1 /* $Id: tif_pixarlog.c,v 1.39 2012-12-10 17:27:13 tgl Exp $ */
2
3 /*
4 * Copyright (c) 1996-1997 Sam Leffler
5 * Copyright (c) 1996 Pixar
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Pixar, Sam Leffler and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27 #include "tiffiop.h"
28 #ifdef PIXARLOG_SUPPORT
29
30 /*
31 * TIFF Library.
32 * PixarLog Compression Support
33 *
34 * Contributed by Dan McCoy.
35 *
36 * PixarLog film support uses the TIFF library to store companded
37 * 11 bit values into a tiff file, which are compressed using the
38 * zip compressor.
39 *
40 * The codec can take as input and produce as output 32-bit IEEE float values
41 * as well as 16-bit or 8-bit unsigned integer values.
42 *
43 * On writing any of the above are converted into the internal
44 * 11-bit log format. In the case of 8 and 16 bit values, the
45 * input is assumed to be unsigned linear color values that represent
46 * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to
47 * be the normal linear color range, in addition over 1 values are
48 * accepted up to a value of about 25.0 to encode "hot" hightlights and such.
49 * The encoding is lossless for 8-bit values, slightly lossy for the
50 * other bit depths. The actual color precision should be better
51 * than the human eye can perceive with extra room to allow for
52 * error introduced by further image computation. As with any quantized
53 * color format, it is possible to perform image calculations which
54 * expose the quantization error. This format should certainly be less
55 * susceptable to such errors than standard 8-bit encodings, but more
56 * susceptable than straight 16-bit or 32-bit encodings.
57 *
58 * On reading the internal format is converted to the desired output format.
59 * The program can request which format it desires by setting the internal
60 * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61 * PIXARLOGDATAFMT_FLOAT = provide IEEE float values.
62 * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values
63 * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values
64 *
65 * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66 * values with the difference that if there are exactly three or four channels
67 * (rgb or rgba) it swaps the channel order (bgr or abgr).
68 *
69 * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70 * packed in 16-bit values. However no tools are supplied for interpreting
71 * these values.
72 *
73 * "hot" (over 1.0) areas written in floating point get clamped to
74 * 1.0 in the integer data types.
75 *
76 * When the file is closed after writing, the bit depth and sample format
77 * are set always to appear as if 8-bit data has been written into it.
78 * That way a naive program unaware of the particulars of the encoding
79 * gets the format it is most likely able to handle.
80 *
81 * The codec does it's own horizontal differencing step on the coded
82 * values so the libraries predictor stuff should be turned off.
83 * The codec also handle byte swapping the encoded values as necessary
84 * since the library does not have the information necessary
85 * to know the bit depth of the raw unencoded buffer.
86 *
87 * NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc.
88 * This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT
89 * as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11
90 */
91
92 #include "tif_predict.h"
93 #include "../zlib_v128/zlib.h"
94
95 #include <stdio.h>
96 #include <stdlib.h>
97 #include <math.h>
98
99 /* Tables for converting to/from 11 bit coded values */
100
101 #define TSIZE 2048 /* decode table size (11-bit tokens) */
102 #define TSIZEP1 2049 /* Plus one for slop */
103 #define ONE 1250 /* token value of 1.0 exactly */
104 #define RATIO 1.004 /* nominal ratio for log part */
105
106 #define CODE_MASK 0x7ff /* 11 bits. */
107
108 static float Fltsize;
109 static float LogK1, LogK2;
110
111 #define REPEAT(n, op) { int i; i=n; do { i--; op; } while (i>0); }
112
113 static void
horizontalAccumulateF(uint16 * wp,int n,int stride,float * op,float * ToLinearF)114 horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
115 float *ToLinearF)
116 {
117 register unsigned int cr, cg, cb, ca, mask;
118 register float t0, t1, t2, t3;
119
120 if (n >= stride) {
121 mask = CODE_MASK;
122 if (stride == 3) {
123 t0 = ToLinearF[cr = (wp[0] & mask)];
124 t1 = ToLinearF[cg = (wp[1] & mask)];
125 t2 = ToLinearF[cb = (wp[2] & mask)];
126 op[0] = t0;
127 op[1] = t1;
128 op[2] = t2;
129 n -= 3;
130 while (n > 0) {
131 wp += 3;
