *type,
649 unsigned long flags, const char *data)
650 {
651 struct mountpoint *m;
652
653 if (*dest != '/')
654 return -EINVAL;
655 m = calloc(1, sizeof(*m));
656 if (!m)
657 return -ENOMEM;
658 m->dest = strdup(dest);
659 if (!m->dest)
660 goto error;
661 m->src = strdup(src);
662 if (!m->src)
663 goto error;
664 m->type = strdup(type);
665 if (!m->type)
666 goto error;
667 if (data) {
668 m->data = strdup(data);
669 if (!m->data)
670 goto error;
671 m->has_data = 1;
672 }
673 m->flags = flags;
674
675 info("mount %s -> %s type '%s'", src, dest, type);
676
677 /*
678 * Force vfs namespacing so the mounts don't leak out into the
679 * containing vfs namespace.
680 */
681 minijail_namespace_vfs(j);
682
683 if (j->mounts_tail)
684 j->mounts_tail->next = m;
685 else
686 j->mounts_head = m;
687 j->mounts_tail = m;
688 j->mounts_count++;
689
690 return 0;
691
692 error:
693 free(m->type);
694 free(m->src);
695 free(m->dest);
696 free(m);
697 return -ENOMEM;
698 }
699
minijail_mount(struct minijail * j,const char * src,const char * dest,const char * type,unsigned long flags)700 int API minijail_mount(struct minijail *j, const char *src, const char *dest,
701 const char *type, unsigned long flags)
702 {
703 return minijail_mount_with_data(j, src, dest, type, flags, NULL);
704 }
705
minijail_bind(struct minijail * j,const char * src,const char * dest,int writeable)706 int API minijail_bind(struct minijail *j, const char *src, const char *dest,
707 int writeable)
708 {
709 unsigned long flags = MS_BIND;
710
711 if (!writeable)
712 flags |= MS_RDONLY;
713
714 return minijail_mount(j, src, dest, "", flags);
715 }
716
clear_seccomp_options(struct minijail * j)717 static void clear_seccomp_options(struct minijail *j)
718 {
719 j->flags.seccomp_filter = 0;
720 j->flags.seccomp_filter_tsync = 0;
721 j->flags.seccomp_filter_logging = 0;
722 j->filter_len = 0;
723 j->filter_prog = NULL;
724 j->flags.no_new_privs = 0;
725 }
726
seccomp_should_parse_filters(struct minijail * j)727 static int seccomp_should_parse_filters(struct minijail *j)
728 {
729 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL) == -1) {
730 /*
731 * |errno| will be set to EINVAL when seccomp has not been
732 * compiled into the kernel. On certain platforms and kernel
733 * versions this is not a fatal failure. In that case, and only
734 * in that case, disable seccomp and skip loading the filters.
735 */
736 if ((errno == EINVAL) && seccomp_can_softfail()) {
737 warn("not loading seccomp filters, seccomp filter not "
738 "supported");
739 clear_seccomp_options(j);
740 return 0;
741 }
742 /*
743 * If |errno| != EINVAL or seccomp_can_softfail() is false,
744 * we can proceed. Worst case scenario minijail_enter() will
745 * abort() if seccomp fails.
746 */
747 }
748 if (j->flags.seccomp_filter_tsync) {
749 /* Are the seccomp(2) syscall and the TSYNC option supported? */
750 if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
751 SECCOMP_FILTER_FLAG_TSYNC, NULL) == -1) {
752 int saved_errno = errno;
753 if (saved_errno == ENOSYS && seccomp_can_softfail()) {
754 warn("seccomp(2) syscall not supported");
755 clear_seccomp_options(j);
756 return 0;
757 } else if (saved_errno == EINVAL &&
758 seccomp_can_softfail()) {
759 warn(
760 "seccomp filter thread sync not supported");
761 clear_seccomp_options(j);
762 return 0;
763 }
764 /*
765 * Similar logic here. If seccomp_can_softfail() is
766 * false, or |errno| != ENOSYS, or |errno| != EINVAL,
767 * we can proceed. Worst case scenario minijail_enter()
768 * will abort() if seccomp or TSYNC fail.
769 */
770 }
771 }
772 return 1;
773 }
774
parse_seccomp_filters(struct minijail * j,FILE * policy_file)775 static int parse_seccomp_filters(struct minijail *j, FILE *policy_file)
776 {
777 struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog));
778 int use_ret_trap =
779 j->flags.seccomp_filter_tsync || j->flags.seccomp_filter_logging;
780 int allow_logging = j->flags.seccomp_filter_logging;
781
782 if (compile_filter(policy_file, fprog, use_ret_trap, allow_logging)) {
783 free(fprog);
784 return -1;
785 }
786
787 j->filter_len = fprog->len;
788 j->filter_prog = fprog;
789 return 0;
790 }
791
minijail_parse_seccomp_filters(struct minijail * j,const char * path)792 void API minijail_parse_seccomp_filters(struct minijail *j, const char *path)
793 {
794 if (!seccomp_should_parse_filters(j))
795 return;
796
797 FILE *file = fopen(path, "r");
798 if (!file) {
799 pdie("failed to open seccomp filter file '%s'", path);
800 }
801
802 if (parse_seccomp_filters(j, file) != 0) {
803 die("failed to compile seccomp filter BPF program in '%s'",
804 path);
805 }
806 fclose(file);
807 }
808
minijail_parse_seccomp_filters_from_fd(struct minijail * j,int fd)809 void API minijail_parse_seccomp_filters_from_fd(struct minijail *j, int fd)
810 {
811 if (!seccomp_should_parse_filters(j))
812 return;
813
814 FILE *file = fdopen(fd, "r");
815 if (!file) {
816 pdie("failed to associate stream with fd %d", fd);
817 }
818
819 if (parse_seccomp_filters(j, file) != 0) {
820 die("failed to compile seccomp filter BPF program from fd %d",
821 fd);
822 }
823 fclose(file);
824 }
825
minijail_use_alt_syscall(struct minijail * j,const char * table)826 int API minijail_use_alt_syscall(struct minijail *j, const char *table)
827 {
828 j->alt_syscall_table = strdup(table);
829 if (!j->alt_syscall_table)
830 return -ENOMEM;
831 j->flags.alt_syscall = 1;
832 return 0;
833 }
834
835 struct marshal_state {
836 size_t available;
837 size_t total;
838 char *buf;
839 };
840
marshal_state_init(struct marshal_state * state,char * buf,size_t available)841 void marshal_state_init(struct marshal_state *state, char *buf,
842 size_t available)
843 {
844 state->available = available;
845 state->buf = buf;
846 state->total = 0;
847 }
848
marshal_append(struct marshal_state * state,void * src,size_t length)849 void marshal_append(struct marshal_state *state, void *src, size_t length)
850 {
851 size_t copy_len = MIN(state->available, length);
852
853 /* Up to |available| will be written. */
854 if (copy_len) {
855 memcpy(state->buf, src, copy_len);
856 state->buf += copy_len;
857 state->available -= copy_len;
858 }
859 /* |total| will contain the expected length. */
860 state->total += length;
861 }
862
marshal_mount(struct marshal_state * state,const struct mountpoint * m)863 void marshal_mount(struct marshal_state *state, const struct mountpoint *m)
864 {
865 marshal_append(state, m->src, strlen(m->src) + 1);
866 marshal_append(state, m->dest, strlen(m->dest) + 1);
867 marshal_append(state, m->type, strlen(m->type) + 1);
868 marshal_append(state, (char *)&m->has_data, sizeof(m->has_data));
869 if (m->has_data)
870 marshal_append(state, m->data, strlen(m->data) + 1);
871 marshal_append(state, (char *)&m->flags, sizeof(m->flags));
872 }
873
minijail_marshal_helper(struct marshal_state * state,const struct minijail * j)874 void minijail_marshal_helper(struct marshal_state *state,
875 const struct minijail *j)
876 {