132 op += 3;
133 n -= 3;
134 t0 = ToLinearF[(cr += wp[0]) & mask];
135 t1 = ToLinearF[(cg += wp[1]) & mask];
136 t2 = ToLinearF[(cb += wp[2]) & mask];
137 op[0] = t0;
138 op[1] = t1;
139 op[2] = t2;
140 }
141 } else if (stride == 4) {
142 t0 = ToLinearF[cr = (wp[0] & mask)];
143 t1 = ToLinearF[cg = (wp[1] & mask)];
144 t2 = ToLinearF[cb = (wp[2] & mask)];
145 t3 = ToLinearF[ca = (wp[3] & mask)];
146 op[0] = t0;
147 op[1] = t1;
148 op[2] = t2;
149 op[3] = t3;
150 n -= 4;
151 while (n > 0) {
152 wp += 4;
153 op += 4;
154 n -= 4;
155 t0 = ToLinearF[(cr += wp[0]) & mask];
156 t1 = ToLinearF[(cg += wp[1]) & mask];
157 t2 = ToLinearF[(cb += wp[2]) & mask];
158 t3 = ToLinearF[(ca += wp[3]) & mask];
159 op[0] = t0;
160 op[1] = t1;
161 op[2] = t2;
162 op[3] = t3;
163 }
164 } else {
165 REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
166 n -= stride;
167 while (n > 0) {
168 REPEAT(stride,
169 wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
170 n -= stride;
171 }
172 }
173 }
174 }
175
176 static void
horizontalAccumulate12(uint16 * wp,int n,int stride,int16 * op,float * ToLinearF)177 horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
178 float *ToLinearF)
179 {
180 register unsigned int cr, cg, cb, ca, mask;
181 register float t0, t1, t2, t3;
182
183 #define SCALE12 2048.0F
184 #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
185
186 if (n >= stride) {
187 mask = CODE_MASK;
188 if (stride == 3) {
189 t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
190 t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
191 t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
192 op[0] = CLAMP12(t0);
193 op[1] = CLAMP12(t1);
194 op[2] = CLAMP12(t2);
195 n -= 3;
196 while (n > 0) {
197 wp += 3;
198 op += 3;
199 n -= 3;
200 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
201 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
202 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
203 op[0] = CLAMP12(t0);
204 op[1] = CLAMP12(t1);
205 op[2] = CLAMP12(t2);
206 }
207 } else if (stride == 4) {
208 t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
209 t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
210 t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
211 t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12;
212 op[0] = CLAMP12(t0);
213 op[1] = CLAMP12(t1);
214 op[2] = CLAMP12(t2);
215 op[3] = CLAMP12(t3);
216 n -= 4;
217 while (n > 0) {
218 wp += 4;
219 op += 4;
220 n -= 4;
221 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
222 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
223 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
224 t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
225 op[0] = CLAMP12(t0);
226 op[1] = CLAMP12(t1);
227 op[2] = CLAMP12(t2);
228 op[3] = CLAMP12(t3);
229 }
230 } else {
231 REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
232 *op = CLAMP12(t0); wp++; op++)
233 n -= stride;
234 while (n > 0) {
235 REPEAT(stride,
236 wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
237 *op = CLAMP12(t0); wp++; op++)
238 n -= stride;
239 }
240 }
241 }
242 }
243
244 static void
horizontalAccumulate16(uint16 * wp,int n,int stride,uint16 * op,uint16 * ToLinear16)245 horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
246 uint16 *ToLinear16)
247 {
248 register unsigned int cr, cg, cb, ca, mask;
249
250 if (n >= stride) {
251 mask = CODE_MASK;
252 if (stride == 3) {
253 op[0] = ToLinear16[cr = (wp[0] & mask)];
254 op[1] = ToLinear16[cg = (wp[1] & mask)];
255 op[2] = ToLinear16[cb = (wp[2] & mask)];
256 n -= 3;
257 while (n > 0) {
258 wp += 3;
259 op += 3;
260 n -= 3;
261 op[0] = ToLinear16[(cr += wp[0]) & mask];
262 op[1] = ToLinear16[(cg += wp[1]) & mask];
263 op[2] = ToLinear16[(cb += wp[2]) & mask];
264 }
265 } else if (stride == 4) {
266 op[0] = ToLinear16[cr = (wp[0] & mask)];
267 op[1] = ToLinear16[cg = (wp[1] & mask)];
268 op[2] = ToLinear16[cb = (wp[2] & mask)];
269 op[3] = ToLinear16[ca = (wp[3] & mask)];
270 n -= 4;
271 while (n > 0) {
272 wp += 4;
273 op += 4;
274 n -= 4;
275 op[0] = ToLinear16[(cr += wp[0]) & mask];
276 op[1] = ToLinear16[(cg += wp[1]) & mask];
277 op[2] = ToLinear16[(cb += wp[2]) & mask];
278 op[3] = ToLinear16[(ca += wp[3]) & mask];
279 }
280 } else {
281 REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
282 n -= stride;
283 while (n > 0) {
284 REPEAT(stride,
285 wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
286 n -= stride;
287 }
288 }
289 }
290 }
291
292 /*
293 * Returns the log encoded 11-bit values with the horizontal
294 * differencing undone.
295 */
296 static void
horizontalAccumulate11(uint16 * wp,int n,int stride,uint16 * op)297 horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
298 {
299 register unsigned int cr, cg, cb, ca, mask;
300
301 if (n >= stride) {
302 mask = CODE_MASK;
303 if (stride == 3) {
304 op[0] = cr = wp[0]; op[1] = cg = wp[1]; op[2] = cb = wp[2];
305 n -= 3;
306 while (n > 0) {
307 wp += 3;
308 op += 3;
309 n -= 3;
310 op[0] = (cr += wp[0]) & mask;
311 op[1] = (cg += wp[1]) & mask;
312 op[2] = (cb += wp[2]) & mask;
313 }
314 } else if (stride == 4) {
315 op[0] = cr = wp[0]; op[1] = cg = wp[1];
316 op[2] = cb = wp[2]; op[3] = ca = wp[3];
317 n -= 4;
318 while (n > 0) {
319 wp += 4;
320 op += 4;
321 n -= 4;
322 op[0] = (cr += wp[0]) & mask;
323 op[1] = (cg += wp[1]) & mask;
324 op[2] = (cb += wp[2]) & mask;
325 op[3] = (ca += wp[3]) & mask;
326 }
327 } else {
328 REPEAT(stride, *op = *wp&mask; wp++; op++)
329 n -= stride;
330 while (n > 0) {
331 REPEAT(stride,
332 wp[stride] += *wp; *op = *wp&mask; wp++; op++)
333 n -= stride;
334 }
335 }
336 }
337 }
338
339 static void
horizontalAccumulate8(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)340 horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
341 unsigned char *ToLinear8)
342 {
343 register unsigned int cr, cg, cb, ca, mask;
344
345 if (n >= stride) {
346 mask = CODE_MASK;
347 if (stride == 3) {
348 op[0] = ToLinear8[cr = (wp[0] & mask)];
349 op[1] = ToLinear8[cg = (wp[1] & mask)];
350 op[2] = ToLinear8[cb = (wp[2] & mask)];
351 n -= 3;
352 while (n > 0) {
353 n -= 3;
354 wp += 3;
355 op += 3;
356 op[0] = ToLinear8[(cr += wp[0]) & mask];
357 op[1] = ToLinear8[(cg += wp[1]) & mask];
358 op[2] = ToLinear8[(cb += wp[2]) & mask];
359 }
360 } else if (stride == 4) {
361 op[0] = ToLinear8[cr = (wp[0] & mask)];
362 op[1] = ToLinear8[cg = (wp[1] & mask)];
363 op[2] = ToLinear8[cb = (wp[2] & mask)];
364 op[3] = ToLinear8[ca = (wp[3] & mask)];
365 n -= 4;
366 while (n > 0) {
367 n -= 4;
368 wp += 4;
369 op += 4;
370 op[0] = ToLinear8[(cr += wp[0]) & mask];
371 op[1] = ToLinear8[(cg += wp[1]) & mask];
372 op[2] = ToLinear8[(cb += wp[2]) & mask];
373 op[3] = ToLinear8[(ca += wp[3]) & mask];
374 }
375 } else {
376 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
377 n -= stride;
378 while (n > 0) {
379 REPEAT(stride,
380 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
381 n -= stride;
382 }
383 }
384 }
385 }
386
387
388 static void
horizontalAccumulate8abgr(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)389 horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
390 unsigned char *ToLinear8)
391 {
392 register unsigned int cr, cg, cb, ca, mask;
393 register unsigned char t0, t1, t2, t3;
394
395 if (n >= stride) {
396 mask = CODE_MASK;
397 if (stride == 3) {
398 op[0] = 0;
399 t1 = ToLinear8[cb = (wp[2] & mask)];
400 t2 = ToLinear8[cg = (wp[1] & mask)];
401 t3 = ToLinear8[cr = (wp[0] & mask)];
402 op[1] = t1;
403 op[2] = t2;
404 op[3] = t3;
405 n -= 3;
406 while (n > 0) {
407 n -= 3;
408 wp += 3;
409 op += 4;
410 op[0] = 0;
411 t1 = ToLinear8[(cb += wp[2]) & mask];
412 t2 = ToLinear8[(cg += wp[1]) & mask];
413 t3 = ToLinear8[(cr += wp[0]) & mask];
414 op[1] = t1;
415 op[2] = t2;
416 op[3] = t3;
417 }
418 } else if (stride == 4) {
419 t0 = ToLinear8[ca = (wp[3] & mask)];
420 t1 = ToLinear8[cb = (wp[2] & mask)];
421 t2 = ToLinear8[cg = (wp[1] & mask)];
422 t3 = ToLinear8[cr = (wp[0] & mask)];
423 op[0] = t0;
424 op[1] = t1;
425 op[2] = t2;
426 op[3] = t3;
427 n -= 4;
428 while (n > 0) {
429 n -= 4;
430 wp += 4;
431 op += 4;
432 t0 = ToLinear8[(ca += wp[3]) & mask];
433 t1 = ToLinear8[(cb += wp[2]) & mask];
434 t2 = ToLinear8[(cg += wp[1]) & mask];
435 t3 = ToLinear8[(cr += wp[0]) & mask];
436 op[0] = t0;
437 op[1] = t1;
438 op[2] = t2;
439 op[3] = t3;
440 }