877 struct mountpoint *m = NULL;
878 size_t i;
879
880 marshal_append(state, (char *)j, sizeof(*j));
881 if (j->user)
882 marshal_append(state, j->user, strlen(j->user) + 1);
883 if (j->suppl_gid_list) {
884 marshal_append(state, j->suppl_gid_list,
885 j->suppl_gid_count * sizeof(gid_t));
886 }
887 if (j->chrootdir)
888 marshal_append(state, j->chrootdir, strlen(j->chrootdir) + 1);
889 if (j->alt_syscall_table) {
890 marshal_append(state, j->alt_syscall_table,
891 strlen(j->alt_syscall_table) + 1);
892 }
893 if (j->flags.seccomp_filter && j->filter_prog) {
894 struct sock_fprog *fp = j->filter_prog;
895 marshal_append(state, (char *)fp->filter,
896 fp->len * sizeof(struct sock_filter));
897 }
898 for (m = j->mounts_head; m; m = m->next) {
899 marshal_mount(state, m);
900 }
901 for (i = 0; i < j->cgroup_count; ++i)
902 marshal_append(state, j->cgroups[i], strlen(j->cgroups[i]) + 1);
903 }
904
minijail_size(const struct minijail * j)905 size_t API minijail_size(const struct minijail *j)
906 {
907 struct marshal_state state;
908 marshal_state_init(&state, NULL, 0);
909 minijail_marshal_helper(&state, j);
910 return state.total;
911 }
912
minijail_marshal(const struct minijail * j,char * buf,size_t available)913 int minijail_marshal(const struct minijail *j, char *buf, size_t available)
914 {
915 struct marshal_state state;
916 marshal_state_init(&state, buf, available);
917 minijail_marshal_helper(&state, j);
918 return (state.total > available);
919 }
920
minijail_unmarshal(struct minijail * j,char * serialized,size_t length)921 int minijail_unmarshal(struct minijail *j, char *serialized, size_t length)
922 {
923 size_t i;
924 size_t count;
925 int ret = -EINVAL;
926
927 if (length < sizeof(*j))
928 goto out;
929 memcpy((void *)j, serialized, sizeof(*j));
930 serialized += sizeof(*j);
931 length -= sizeof(*j);
932
933 /* Potentially stale pointers not used as signals. */
934 j->pid_file_path = NULL;
935 j->uidmap = NULL;
936 j->gidmap = NULL;
937 j->mounts_head = NULL;
938 j->mounts_tail = NULL;
939 j->filter_prog = NULL;
940
941 if (j->user) { /* stale pointer */
942 char *user = consumestr(&serialized, &length);
943 if (!user)
944 goto clear_pointers;
945 j->user = strdup(user);
946 if (!j->user)
947 goto clear_pointers;
948 }
949
950 if (j->suppl_gid_list) { /* stale pointer */
951 if (j->suppl_gid_count > NGROUPS_MAX) {
952 goto bad_gid_list;
953 }
954 size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t);
955 void *gid_list_bytes =
956 consumebytes(gid_list_size, &serialized, &length);
957 if (!gid_list_bytes)
958 goto bad_gid_list;
959
960 j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t));
961 if (!j->suppl_gid_list)
962 goto bad_gid_list;
963
964 memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size);
965 }
966
967 if (j->chrootdir) { /* stale pointer */
968 char *chrootdir = consumestr(&serialized, &length);
969 if (!chrootdir)
970 goto bad_chrootdir;
971 j->chrootdir = strdup(chrootdir);
972 if (!j->chrootdir)
973 goto bad_chrootdir;
974 }
975
976 if (j->alt_syscall_table) { /* stale pointer */
977 char *alt_syscall_table = consumestr(&serialized, &length);
978 if (!alt_syscall_table)
979 goto bad_syscall_table;
980 j->alt_syscall_table = strdup(alt_syscall_table);
981 if (!j->alt_syscall_table)
982 goto bad_syscall_table;
983 }
984
985 if (j->flags.seccomp_filter && j->filter_len > 0) {
986 size_t ninstrs = j->filter_len;
987 if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) ||
988 ninstrs > USHRT_MAX)
989 goto bad_filters;
990
991 size_t program_len = ninstrs * sizeof(struct sock_filter);
992 void *program = consumebytes(program_len, &serialized, &length);
993 if (!program)
994 goto bad_filters;
995
996 j->filter_prog = malloc(sizeof(struct sock_fprog));
997 if (!j->filter_prog)
998 goto bad_filters;
999
1000 j->filter_prog->len = ninstrs;
1001 j->filter_prog->filter = malloc(program_len);
1002 if (!j->filter_prog->filter)
1003 goto bad_filter_prog_instrs;
1004
1005 memcpy(j->filter_prog->filter, program, program_len);
1006 }
1007
1008 count = j->mounts_count;
1009 j->mounts_count = 0;
1010 for (i = 0; i < count; ++i) {
1011 unsigned long *flags;
1012 int *has_data;
1013 const char *dest;
1014 const char *type;
1015 const char *data = NULL;
1016 const char *src = consumestr(&serialized, &length);
1017 if (!src)
1018 goto bad_mounts;
1019 dest = consumestr(&serialized, &length);
1020 if (!dest)
1021 goto bad_mounts;
1022 type = consumestr(&serialized, &length);
1023 if (!type)
1024 goto bad_mounts;
1025 has_data = consumebytes(sizeof(*has_data), &serialized,
1026 &length);
1027 if (!has_data)
1028 goto bad_mounts;
1029 if (*has_data) {
1030 data = consumestr(&serialized, &length);
1031 if (!data)
1032 goto bad_mounts;
1033 }
1034 flags = consumebytes(sizeof(*flags), &serialized, &length);
1035 if (!flags)
1036 goto bad_mounts;
1037 if (minijail_mount_with_data(j, src, dest, type, *flags, data))
1038 goto bad_mounts;
1039 }
1040
1041 count = j->cgroup_count;
1042 j->cgroup_count = 0;
1043 for (i = 0; i < count; ++i) {
1044 char *cgroup = consumestr(&serialized, &length);
1045 if (!cgroup)
1046 goto bad_cgroups;
1047 j->cgroups[i] = strdup(cgroup);
1048 if (!j->cgroups[i])
1049 goto bad_cgroups;
1050 ++j->cgroup_count;
1051 }
1052
1053 return 0;
1054
1055 bad_cgroups:
1056 while (j->mounts_head) {
1057 struct mountpoint *m = j->mounts_head;
1058 j->mounts_head = j->mounts_head->next;
1059 free(m->data);
1060 free(m->type);
1061 free(m->dest);
1062 free(m->src);
1063 free(m);
1064 }
1065 for (i = 0; i < j->cgroup_count; ++i)
1066 free(j->cgroups[i]);
1067 bad_mounts:
1068 if (j->flags.seccomp_filter && j->filter_len > 0) {
1069 free(j->filter_prog->filter);
1070 free(j->filter_prog);
1071 }
1072 bad_filter_prog_instrs:
1073 if (j->filter_prog)
1074 free(j->filter_prog);
1075 bad_filters:
1076 if (j->alt_syscall_table)
1077 free(j->alt_syscall_table);
1078 bad_syscall_table:
1079 if (j->chrootdir)
1080 free(j->chrootdir);
1081 bad_chrootdir:
1082 if (j->suppl_gid_list)
1083 free(j->suppl_gid_list);
1084 bad_gid_list:
1085 if (j->user)
1086 free(j->user);
1087 clear_pointers:
1088 j->user = NULL;
1089 j->suppl_gid_list = NULL;
1090 j->chrootdir = NULL;
1091 j->alt_syscall_table = NULL;
1092 j->cgroup_count = 0;
1093 out:
1094 return ret;
1095 }
1096
1097 /*
1098 * setup_mount_destination: Ensures the mount target exists.
1099 * Creates it if needed and possible.
1100 */
setup_mount_destination(const char * source,const char * dest,uid_t uid,uid_t gid)1101 static int setup_mount_destination(const char *source, const char *dest,
1102 uid_t uid, uid_t gid)
1103 {
1104 int rc;
1105 struct stat st_buf;
1106
1107 rc = stat(dest, &st_buf);
1108 if (rc == 0) /* destination exists */
1109 return 0;
1110
1111 /*
1112 * Try to create the destination.
1113 * Either make a directory or touch a file depending on the source type.
1114 * If the source doesn't exist, assume it is a filesystem type such as
1115 * "tmpfs" and create a directory to mount it on.
1116 */
1117 rc = stat(source, &st_buf);
1118 if (rc || S_ISDIR(st_buf.st_mode) || S_ISBLK(st_buf.st_mode)) {
1119 if (mkdir(dest, 0700))
1120 return -errno;
1121 } else {
1122 int fd = open(dest, O_RDWR | O_CREAT, 0700);
1123 if (fd < 0)
1124 return -errno;
1125 close(fd);
1126 }
1127 return chown(dest, uid, gid);
1128 }
1129
1130 /*
1131 * mount_one: Applies mounts from @m for @j, recursing as needed.
1132 * @j Minijail these mounts are for
1133 * @m Head of list of mounts
1134 *
1135 * Returns 0 for success.
1136 */
mount_one(const struct minijail * j,struct mountpoint * m)1137 static int mount_one(const struct minijail *j, struct mountpoint *m)
1138 {
1139 int ret;
1140 char *dest;
1141 int remount_ro = 0;
1142
1143 /* |dest| has a leading "/". */
1144 if (asprintf(&dest, "%s%s", j->chrootdir, m->dest) < 0)
1145 return -ENOMEM;
1146
1147 if (setup_mount_destination(m->src, dest, j->uid, j->gid))
1148 pdie("creating mount target '%s' failed", dest);
1149
1150 /*
1151 * R/O bind mounts have to be remounted since 'bind' and 'ro'
1152 * can't both be specified in the original bind mount.
1153 * Remount R/O after the initial mount.
1154 */
1155 if ((m->flags & MS_BIND) && (m->flags & MS_RDONLY)) {
1156 remount_ro = 1;
1157 m->flags &= ~MS_RDONLY;
1158 }
1159
1160 ret = mount(m->src, dest, m->type, m->flags, m->data);
1161 if (ret)
1162 pdie("mount: %s -> %s", m->src, dest);
1163
1164 if (remount_ro) {
1165 m->flags |= MS_RDONLY;
1166 ret = mount(m->src, dest, NULL,
1167 m->flags | MS_REMOUNT, m->data);
1168 if (ret)
1169 pdie("bind ro: %s -> %s", m->src, dest);
1170 }
1171
1172 free(dest);
1173 if (m->next)
1174 return mount_one(j, m->next);
1175 return ret;
1176 }
1177
enter_chroot(const struct minijail * j)1178 static int enter_chroot(const struct minijail *j)
1179 {
1180 int ret;
1181
1182 if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1183 return ret;
1184
1185 if (chroot(j->chrootdir))
1186 return -errno;
1187
1188 if (chdir("/"))
1189 return -errno;
1190
1191 return 0;
1192 }
1193
enter_pivot_root(const struct minijail * j)1194 static int enter_pivot_root(const struct minijail *j)
1195 {
1196 int ret, oldroot, newroot;
1197
1198 if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1199 return ret;
1200
1201 /*
1202 * Keep the fd for both old and new root.
1203 * It will be used in fchdir(2) later.
1204 */
1205 oldroot = open("/", O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1206 if (oldroot < 0)
1207 pdie("failed to open / for fchdir");
1208 newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1209 if (newroot < 0)
1210 pdie("failed to open %s for fchdir", j->chrootdir);
1211
1212 /*
1213 * To ensure j->chrootdir is the root of a filesystem,
1214 * do a self bind mount.
1215 */
1216 if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, ""))
1217 pdie("failed to bind mount '%s'", j->chrootdir);
1218 if (chdir(j->chrootdir))
1219 return -errno;
1220 if (syscall(SYS_pivot_root, ".", "."))
1221 pdie("pivot_root");
1222
1223 /*
1224 * Now the old root is mounted on top of the new root. Use fchdir(2) to
1225 * change to the old root and unmount it.
1226 */
1227 if (fchdir(oldroot))
1228 pdie("failed to fchdir to old /");
1229
1230 /*
1231 * If j->flags.skip_remount_private was enabled for minijail_enter(),
1232 * there could be a shared mount point under |oldroot|. In that case,
1233 * mounts under this shared mount point will be unmounted below, and
1234 * this unmounting will propagate to the original mount namespace
1235 * (because the mount point is shared). To prevent this unexpected
1236 * unmounting, remove these mounts from their peer groups by recursively
1237 * remounting them as MS_PRIVATE.
1238 */
1239 if (mount(NULL, ".", NULL, MS_REC | MS_PRIVATE, NULL))
1240 pdie("failed to mount(/, private) before umount(/)");
1241 /* The old root might be busy, so use lazy unmount. */
1242 if (umount2(".", MNT_DETACH))
1243 pdie("umount(/)");
1244 /* Change back to the new root. */
1245 if (fchdir(newroot))
1246 return -errno;
1247 if (close(oldroot))
1248 return -errno;
1249 if (close(newroot))
1250 return -errno;
1251 if (chroot("/"))
1252 return -errno;
1253 /* Set correct CWD for getcwd(3). */
1254 if (chdir("/"))
1255 return -errno;
1256
1257 return 0;
1258 }
1259
mount_tmp(const struct minijail * j)1260 static int mount_tmp(const struct minijail *j)
1261 {
1262 const char fmt[] = "size=%zu,mode=1777";
1263 /* Count for the user storing ULLONG_MAX literally + extra space. */
1264 char data[sizeof(fmt) + sizeof("18446744073709551615ULL")];
1265 int ret;
1266
1267 ret = snprintf(data, sizeof(data), fmt, j->tmpfs_size);
1268
1269 if (ret <= 0)
1270 pdie("tmpfs size spec error");
1271 else if ((size_t)ret >= sizeof(data))
1272 pdie("tmpfs size spec too large");
1273 return mount("none", "/tmp", "tmpfs", MS_NODEV | MS_NOEXEC | MS_NOSUID,
1274 data);
1275 }
1276
remount_proc_readonly(const struct minijail * j)1277 static int remount_proc_readonly(const struct minijail *j)
1278 {
1279 const char *kProcPath = "/proc";
1280 const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID;
1281 /*
1282 * Right now, we're holding a reference to our parent's old mount of
1283 * /proc in our namespace, which means using MS_REMOUNT here would
1284 * mutate our parent's mount as well, even though we're in a VFS
1285 * namespace (!). Instead, remove their mount from our namespace lazily
1286 * (MNT_DETACH) and make our own.
1287 */
1288 if (umount2(kProcPath, MNT_DETACH)) {
1289 /*
1290 * If we are in a new user namespace, umount(2) will fail.
1291 * See http://man7.org/linux/man-pages/man7/user_namespaces.7.html
1292 */
1293 if (j->flags.userns) {
1294 info("umount(/proc, MNT_DETACH) failed, "
1295 "this is expected when using user namespaces");
1296 } else {
1297 return -errno;
1298 }
1299 }
1300 if (mount("proc", kProcPath, "proc", kSafeFlags | MS_RDONLY, ""))
1301 return -errno;
1302 return 0;
1303 }
1304
kill_child_and_die(const struct minijail * j,const char * msg)1305 static void kill_child_and_die(const struct minijail *j, const char *msg)
1306 {
1307 kill(j->initpid, SIGKILL);
1308 die("%s", msg);
1309 }
1310
write_pid_file_or_die(const struct minijail * j)1311 static void write_pid_file_or_die(const struct minijail *j)
1312 {
1313 if (write_pid_to_path(j->initpid, j->pid_file_path))
1314 kill_child_and_die(j, "failed to write pid file");
1315 }
1316
add_to_cgroups_or_die(const struct minijail * j)1317 static void add_to_cgroups_or_die(const struct minijail *j)
1318 {
1319 size_t i;
1320
1321 for (i = 0; i < j->cgroup_count; ++i) {
1322 if (write_pid_to_path(j->initpid, j->cgroups[i]))
1323 kill_child_and_die(j, "failed to add to cgroups");
1324 }
1325 }
1326
write_ugid_maps_or_die(const struct minijail * j)1327 static void write_ugid_maps_or_die(const struct minijail *j)
1328 {
1329 if (j->uidmap && write_proc_file(j->initpid, j->uidmap, "uid_map") != 0)
1330 kill_child_and_die(j, "failed to write uid_map");
1331 if (j->gidmap && j->flags.disable_setgroups) {
1332 /* Older kernels might not have the /proc/<pid>/setgroups files. */
1333 int ret = write_proc_file(j->initpid, "deny", "setgroups");
1334 if (ret != 0) {
1335 if (ret == -ENOENT) {
1336 /* See http://man7.org/linux/man-pages/man7/user_namespaces.7.html. */
1337 warn("could not disable setgroups(2)");
1338 } else
1339 kill_child_and_die(j, "failed to disable setgroups(2)");
1340 }
1341 }
1342 if (j->gidmap && write_proc_file(j->initpid, j->gidmap, "gid_map") != 0)
1343 kill_child_and_die(j, "failed to write gid_map");
1344 }
1345
enter_user_namespace(const struct minijail * j)1346 static void enter_user_namespace(const struct minijail *j)
1347 {
1348 if (j->uidmap && setresuid(0, 0, 0))
1349 pdie("user_namespaces: setresuid(0, 0, 0) failed");
1350 if (j->gidmap && setresgid(0, 0, 0))
1351 pdie("user_namespaces: setresgid(0, 0, 0) failed");
1352 }
1353
parent_setup_complete(int * pipe_fds)1354 static void parent_setup_complete(int *pipe_fds)
1355 {
1356 close(pipe_fds[0]);
1357 close(pipe_fds[1]);
1358 }
1359
1360 /*
1361 * wait_for_parent_setup: Called by the child process to wait for any
1362 * further parent-side setup to complete before continuing.