441 } else {
442 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
443 n -= stride;
444 while (n > 0) {
445 REPEAT(stride,
446 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
447 n -= stride;
448 }
449 }
450 }
451 }
452
453 /*
454 * State block for each open TIFF
455 * file using PixarLog compression/decompression.
456 */
457 typedef struct {
458 TIFFPredictorState predict;
459 z_stream stream;
460 tmsize_t tbuf_size; /* only set/used on reading for now */
461 uint16 *tbuf;
462 uint16 stride;
463 int state;
464 int user_datafmt;
465 int quality;
466 #define PLSTATE_INIT 1
467
468 TIFFVSetMethod vgetparent; /* super-class method */
469 TIFFVSetMethod vsetparent; /* super-class method */
470
471 float *ToLinearF;
472 uint16 *ToLinear16;
473 unsigned char *ToLinear8;
474 uint16 *FromLT2;
475 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
476 uint16 *From8;
477
478 } PixarLogState;
479
480 static int
PixarLogMakeTables(PixarLogState * sp)481 PixarLogMakeTables(PixarLogState *sp)
482 {
483
484 /*
485 * We make several tables here to convert between various external
486 * representations (float, 16-bit, and 8-bit) and the internal
487 * 11-bit companded representation. The 11-bit representation has two
488 * distinct regions. A linear bottom end up through .018316 in steps
489 * of about .000073, and a region of constant ratio up to about 25.
490 * These floating point numbers are stored in the main table ToLinearF.
491 * All other tables are derived from this one. The tables (and the
492 * ratios) are continuous at the internal seam.
493 */
494
495 int nlin, lt2size;
496 int i, j;
497 double b, c, linstep, v;
498 float *ToLinearF;
499 uint16 *ToLinear16;
500 unsigned char *ToLinear8;
501 uint16 *FromLT2;
502 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
503 uint16 *From8;
504
505 c = log(RATIO);
506 nlin = (int)(1./c); /* nlin must be an integer */
507 c = 1./nlin;
508 b = exp(-c*ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */
509 linstep = b*c*exp(1.);
510
511 LogK1 = (float)(1./c); /* if (v >= 2) token = k1*log(v*k2) */
512 LogK2 = (float)(1./b);
513 lt2size = (int)(2./linstep) + 1;
514 FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
515 From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
516 From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
517 ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
518 ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
519 ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
520 if (FromLT2 == NULL || From14 == NULL || From8 == NULL ||
521 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
522 if (FromLT2) _TIFFfree(FromLT2);
523 if (From14) _TIFFfree(From14);
524 if (From8) _TIFFfree(From8);
525 if (ToLinearF) _TIFFfree(ToLinearF);
526 if (ToLinear16) _TIFFfree(ToLinear16);
527 if (ToLinear8) _TIFFfree(ToLinear8);
528 sp->FromLT2 = NULL;
529 sp->From14 = NULL;
530 sp->From8 = NULL;
531 sp->ToLinearF = NULL;
532 sp->ToLinear16 = NULL;
533 sp->ToLinear8 = NULL;
534 return 0;
535 }
536
537 j = 0;
538
539 for (i = 0; i < nlin; i++) {
540 v = i * linstep;
541 ToLinearF[j++] = (float)v;
542 }
543
544 for (i = nlin; i < TSIZE; i++)
545 ToLinearF[j++] = (float)(b*exp(c*i));
546
547 ToLinearF[2048] = ToLinearF[2047];
548
549 for (i = 0; i < TSIZEP1; i++) {
550 v = ToLinearF[i]*65535.0 + 0.5;
551 ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
552 v = ToLinearF[i]*255.0 + 0.5;
553 ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v;
554 }
555
556 j = 0;
557 for (i = 0; i < lt2size; i++) {
558 if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
559 j++;
560 FromLT2[i] = j;
561 }
562
563 /*
564 * Since we lose info anyway on 16-bit data, we set up a 14-bit
565 * table and shift 16-bit values down two bits on input.