1363 */
wait_for_parent_setup(int * pipe_fds)1364 static void wait_for_parent_setup(int *pipe_fds)
1365 {
1366 char buf;
1367
1368 close(pipe_fds[1]);
1369
1370 /* Wait for parent to complete setup and close the pipe. */
1371 if (read(pipe_fds[0], &buf, 1) != 0)
1372 die("failed to sync with parent");
1373 close(pipe_fds[0]);
1374 }
1375
drop_ugid(const struct minijail * j)1376 static void drop_ugid(const struct minijail *j)
1377 {
1378 if (j->flags.inherit_suppl_gids + j->flags.keep_suppl_gids +
1379 j->flags.set_suppl_gids > 1) {
1380 die("can only do one of inherit, keep, or set supplementary "
1381 "groups");
1382 }
1383
1384 if (j->flags.inherit_suppl_gids) {
1385 if (initgroups(j->user, j->usergid))
1386 pdie("initgroups(%s, %d) failed", j->user, j->usergid);
1387 } else if (j->flags.set_suppl_gids) {
1388 if (setgroups(j->suppl_gid_count, j->suppl_gid_list))
1389 pdie("setgroups(suppl_gids) failed");
1390 } else if (!j->flags.keep_suppl_gids) {
1391 /*
1392 * Only attempt to clear supplementary groups if we are changing
1393 * users or groups.
1394 */
1395 if ((j->flags.uid || j->flags.gid) && setgroups(0, NULL))
1396 pdie("setgroups(0, NULL) failed");
1397 }
1398
1399 if (j->flags.gid && setresgid(j->gid, j->gid, j->gid))
1400 pdie("setresgid(%d, %d, %d) failed", j->gid, j->gid, j->gid);
1401
1402 if (j->flags.uid && setresuid(j->uid, j->uid, j->uid))
1403 pdie("setresuid(%d, %d, %d) failed", j->uid, j->uid, j->uid);
1404 }
1405
1406 /*
1407 * We specifically do not use cap_valid() as that only tells us the last
1408 * valid cap we were *compiled* against (i.e. what the version of kernel
1409 * headers says). If we run on a different kernel version, then it's not
1410 * uncommon for that to be less (if an older kernel) or more (if a newer
1411 * kernel).
1412 * Normally, we suck up the answer via /proc. On Android, not all processes are
1413 * guaranteed to be able to access '/proc/sys/kernel/cap_last_cap' so we
1414 * programmatically find the value by calling prctl(PR_CAPBSET_READ).
1415 */
get_last_valid_cap()1416 static unsigned int get_last_valid_cap()
1417 {
1418 unsigned int last_valid_cap = 0;
1419 if (is_android()) {
1420 for (; prctl(PR_CAPBSET_READ, last_valid_cap, 0, 0, 0) >= 0;
1421 ++last_valid_cap);
1422
1423 /* |last_valid_cap| will be the first failing value. */
1424 if (last_valid_cap > 0) {
1425 last_valid_cap--;
1426 }
1427 } else {
1428 const char cap_file[] = "/proc/sys/kernel/cap_last_cap";
1429 FILE *fp = fopen(cap_file, "re");
1430 if (fscanf(fp, "%u", &last_valid_cap) != 1)
1431 pdie("fscanf(%s)", cap_file);
1432 fclose(fp);
1433 }
1434 return last_valid_cap;
1435 }
1436
drop_capbset(uint64_t keep_mask,unsigned int last_valid_cap)1437 static void drop_capbset(uint64_t keep_mask, unsigned int last_valid_cap)
1438 {
1439 const uint64_t one = 1;
1440 unsigned int i;
1441 for (i = 0; i < sizeof(keep_mask) * 8 && i <= last_valid_cap; ++i) {
1442 if (keep_mask & (one << i))
1443 continue;
1444 if (prctl(PR_CAPBSET_DROP, i))
1445 pdie("could not drop capability from bounding set");
1446 }
1447 }
1448
drop_caps(const struct minijail * j,unsigned int last_valid_cap)1449 static void drop_caps(const struct minijail *j, unsigned int last_valid_cap)
1450 {
1451 if (!j->flags.use_caps)
1452 return;
1453
1454 cap_t caps = cap_get_proc();
1455 cap_value_t flag[1];
1456 const uint64_t one = 1;
1457 unsigned int i;
1458 if (!caps)
1459 die("can't get process caps");
1460 if (cap_clear_flag(caps, CAP_INHERITABLE))
1461 die("can't clear inheritable caps");
1462 if (cap_clear_flag(caps, CAP_EFFECTIVE))
1463 die("can't clear effective caps");
1464 if (cap_clear_flag(caps, CAP_PERMITTED))
1465 die("can't clear permitted caps");
1466 for (i = 0; i < sizeof(j->caps) * 8 && i <= last_valid_cap; ++i) {
1467 /* Keep CAP_SETPCAP for dropping bounding set bits. */
1468 if (i != CAP_SETPCAP && !(j->caps & (one << i)))
1469 continue;
1470 flag[0] = i;
1471 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET))
1472 die("can't add effective cap");
1473 if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET))
1474 die("can't add permitted cap");
1475 if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET))
1476 die("can't add inheritable cap");
1477 }
1478 if (cap_set_proc(caps))
1479 die("can't apply initial cleaned capset");
1480
1481 /*
1482 * Instead of dropping bounding set first, do it here in case
1483 * the caller had a more permissive bounding set which could
1484 * have been used above to raise a capability that wasn't already
1485 * present. This requires CAP_SETPCAP, so we raised/kept it above.
1486 */
1487 drop_capbset(j->caps, last_valid_cap);
1488
1489 /* If CAP_SETPCAP wasn't specifically requested, now we remove it. */
1490 if ((j->caps & (one << CAP_SETPCAP)) == 0) {
1491 flag[0] = CAP_SETPCAP;
1492 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR))
1493 die("can't clear effective cap");
1494 if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR))
1495 die("can't clear permitted cap");
1496 if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR))
1497 die("can't clear inheritable cap");
1498 }
1499
1500 if (cap_set_proc(caps))
1501 die("can't apply final cleaned capset");
1502
1503 cap_free(caps);
1504 }
1505
set_seccomp_filter(const struct minijail * j)1506 static void set_seccomp_filter(const struct minijail *j)
1507 {
1508 /*
1509 * Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c>
1510 * in the kernel source tree for an explanation of the parameters.
1511 */
1512 if (j->flags.no_new_privs) {
1513 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
1514 pdie("prctl(PR_SET_NO_NEW_PRIVS)");
1515 }
1516
1517 /*
1518 * Code running with ASan
1519 * (https://github.com/google/sanitizers/wiki/AddressSanitizer)
1520 * will make system calls not included in the syscall filter policy,
1521 * which will likely crash the program. Skip setting seccomp filter in
1522 * that case.
1523 * 'running_with_asan()' has no inputs and is completely defined at
1524 * build time, so this cannot be used by an attacker to skip setting
1525 * seccomp filter.
1526 */
1527 if (j->flags.seccomp_filter && running_with_asan()) {
1528 warn("running with ASan, not setting seccomp filter");
1529 return;
1530 }
1531
1532 if (j->flags.seccomp_filter) {
1533 if (j->flags.seccomp_filter_logging) {
1534 /*
1535 * If logging seccomp filter failures,
1536 * install the SIGSYS handler first.
1537 */
1538 if (install_sigsys_handler())
1539 pdie("failed to install SIGSYS handler");
1540 warn("logging seccomp filter failures");
1541 } else if (j->flags.seccomp_filter_tsync) {
1542 /*
1543 * If setting thread sync,
1544 * reset the SIGSYS signal handler so that
1545 * the entire thread group is killed.
1546 */
1547 if (signal(SIGSYS, SIG_DFL) == SIG_ERR)
1548 pdie("failed to reset SIGSYS disposition");
1549 info("reset SIGSYS disposition");
1550 }
1551 }
1552
1553 /*
1554 * Install the syscall filter.
1555 */
1556 if (j->flags.seccomp_filter) {
1557 if (j->flags.seccomp_filter_tsync) {
1558 if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
1559 SECCOMP_FILTER_FLAG_TSYNC,
1560 j->filter_prog)) {
1561 pdie("seccomp(tsync) failed");
1562 }
1563 } else {
1564 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
1565 j->filter_prog)) {
1566 pdie("prctl(seccomp_filter) failed");
1567 }
1568 }
1569 }
1570 }
1571
config_net_loopback(void)1572 static void config_net_loopback(void)
1573 {
1574 static const char ifname[] = "lo";
1575 int sock;
1576 struct ifreq ifr;
1577
1578 /* Make sure people don't try to add really long names. */
1579 _Static_assert(sizeof(ifname) <= IFNAMSIZ, "interface name too long");
1580
1581 sock = socket(AF_LOCAL, SOCK_DGRAM|SOCK_CLOEXEC, 0);
1582 if (sock < 0)
1583 pdie("socket(AF_LOCAL) failed");
1584
1585 /*
1586 * Do the equiv of `ip link set up lo`. The kernel will assign
1587 * IPv4 (127.0.0.1) & IPv6 (::1) addresses automatically!
1588 */
1589 strcpy(ifr.ifr_name, ifname);
1590 if (ioctl(sock, SIOCGIFFLAGS, &ifr) < 0)
1591 pdie("ioctl(SIOCGIFFLAGS) failed");
1592
1593 /* The kernel preserves ifr.ifr_name for use. */
1594 ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
1595 if (ioctl(sock, SIOCSIFFLAGS, &ifr) < 0)
1596 pdie("ioctl(SIOCSIFFLAGS) failed");
1597
1598 close(sock);
1599 }
1600
minijail_enter(const struct minijail * j)1601 void API minijail_enter(const struct minijail *j)
1602 {
1603 /*
1604 * If we're dropping caps, get the last valid cap from /proc now,
1605 * since /proc can be unmounted before drop_caps() is called.
1606 */
1607 unsigned int last_valid_cap = 0;
1608 if (j->flags.capbset_drop || j->flags.use_caps)
1609 last_valid_cap = get_last_valid_cap();
1610
1611 if (j->flags.pids)
1612 die("tried to enter a pid-namespaced jail;"
1613 " try minijail_run()?");
1614
1615 if (j->flags.inherit_suppl_gids && !j->user)
1616 die("cannot inherit supplementary groups without setting a "
1617 "username");
1618
1619 /*
1620 * We can't recover from failures if we've dropped privileges partially,
1621 * so we don't even try. If any of our operations fail, we abort() the
1622 * entire process.
1623 */
1624 if (j->flags.enter_vfs && setns(j->mountns_fd, CLONE_NEWNS))
1625 pdie("setns(CLONE_NEWNS) failed");
1626
1627 if (j->flags.vfs) {
1628 if (unshare(CLONE_NEWNS))
1629 pdie("unshare(CLONE_NEWNS) failed");
1630 /*
1631 * Unless asked not to, remount all filesystems as private.
1632 * If they are shared, new bind mounts will creep out of our
1633 * namespace.
1634 * https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
1635 */
1636 if (!j->flags.skip_remount_private) {
1637 if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL))
1638 pdie("mount(NULL, /, NULL, MS_REC | MS_PRIVATE,"
1639 " NULL) failed");
1640 }
1641 }
1642
1643 if (j->flags.ipc && unshare(CLONE_NEWIPC)) {
1644 pdie("unshare(CLONE_NEWIPC) failed");
1645 }
1646
1647 if (j->flags.enter_net) {
1648 if (setns(j->netns_fd, CLONE_NEWNET))
1649 pdie("setns(CLONE_NEWNET) failed");
1650 } else if (j->flags.net) {
1651 if (unshare(CLONE_NEWNET))
1652 pdie("unshare(CLONE_NEWNET) failed");
1653 config_net_loopback();
1654 }
1655
1656 if (j->flags.ns_cgroups && unshare(CLONE_NEWCGROUP))
1657 pdie("unshare(CLONE_NEWCGROUP) failed");
1658
1659 if (j->flags.new_session_keyring) {
1660 if (syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING, NULL) < 0)
1661 pdie("keyctl(KEYCTL_JOIN_SESSION_KEYRING) failed");
1662 }
1663
1664 if (j->flags.chroot && enter_chroot(j))
1665 pdie("chroot");
1666
1667 if (j->flags.pivot_root && enter_pivot_root(j))
1668 pdie("pivot_root");
1669
1670 if (j->flags.mount_tmp && mount_tmp(j))
1671 pdie("mount_tmp");
1672
1673 if (j->flags.remount_proc_ro && remount_proc_readonly(j))
1674 pdie("remount");
1675
1676 /*
1677 * If we're only dropping capabilities from the bounding set, but not
1678 * from the thread's (permitted|inheritable|effective) sets, do it now.
1679 */
1680 if (j->flags.capbset_drop) {
1681 drop_capbset(j->cap_bset, last_valid_cap);
1682 }
1683
1684 if (j->flags.use_caps) {
1685 /*
1686 * POSIX capabilities are a bit tricky. If we drop our
1687 * capability to change uids, our attempt to use setuid()
1688 * below will fail. Hang on to root caps across setuid(), then
1689 * lock securebits.
1690 */
1691 if (prctl(PR_SET_KEEPCAPS, 1))
1692 pdie("prctl(PR_SET_KEEPCAPS) failed");
1693
1694 /*
1695 * Kernels 4.3+ define a new securebit
1696 * (SECURE_NO_CAP_AMBIENT_RAISE), so using the SECURE_ALL_BITS
1697 * and SECURE_ALL_LOCKS masks from newer kernel headers will
1698 * return EPERM on older kernels. Detect this, and retry with
1699 * the right mask for older (2.6.26-4.2) kernels.
1700 */
1701 int securebits_ret = prctl(PR_SET_SECUREBITS,
1702 SECURE_ALL_BITS | SECURE_ALL_LOCKS);
1703 if (securebits_ret < 0) {
1704 if (errno == EPERM) {
1705 /* Possibly running on kernel < 4.3. */
1706 securebits_ret = prctl(
1707 PR_SET_SECUREBITS,
1708 OLD_SECURE_ALL_BITS | OLD_SECURE_ALL_LOCKS);
1709 }
1710 }
1711 if (securebits_ret < 0)
1712 pdie("prctl(PR_SET_SECUREBITS) failed");
1713 }
1714
1715 if (j->flags.no_new_privs) {
1716 /*
1717 * If we're setting no_new_privs, we can drop privileges
1718 * before setting seccomp filter. This way filter policies
1719 * don't need to allow privilege-dropping syscalls.
1720 */
1721 drop_ugid(j);
1722 drop_caps(j, last_valid_cap);
1723 set_seccomp_filter(j);
1724 } else {
1725 /*
1726 * If we're not setting no_new_privs,
1727 * we need to set seccomp filter *before* dropping privileges.
1728 * WARNING: this means that filter policies *must* allow
1729 * setgroups()/setresgid()/setresuid() for dropping root and
1730 * capget()/capset()/prctl() for dropping caps.