566 * saves a little table space.
567 */
568 j = 0;
569 for (i = 0; i < 16384; i++) {
570 while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
571 j++;
572 From14[i] = j;
573 }
574
575 j = 0;
576 for (i = 0; i < 256; i++) {
577 while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
578 j++;
579 From8[i] = j;
580 }
581
582 Fltsize = (float)(lt2size/2);
583
584 sp->ToLinearF = ToLinearF;
585 sp->ToLinear16 = ToLinear16;
586 sp->ToLinear8 = ToLinear8;
587 sp->FromLT2 = FromLT2;
588 sp->From14 = From14;
589 sp->From8 = From8;
590
591 return 1;
592 }
593
594 #define DecoderState(tif) ((PixarLogState*) (tif)->tif_data)
595 #define EncoderState(tif) ((PixarLogState*) (tif)->tif_data)
596
597 static int PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s);
598 static int PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s);
599
600 #define PIXARLOGDATAFMT_UNKNOWN -1
601
602 static int
PixarLogGuessDataFmt(TIFFDirectory * td)603 PixarLogGuessDataFmt(TIFFDirectory *td)
604 {
605 int guess = PIXARLOGDATAFMT_UNKNOWN;
606 int format = td->td_sampleformat;
607
608 /* If the user didn't tell us his datafmt,
609 * take our best guess from the bitspersample.
610 */
611 switch (td->td_bitspersample) {
612 case 32:
613 if (format == SAMPLEFORMAT_IEEEFP)
614 guess = PIXARLOGDATAFMT_FLOAT;
615 break;
616 case 16:
617 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
618 guess = PIXARLOGDATAFMT_16BIT;
619 break;
620 case 12:
621 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
622 guess = PIXARLOGDATAFMT_12BITPICIO;
623 break;
624 case 11:
625 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
626 guess = PIXARLOGDATAFMT_11BITLOG;
627 break;
628 case 8:
629 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
630 guess = PIXARLOGDATAFMT_8BIT;
631 break;
632 }
633
634 return guess;
635 }
636
637 static tmsize_t
multiply_ms(tmsize_t m1,tmsize_t m2)638 multiply_ms(tmsize_t m1, tmsize_t m2)
639 {
640 tmsize_t bytes = m1 * m2;
641
642 if (m1 && bytes / m1 != m2)
643 bytes = 0;
644
645 return bytes;
646 }
647
648 static tmsize_t
add_ms(tmsize_t m1,tmsize_t m2)649 add_ms(tmsize_t m1, tmsize_t m2)
650 {
651 tmsize_t bytes = m1 + m2;
652
653 /* if either input is zero, assume overflow already occurred */
654 if (m1 == 0 || m2 == 0)
655 bytes = 0;
656 else if (bytes <= m1 || bytes <= m2)
657 bytes = 0;
658
659 return bytes;
660 }
661
662 static int
PixarLogFixupTags(TIFF * tif)663 PixarLogFixupTags(TIFF* tif)
664 {
665 (void) tif;
666 return (1);
667 }
668
669 static int
PixarLogSetupDecode(TIFF * tif)670 PixarLogSetupDecode(TIFF* tif)
671 {
672 static const char module[] = "PixarLogSetupDecode";
673 TIFFDirectory *td = &tif->tif_dir;
674 PixarLogState* sp = DecoderState(tif);
675 tmsize_t tbuf_size;
676
677 assert(sp != NULL);
678
679 /* Make sure no byte swapping happens on the data
680 * after decompression. */
681 tif->tif_postdecode = _TIFFNoPostDecode;
682
683 /* for some reason, we can't do this in TIFFInitPixarLog */
684
685 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
686 td->td_samplesperpixel : 1);
687 tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
688 td->td_rowsperstrip), sizeof(uint16));
689 /* add one more stride in case input ends mid-stride */
690 tbuf_size = add_ms(tbuf_size, sizeof(uint16) * sp->stride);
691 if (tbuf_size == 0)
692 return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
693 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
694 if (sp->tbuf == NULL)
695 return (0);
696 sp->tbuf_size = tbuf_size;
697 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
698 sp->user_datafmt = PixarLogGuessDataFmt(td);
699 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
700 TIFFErrorExt(tif->tif_clientdata, module,
701 "PixarLog compression can't handle bits depth/data format combination (depth: %d)",
702 td->td_bitspersample);
703 return (0);
704 }
705
706 if (inflateInit(&sp->stream) != Z_OK) {
707 TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg);
708 return (0);
709 } else {
710 sp->state |= PLSTATE_INIT;
711 return (1);
712 }
713 }
714
715 /*
716 * Setup state for decoding a strip.