1731 */
1732 set_seccomp_filter(j);
1733 drop_ugid(j);
1734 drop_caps(j, last_valid_cap);
1735 }
1736
1737 /*
1738 * Select the specified alternate syscall table. The table must not
1739 * block prctl(2) if we're using seccomp as well.
1740 */
1741 if (j->flags.alt_syscall) {
1742 if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table))
1743 pdie("prctl(PR_ALT_SYSCALL) failed");
1744 }
1745
1746 /*
1747 * seccomp has to come last since it cuts off all the other
1748 * privilege-dropping syscalls :)
1749 */
1750 if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) {
1751 if ((errno == EINVAL) && seccomp_can_softfail()) {
1752 warn("seccomp not supported");
1753 return;
1754 }
1755 pdie("prctl(PR_SET_SECCOMP) failed");
1756 }
1757 }
1758
1759 /* TODO(wad): will visibility affect this variable? */
1760 static int init_exitstatus = 0;
1761
init_term(int sig)1762 void init_term(int __attribute__ ((unused)) sig)
1763 {
1764 _exit(init_exitstatus);
1765 }
1766
init(pid_t rootpid)1767 void init(pid_t rootpid)
1768 {
1769 pid_t pid;
1770 int status;
1771 /* So that we exit with the right status. */
1772 signal(SIGTERM, init_term);
1773 /* TODO(wad): self jail with seccomp filters here. */
1774 while ((pid = wait(&status)) > 0) {
1775 /*
1776 * This loop will only end when either there are no processes
1777 * left inside our pid namespace or we get a signal.
1778 */
1779 if (pid == rootpid)
1780 init_exitstatus = status;
1781 }
1782 if (!WIFEXITED(init_exitstatus))
1783 _exit(MINIJAIL_ERR_INIT);
1784 _exit(WEXITSTATUS(init_exitstatus));
1785 }
1786
minijail_from_fd(int fd,struct minijail * j)1787 int API minijail_from_fd(int fd, struct minijail *j)
1788 {
1789 size_t sz = 0;
1790 size_t bytes = read(fd, &sz, sizeof(sz));
1791 char *buf;
1792 int r;
1793 if (sizeof(sz) != bytes)
1794 return -EINVAL;
1795 if (sz > USHRT_MAX) /* arbitrary sanity check */
1796 return -E2BIG;
1797 buf = malloc(sz);
1798 if (!buf)
1799 return -ENOMEM;
1800 bytes = read(fd, buf, sz);
1801 if (bytes != sz) {
1802 free(buf);
1803 return -EINVAL;
1804 }
1805 r = minijail_unmarshal(j, buf, sz);
1806 free(buf);
1807 return r;
1808 }
1809
minijail_to_fd(struct minijail * j,int fd)1810 int API minijail_to_fd(struct minijail *j, int fd)
1811 {
1812 char *buf;
1813 size_t sz = minijail_size(j);
1814 ssize_t written;
1815 int r;
1816
1817 if (!sz)
1818 return -EINVAL;
1819 buf = malloc(sz);
1820 r = minijail_marshal(j, buf, sz);
1821 if (r) {
1822 free(buf);
1823 return r;
1824 }
1825 /* Sends [size][minijail]. */
1826 written = write(fd, &sz, sizeof(sz));
1827 if (written != sizeof(sz)) {
1828 free(buf);
1829 return -EFAULT;
1830 }
1831 written = write(fd, buf, sz);
1832 if (written < 0 || (size_t) written != sz) {
1833 free(buf);
1834 return -EFAULT;
1835 }
1836 free(buf);
1837 return 0;
1838 }
1839
setup_preload(void)1840 int setup_preload(void)
1841 {
1842 #if defined(__ANDROID__)
1843 /* Don't use LDPRELOAD on Brillo. */
1844 return 0;
1845 #else
1846 char *oldenv = getenv(kLdPreloadEnvVar) ? : "";
1847 char *newenv = malloc(strlen(oldenv) + 2 + strlen(PRELOADPATH));
1848 if (!newenv)
1849 return -ENOMEM;
1850
1851 /* Only insert a separating space if we have something to separate... */
1852 sprintf(newenv, "%s%s%s", oldenv, strlen(oldenv) ? " " : "",
1853 PRELOADPATH);
1854
1855 /* setenv() makes a copy of the string we give it. */
1856 setenv(kLdPreloadEnvVar, newenv, 1);
1857 free(newenv);
1858 return 0;
1859 #endif
1860 }
1861
setup_pipe(int fds[2])1862 int setup_pipe(int fds[2])
1863 {
1864 int r = pipe(fds);
1865 char fd_buf[11];
1866 if (r)
1867 return r;
1868 r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]);
1869 if (r <= 0)
1870 return -EINVAL;
1871 setenv(kFdEnvVar, fd_buf, 1);
1872 return 0;
1873 }
1874
setup_pipe_end(int fds[2],size_t index)1875 int setup_pipe_end(int fds[2], size_t index)
1876 {
1877 if (index > 1)
1878 return -1;
1879
1880 close(fds[1 - index]);
1881 return fds[index];
1882 }
1883
setup_and_dupe_pipe_end(int fds[2],size_t index,int fd)1884 int setup_and_dupe_pipe_end(int fds[2], size_t index, int fd)
1885 {
1886 if (index > 1)
1887 return -1;
1888
1889 close(fds[1 - index]);
1890 /* dup2(2) the corresponding end of the pipe into |fd|. */
1891 return dup2(fds[index], fd);
1892 }
1893
close_open_fds(int * inheritable_fds,size_t size)1894 int close_open_fds(int *inheritable_fds, size_t size)
1895 {
1896 const char *kFdPath = "/proc/self/fd";
1897
1898 DIR *d = opendir(kFdPath);
1899 struct dirent *dir_entry;
1900
1901 if (d == NULL)
1902 return -1;
1903 int dir_fd = dirfd(d);
1904 while ((dir_entry = readdir(d)) != NULL) {
1905 size_t i;
1906 char *end;
1907 bool should_close = true;
1908 const int fd = strtol(dir_entry->d_name, &end, 10);
1909
1910 if ((*end) != '\0') {
1911 continue;
1912 }
1913 /*
1914 * We might have set up some pipes that we want to share with
1915 * the parent process, and should not be closed.
1916 */
1917 for (i = 0; i < size; ++i) {
1918 if (fd == inheritable_fds[i]) {
1919 should_close = false;
1920 break;
1921 }
1922 }
1923 /* Also avoid closing the directory fd. */
1924 if (should_close && fd != dir_fd)
1925 close(fd);
1926 }
1927 closedir(d);
1928 return 0;
1929 }
1930
1931 int minijail_run_internal(struct minijail *j, const char *filename,
1932 char *const argv[], pid_t *pchild_pid,
1933 int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1934 int use_preload);
1935
minijail_run(struct minijail * j,const char * filename,char * const argv[])1936 int API minijail_run(struct minijail *j, const char *filename,
1937 char *const argv[])
1938 {
1939 return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1940 true);
1941 }
1942
minijail_run_pid(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid)1943 int API minijail_run_pid(struct minijail *j, const char *filename,
1944 char *const argv[], pid_t *pchild_pid)
1945 {
1946 return minijail_run_internal(j, filename, argv, pchild_pid,
1947 NULL, NULL, NULL, true);
1948 }
1949
minijail_run_pipe(struct minijail * j,const char * filename,char * const argv[],int * pstdin_fd)1950 int API minijail_run_pipe(struct minijail *j, const char *filename,
1951 char *const argv[], int *pstdin_fd)
1952 {
1953 return minijail_run_internal(j, filename, argv, NULL, pstdin_fd,
1954 NULL, NULL, true);
1955 }
1956
minijail_run_pid_pipes(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1957 int API minijail_run_pid_pipes(struct minijail *j, const char *filename,
1958 char *const argv[], pid_t *pchild_pid,
1959 int *pstdin_fd, int *pstdout_fd, int *pstderr_fd)
1960 {
1961 return minijail_run_internal(j, filename, argv, pchild_pid,
1962 pstdin_fd, pstdout_fd, pstderr_fd, true);
1963 }
1964
minijail_run_no_preload(struct minijail * j,const char * filename,char * const argv[])1965 int API minijail_run_no_preload(struct minijail *j, const char *filename,
1966 char *const argv[])
1967 {
1968 return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1969 false);
1970 }
1971
minijail_run_pid_pipes_no_preload(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1972 int API minijail_run_pid_pipes_no_preload(struct minijail *j,
1973 const char *filename,
1974 char *const argv[],
1975 pid_t *pchild_pid,
1976 int *pstdin_fd, int *pstdout_fd,
1977 int *pstderr_fd)
1978 {
1979 return minijail_run_internal(j, filename, argv, pchild_pid,
1980 pstdin_fd, pstdout_fd, pstderr_fd, false);
1981 }
1982
minijail_run_internal(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd,int use_preload)1983 int minijail_run_internal(struct minijail *j, const char *filename,
1984 char *const argv[], pid_t *pchild_pid,
1985 int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1986 int use_preload)
1987 {
1988 char *oldenv, *oldenv_copy = NULL;
1989 pid_t child_pid;
1990 int pipe_fds[2];
1991 int stdin_fds[2];
1992 int stdout_fds[2];
1993 int stderr_fds[2];
1994 int child_sync_pipe_fds[2];
1995 int sync_child = 0;
1996 int ret;
1997 /* We need to remember this across the minijail_preexec() call. */
1998 int pid_namespace = j->flags.pids;
1999 int do_init = j->flags.do_init;
2000
2001 if (use_preload) {
2002 oldenv = getenv(kLdPreloadEnvVar);
2003 if (oldenv) {
2004 oldenv_copy = strdup(oldenv);
2005 if (!oldenv_copy)
2006 return -ENOMEM;
2007 }
2008
2009 if (setup_preload())
2010 return -EFAULT;
2011 }
2012
2013 if (!use_preload) {
2014 if (j->flags.use_caps && j->caps != 0)
2015 die("non-empty capabilities are not supported without "
2016 "LD_PRELOAD");
2017 }
2018
2019 /*
2020 * Make the process group ID of this process equal to its PID.
2021 * In the non-interactive case (e.g. when the parent process is started
2022 * from init) this ensures the parent process and the jailed process
2023 * can be killed together.
2024 * When the parent process is started from the console this ensures
2025 * the call to setsid(2) in the jailed process succeeds.
2026 *
2027 * Don't fail on EPERM, since setpgid(0, 0) can only EPERM when
2028 * the process is already a process group leader.
2029 */
2030 if (setpgid(0 /* use calling PID */, 0 /* make PGID = PID */)) {
2031 if (errno != EPERM) {
2032 pdie("setpgid(0, 0) failed");
2033 }
2034 }
2035
2036 if (use_preload) {
2037 /*
2038 * Before we fork(2) and execve(2) the child process, we need
2039 * to open a pipe(2) to send the minijail configuration over.
2040 */
2041 if (setup_pipe(pipe_fds))
2042 return -EFAULT;
2043 }
2044
2045 /*
2046 * If we want to write to the child process' standard input,
2047 * create the pipe(2) now.
2048 */
2049 if (pstdin_fd) {
2050 if (pipe(stdin_fds))
2051 return -EFAULT;
2052 }
2053
2054 /*
2055 * If we want to read from the child process' standard output,
2056 * create the pipe(2) now.
2057 */
2058 if (pstdout_fd) {
2059 if (pipe(stdout_fds))
2060 return -EFAULT;
2061 }
2062
2063 /*
2064 * If we want to read from the child process' standard error,
2065 * create the pipe(2) now.
2066 */
2067 if (pstderr_fd) {
2068 if (pipe(stderr_fds))
2069 return -EFAULT;
2070 }
2071
2072 /*
2073 * If we want to set up a new uid/gid map in the user namespace,
2074 * or if we need to add the child process to cgroups, create the pipe(2)
2075 * to sync between parent and child.
2076 */
2077 if (j->flags.userns || j->flags.cgroups) {
2078 sync_child = 1;
2079 if (pipe(child_sync_pipe_fds))
2080 return -EFAULT;
2081 }
2082
2083 /*
2084 * Use sys_clone() if and only if we're creating a pid namespace.
2085 *
2086 * tl;dr: WARNING: do not mix pid namespaces and multithreading.
2087 *
2088 * In multithreaded programs, there are a bunch of locks inside libc,
2089 * some of which may be held by other threads at the time that we call
2090 * minijail_run_pid(). If we call fork(), glibc does its level best to
2091 * ensure that we hold all of these locks before it calls clone()
2092 * internally and drop them after clone() returns, but when we call
2093 * sys_clone(2) directly, all that gets bypassed and we end up with a
2094 * child address space where some of libc's important locks are held by
2095 * other threads (which did not get cloned, and hence will never release
2096 * those locks). This is okay so long as we call exec() immediately
2097 * after, but a bunch of seemingly-innocent libc functions like setenv()
2098 * take locks.
2099 *
2100 * Hence, only call sys_clone() if we need to, in order to get at pid
2101 * namespacing. If we follow this path, the child's address space might
2102 * have broken locks; you may only call functions that do not acquire
2103 * any locks.
2104 *
2105 * Unfortunately, fork() acquires every lock it can get its hands on, as
2106 * previously detailed, so this function is highly likely to deadlock
2107 * later on (see "deadlock here") if we're multithreaded.
2108 *
2109 * We might hack around this by having the clone()d child (init of the
2110 * pid namespace) return directly, rather than leaving the clone()d
2111 * process hanging around to be init for the new namespace (and having
2112 * its fork()ed child return in turn), but that process would be
2113 * crippled with its libc locks potentially broken. We might try
2114 * fork()ing in the parent before we clone() to ensure that we own all
2115 * the locks, but then we have to have the forked child hanging around
2116 * consuming resources (and possibly having file descriptors / shared
2117 * memory regions / etc attached). We'd need to keep the child around to
2118 * avoid having its children get reparented to init.
2119 *
2120 * TODO(ellyjones): figure out if the "forked child hanging around"
2121 * problem is fixable or not. It would be nice if we worked in this
2122 * case.
2123 */
2124 if (pid_namespace) {
2125 int clone_flags = CLONE_NEWPID | SIGCHLD;
2126 if (j->flags.userns)
2127 clone_flags |= CLONE_NEWUSER;
2128 child_pid = syscall(SYS_clone, clone_flags, NULL);
2129 } else {
2130 child_pid = fork();
2131 }
2132
2133 if (child_pid < 0) {
2134 if (use_preload) {
2135 free(oldenv_copy);
2136 }
2137 die("failed to fork child");
2138 }
2139
2140 if (child_pid) {
2141 if (use_preload) {
2142 /* Restore parent's LD_PRELOAD. */
2143 if (oldenv_copy) {
2144 setenv(kLdPreloadEnvVar, oldenv_copy, 1);
2145 free(oldenv_copy);
2146 } else {
2147 unsetenv(kLdPreloadEnvVar);
2148 }
2149 unsetenv(kFdEnvVar);
2150 }
2151
2152 j->initpid = child_pid;
2153
2154 if (j->flags.pid_file)
2155 write_pid_file_or_die(j);
2156
2157 if (j->flags.cgroups)
2158 add_to_cgroups_or_die(j);
2159
2160 if (j->flags.userns)
2161 write_ugid_maps_or_die(j);
2162
2163 if (sync_child)
2164 parent_setup_complete(child_sync_pipe_fds);
2165
2166 if (use_preload) {
2167 /* Send marshalled minijail. */
2168 close(pipe_fds[0]); /* read endpoint */
2169 ret = minijail_to_fd(j, pipe_fds[1]);
2170 close(pipe_fds[1]); /* write endpoint */
2171 if (ret) {
2172 kill(j->initpid, SIGKILL);
2173 die("failed to send marshalled minijail");
2174 }
2175 }
2176
2177 if (pchild_pid)
2178 *pchild_pid = child_pid;
2179
2180 /*
2181 * If we want to write to the child process' standard input,
2182 * set up the write end of the pipe.
2183 */
2184 if (pstdin_fd)
2185 *pstdin_fd = setup_pipe_end(stdin_fds,
2186 1 /* write end */);
2187
2188 /*
2189 * If we want to read from the child process' standard output,
2190 * set up the read end of the pipe.
2191 */
2192 if (pstdout_fd)
2193 *pstdout_fd = setup_pipe_end(stdout_fds,
2194 0 /* read end */);
2195
2196 /*
2197 * If we want to read from the child process' standard error,
2198 * set up the read end of the pipe.