717 */
718 static int
PixarLogPreDecode(TIFF * tif,uint16 s)719 PixarLogPreDecode(TIFF* tif, uint16 s)
720 {
721 static const char module[] = "PixarLogPreDecode";
722 PixarLogState* sp = DecoderState(tif);
723
724 (void) s;
725 assert(sp != NULL);
726 sp->stream.next_in = tif->tif_rawdata;
727 assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
728 we need to simplify this code to reflect a ZLib that is likely updated
729 to deal with 8byte memory sizes, though this code will respond
730 apropriately even before we simplify it */
731 sp->stream.avail_in = (uInt) tif->tif_rawcc;
732 if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc)
733 {
734 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
735 return (0);
736 }
737 return (inflateReset(&sp->stream) == Z_OK);
738 }
739
740 static int
PixarLogDecode(TIFF * tif,uint8 * op,tmsize_t occ,uint16 s)741 PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
742 {
743 static const char module[] = "PixarLogDecode";
744 TIFFDirectory *td = &tif->tif_dir;
745 PixarLogState* sp = DecoderState(tif);
746 tmsize_t i;
747 tmsize_t nsamples;
748 int llen;
749 uint16 *up;
750
751 switch (sp->user_datafmt) {
752 case PIXARLOGDATAFMT_FLOAT:
753 nsamples = occ / sizeof(float); /* XXX float == 32 bits */
754 break;
755 case PIXARLOGDATAFMT_16BIT:
756 case PIXARLOGDATAFMT_12BITPICIO:
757 case PIXARLOGDATAFMT_11BITLOG:
758 nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
759 break;
760 case PIXARLOGDATAFMT_8BIT:
761 case PIXARLOGDATAFMT_8BITABGR:
762 nsamples = occ;
763 break;
764 default:
765 TIFFErrorExt(tif->tif_clientdata, module,
766 "%d bit input not supported in PixarLog",
767 td->td_bitspersample);
768 return 0;
769 }
770
771 llen = sp->stride * td->td_imagewidth;
772
773 (void) s;
774 assert(sp != NULL);
775 sp->stream.next_out = (unsigned char *) sp->tbuf;
776 assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
777 we need to simplify this code to reflect a ZLib that is likely updated
778 to deal with 8byte memory sizes, though this code will respond
779 apropriately even before we simplify it */
780 sp->stream.avail_out = (uInt) (nsamples * sizeof(uint16));
781 if (sp->stream.avail_out != nsamples * sizeof(uint16))
782 {
783 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
784 return (0);
785 }
786 /* Check that we will not fill more than what was allocated */
787 if ((tmsize_t)sp->stream.avail_out > sp->tbuf_size)
788 {
789 TIFFErrorExt(tif->tif_clientdata, module, "sp->stream.avail_out > sp->tbuf_size");
790 return (0);
791 }
792 do {
793 int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
794 if (state == Z_STREAM_END) {
795 break; /* XXX */
796 }
797 if (state == Z_DATA_ERROR) {
798 TIFFErrorExt(tif->tif_clientdata, module,
799 "Decoding error at scanline %lu, %s",
800 (unsigned long) tif->tif_row, sp->stream.msg);
801 if (inflateSync(&sp->stream) != Z_OK)
802 return (0);
803 continue;
804 }
805 if (state != Z_OK) {
806 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
807 sp->stream.msg);
808 return (0);
809 }
810 } while (sp->stream.avail_out > 0);
811
812 /* hopefully, we got all the bytes we needed */
813 if (sp->stream.avail_out != 0) {
814 TIFFErrorExt(tif->tif_clientdata, module,
815 "Not enough data at scanline %lu (short " TIFF_UINT64_FORMAT " bytes)",
816 (unsigned long) tif->tif_row, (TIFF_UINT64_T) sp->stream.avail_out);
817 return (0);
818 }
819
820 up = sp->tbuf;
821 /* Swap bytes in the data if from a different endian machine. */
822 if (tif->tif_flags & TIFF_SWAB)
823 TIFFSwabArrayOfShort(up, nsamples);
824
825 /*
826 * if llen is not an exact multiple of nsamples, the decode operation
827 * may overflow the output buffer, so truncate it enough to prevent
828 * that but still salvage as much data as possible.