2199 */
2200 if (pstderr_fd)
2201 *pstderr_fd = setup_pipe_end(stderr_fds,
2202 0 /* read end */);
2203
2204 return 0;
2205 }
2206 /* Child process. */
2207 free(oldenv_copy);
2208
2209 if (j->flags.reset_signal_mask) {
2210 sigset_t signal_mask;
2211 if (sigemptyset(&signal_mask) != 0)
2212 pdie("sigemptyset failed");
2213 if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0)
2214 pdie("sigprocmask failed");
2215 }
2216
2217 if (j->flags.close_open_fds) {
2218 const size_t kMaxInheritableFdsSize = 10;
2219 int inheritable_fds[kMaxInheritableFdsSize];
2220 size_t size = 0;
2221 if (use_preload) {
2222 inheritable_fds[size++] = pipe_fds[0];
2223 inheritable_fds[size++] = pipe_fds[1];
2224 }
2225 if (sync_child) {
2226 inheritable_fds[size++] = child_sync_pipe_fds[0];
2227 inheritable_fds[size++] = child_sync_pipe_fds[1];
2228 }
2229 if (pstdin_fd) {
2230 inheritable_fds[size++] = stdin_fds[0];
2231 inheritable_fds[size++] = stdin_fds[1];
2232 }
2233 if (pstdout_fd) {
2234 inheritable_fds[size++] = stdout_fds[0];
2235 inheritable_fds[size++] = stdout_fds[1];
2236 }
2237 if (pstderr_fd) {
2238 inheritable_fds[size++] = stderr_fds[0];
2239 inheritable_fds[size++] = stderr_fds[1];
2240 }
2241
2242 if (close_open_fds(inheritable_fds, size) < 0)
2243 die("failed to close open file descriptors");
2244 }
2245
2246 if (sync_child)
2247 wait_for_parent_setup(child_sync_pipe_fds);
2248
2249 if (j->flags.userns)
2250 enter_user_namespace(j);
2251
2252 /*
2253 * If we want to write to the jailed process' standard input,
2254 * set up the read end of the pipe.
2255 */
2256 if (pstdin_fd) {
2257 if (setup_and_dupe_pipe_end(stdin_fds, 0 /* read end */,
2258 STDIN_FILENO) < 0)
2259 die("failed to set up stdin pipe");
2260 }
2261
2262 /*
2263 * If we want to read from the jailed process' standard output,
2264 * set up the write end of the pipe.
2265 */
2266 if (pstdout_fd) {
2267 if (setup_and_dupe_pipe_end(stdout_fds, 1 /* write end */,
2268 STDOUT_FILENO) < 0)
2269 die("failed to set up stdout pipe");
2270 }
2271
2272 /*
2273 * If we want to read from the jailed process' standard error,
2274 * set up the write end of the pipe.
2275 */
2276 if (pstderr_fd) {
2277 if (setup_and_dupe_pipe_end(stderr_fds, 1 /* write end */,
2278 STDERR_FILENO) < 0)
2279 die("failed to set up stderr pipe");
2280 }
2281
2282 /*
2283 * If any of stdin, stdout, or stderr are TTYs, create a new session.
2284 * This prevents the jailed process from using the TIOCSTI ioctl
2285 * to push characters into the parent process terminal's input buffer,
2286 * therefore escaping the jail.
2287 */
2288 if (isatty(STDIN_FILENO) || isatty(STDOUT_FILENO) ||
2289 isatty(STDERR_FILENO)) {
2290 if (setsid() < 0) {
2291 pdie("setsid() failed");
2292 }
2293 }
2294
2295 /* If running an init program, let it decide when/how to mount /proc. */
2296 if (pid_namespace && !do_init)
2297 j->flags.remount_proc_ro = 0;
2298
2299 if (use_preload) {
2300 /* Strip out flags that cannot be inherited across execve(2). */
2301 minijail_preexec(j);
2302 } else {
2303 /*
2304 * If not using LD_PRELOAD, do all jailing before execve(2).
2305 * Note that PID namespaces can only be entered on fork(2),
2306 * so that flag is still cleared.
2307 */
2308 j->flags.pids = 0;
2309 }
2310 /* Jail this process, then execve(2) the target. */
2311 minijail_enter(j);
2312
2313 if (pid_namespace && do_init) {
2314 /*
2315 * pid namespace: this process will become init inside the new
2316 * namespace. We don't want all programs we might exec to have
2317 * to know how to be init. Normally (do_init == 1) we fork off
2318 * a child to actually run the program. If |do_init == 0|, we
2319 * let the program keep pid 1 and be init.
2320 *
2321 * If we're multithreaded, we'll probably deadlock here. See
2322 * WARNING above.
2323 */
2324 child_pid = fork();
2325 if (child_pid < 0) {
2326 _exit(child_pid);
2327 } else if (child_pid > 0) {
2328 /*
2329 * Best effort. Don't bother checking the return value.
2330 */
2331 prctl(PR_SET_NAME, "minijail-init");
2332 init(child_pid); /* Never returns. */
2333 }
2334 }
2335
2336 /*
2337 * If we aren't pid-namespaced, or the jailed program asked to be init:
2338 * calling process
2339 * -> execve()-ing process
2340 * If we are:
2341 * calling process
2342 * -> init()-ing process
2343 * -> execve()-ing process
2344 */
2345 ret = execve(filename, argv, environ);
2346 if (ret == -1) {
2347 pwarn("execve(%s) failed", filename);
2348 }
2349 _exit(ret);
2350 }
2351
minijail_kill(struct minijail * j)2352 int API minijail_kill(struct minijail *j)
2353 {
2354 int st;
2355 if (kill(j->initpid, SIGTERM))
2356 return -errno;
2357 if (waitpid(j->initpid, &st, 0) < 0)
2358 return -errno;
2359 return st;
2360 }
2361
minijail_wait(struct minijail * j)2362 int API minijail_wait(struct minijail *j)
2363 {
2364 int st;
2365 if (waitpid(j->initpid, &st, 0) < 0)
2366 return -errno;
2367
2368 if (!WIFEXITED(st)) {
2369 int error_status = st;
2370 if (WIFSIGNALED(st)) {
2371 int signum = WTERMSIG(st);
2372 warn("child process %d received signal %d",
2373 j->initpid, signum);
2374 /*
2375 * We return MINIJAIL_ERR_JAIL if the process received
2376 * SIGSYS, which happens when a syscall is blocked by
2377 * seccomp filters.
2378 * If not, we do what bash(1) does:
2379 * $? = 128 + signum
2380 */
2381 if (signum == SIGSYS) {
2382 error_status = MINIJAIL_ERR_JAIL;
2383 } else {
2384 error_status = 128 + signum;
2385 }
2386 }
2387 return error_status;
2388 }
2389
2390 int exit_status = WEXITSTATUS(st);
2391 if (exit_status != 0)
2392 info("child process %d exited with status %d",
2393 j->initpid, exit_status);
2394
2395 return exit_status;
2396 }
2397
minijail_destroy(struct minijail * j)2398 void API minijail_destroy(struct minijail *j)
2399 {
2400 size_t i;
2401
2402 if (j->flags.seccomp_filter && j->filter_prog) {
2403 free(j->filter_prog->filter);
2404 free(j->filter_prog);
2405 }
2406 while (j->mounts_head) {
2407 struct mountpoint *m = j->mounts_head;
2408 j->mounts_head = j->mounts_head->next;
2409 free(m->data);
2410 free(m->type);
2411 free(m->dest);
2412 free(m->src);
2413 free(m);
2414 }
2415 j->mounts_tail = NULL;
2416 if (j->user)
2417 free(j->user);
2418 if (j->suppl_gid_list)
2419 free(j->suppl_gid_list);
2420 if (j->chrootdir)
2421 free(j->chrootdir);
2422 if (j->pid_file_path)
2423 free(j->pid_file_path);
2424 if (j->uidmap)
2425 free(j->uidmap);
2426 if (j->gidmap)
2427 free(j->gidmap);
2428 if (j->alt_syscall_table)
2429 free(j->alt_syscall_table);
2430 for (i = 0; i < j->cgroup_count; ++i)
2431 free(j->cgroups[i]);
2432 free(j);
2433 }
2434