829 */
830 if (nsamples % llen) {
831 TIFFWarningExt(tif->tif_clientdata, module,
832 "stride %lu is not a multiple of sample count, "
833 "%lu, data truncated.", (unsigned long) llen, (unsigned long) nsamples);
834 nsamples -= nsamples % llen;
835 }
836
837 for (i = 0; i < nsamples; i += llen, up += llen) {
838 switch (sp->user_datafmt) {
839 case PIXARLOGDATAFMT_FLOAT:
840 horizontalAccumulateF(up, llen, sp->stride,
841 (float *)op, sp->ToLinearF);
842 op += llen * sizeof(float);
843 break;
844 case PIXARLOGDATAFMT_16BIT:
845 horizontalAccumulate16(up, llen, sp->stride,
846 (uint16 *)op, sp->ToLinear16);
847 op += llen * sizeof(uint16);
848 break;
849 case PIXARLOGDATAFMT_12BITPICIO:
850 horizontalAccumulate12(up, llen, sp->stride,
851 (int16 *)op, sp->ToLinearF);
852 op += llen * sizeof(int16);
853 break;
854 case PIXARLOGDATAFMT_11BITLOG:
855 horizontalAccumulate11(up, llen, sp->stride,
856 (uint16 *)op);
857 op += llen * sizeof(uint16);
858 break;
859 case PIXARLOGDATAFMT_8BIT:
860 horizontalAccumulate8(up, llen, sp->stride,
861 (unsigned char *)op, sp->ToLinear8);
862 op += llen * sizeof(unsigned char);
863 break;
864 case PIXARLOGDATAFMT_8BITABGR:
865 horizontalAccumulate8abgr(up, llen, sp->stride,
866 (unsigned char *)op, sp->ToLinear8);
867 op += llen * sizeof(unsigned char);
868 break;
869 default:
870 TIFFErrorExt(tif->tif_clientdata, module,
871 "Unsupported bits/sample: %d",
872 td->td_bitspersample);
873 return (0);
874 }
875 }
876
877 return (1);
878 }
879
880 static int
PixarLogSetupEncode(TIFF * tif)881 PixarLogSetupEncode(TIFF* tif)
882 {
883 static const char module[] = "PixarLogSetupEncode";
884 TIFFDirectory *td = &tif->tif_dir;
885 PixarLogState* sp = EncoderState(tif);
886 tmsize_t tbuf_size;
887
888 assert(sp != NULL);
889
890 /* for some reason, we can't do this in TIFFInitPixarLog */
891
892 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
893 td->td_samplesperpixel : 1);
894 tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
895 td->td_rowsperstrip), sizeof(uint16));
896 if (tbuf_size == 0)
897 return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
898 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
899 if (sp->tbuf == NULL)
900 return (0);
901 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
902 sp->user_datafmt = PixarLogGuessDataFmt(td);
903 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
904 TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
905 return (0);
906 }
907
908 if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
909 TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg);
910 return (0);
911 } else {
912 sp->state |= PLSTATE_INIT;
913 return (1);
914 }
915 }
916
917 /*
918 * Reset encoding state at the start of a strip.
919 */
920 static int
PixarLogPreEncode(TIFF * tif,uint16 s)921 PixarLogPreEncode(TIFF* tif, uint16 s)
922 {
923 static const char module[] = "PixarLogPreEncode";
924 PixarLogState *sp = EncoderState(tif);
925
926 (void) s;
927 assert(sp != NULL);
928 sp->stream.next_out = tif->tif_rawdata;
929 assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
930 we need to simplify this code to reflect a ZLib that is likely updated
931 to deal with 8byte memory sizes, though this code will respond
932 apropriately even before we simplify it */
933 sp->stream.avail_out = tif->tif_rawdatasize;
934 if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
935 {
936 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
937 return (0);
938 }
939 return (deflateReset(&sp->stream) == Z_OK);
940 }
941
942 static void
horizontalDifferenceF(float * ip,int n,int stride,uint16 * wp,uint16 * FromLT2)943 horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
944 {
945 int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
946 float fltsize = Fltsize;
947
948 #define CLAMP(v) ( (v<(float)0.) ? 0 \
949 : (v<(float)2.) ? FromLT2[(int)(v*fltsize)] \
950 : (v>(float)24.2) ? 2047 \
951 : LogK1*log(v*LogK2) + 0.5 )
952
953 mask = CODE_MASK;
954 if (n >= stride) {
955 if (stride == 3) {
956 r2 = wp[0] = (uint16) CLAMP(ip[0]);
957 g2 = wp[1] = (uint16) CLAMP(ip[1]);
958 b2 = wp[2] = (uint16) CLAMP(ip[2]);
959 n -= 3;
960 while (n > 0) {
961 n -= 3;
962 wp += 3;
963 ip += 3;
964 r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
965 g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
966 b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
967 }
968 } else if (stride == 4) {
969 r2 = wp[0] = (uint16) CLAMP(ip[0]);
970 g2 = wp[1] = (uint16) CLAMP(ip[1]);
971 b2 = wp[2] = (uint16) CLAMP(ip[2]);
972 a2 = wp[3] = (uint16) CLAMP(ip[3]);
973 n -= 4;
974 while (n > 0) {
975 n -= 4;
976 wp += 4;
977 ip += 4;
978 r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
979 g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
980 b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
981 a1 = (int32) CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
982 }
983 } else {
984 ip += n - 1; /* point to last one */
985 wp += n - 1; /* point to last one */
986 n -= stride;
987 while (n > 0) {
988 REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]);
989 wp[stride] -= wp[0];
990 wp[stride] &= mask;
991 wp--; ip--)
992 n -= stride;
993 }
994 REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--)
995 }
996 }
997 }
998
999 static void
horizontalDifference16(unsigned short * ip,int n,int stride,unsigned short * wp,uint16 * From14)1000 horizontalDifference16(unsigned short *ip, int n, int stride,
1001 unsigned short *wp, uint16 *From14)
1002 {
1003 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1004
1005 /* assumption is unsigned pixel values */
1006 #undef CLAMP
1007 #define CLAMP(v) From14[(v) >> 2]
1008
1009 mask = CODE_MASK;
1010 if (n >= stride) {
1011 if (stride == 3) {
1012 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1013 b2 = wp[2] = CLAMP(ip[2]);
1014 n -= 3;
1015 while (n > 0) {
1016 n -= 3;
1017 wp += 3;
1018 ip += 3;
1019 r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
1020 g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
1021 b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
1022 }
1023 } else if (stride == 4) {
1024 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1025 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1026 n -= 4;
1027 while (n > 0) {
1028 n -= 4;
1029 wp += 4;
1030 ip += 4;
1031 r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
1032 g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
1033 b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
1034 a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
1035 }
1036 } else {
1037 ip += n - 1; /* point to last one */
1038 wp += n - 1; /* point to last one */
1039 n -= stride;
1040 while (n > 0) {
1041 REPEAT(stride, wp[0] = CLAMP(ip[0]);
1042 wp[stride] -= wp[0];
1043 wp[stride] &= mask;
1044 wp--; ip--)
1045 n -= stride;
1046 }
1047 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1048 }
1049 }
1050 }
1051
1052
1053 static void
horizontalDifference8(unsigned char * ip,int n,int stride,unsigned short * wp,uint16 * From8)1054 horizontalDifference8(unsigned char *ip, int n, int stride,
1055 unsigned short *wp, uint16 *From8)
1056 {
1057 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1058
1059 #undef CLAMP
1060 #define CLAMP(v) (From8[(v)])
1061
1062 mask = CODE_MASK;
1063 if (n >= stride) {
1064 if (stride == 3) {
1065 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1066 b2 = wp[2] = CLAMP(ip[2]);
1067 n -= 3;
1068 while (n > 0) {
1069 n -= 3;
1070 r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1;
1071 g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1;
1072 b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1;
1073 wp += 3;
1074 ip += 3;
1075 }
1076 } else if (stride == 4) {
1077 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1078 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1079 n -= 4;
1080 while (n > 0) {
1081 n -= 4;
1082 r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1;
1083 g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1;
1084 b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1;
1085 a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1;
1086 wp += 4;
1087 ip += 4;
1088 }
1089 } else {
1090 wp += n + stride - 1; /* point to last one */
1091 ip += n + stride - 1; /* point to last one */
1092 n -= stride;
1093 while (n > 0) {
1094 REPEAT(stride, wp[0] = CLAMP(ip[0]);
1095 wp[stride] -= wp[0];
1096 wp[stride] &= mask;
1097 wp--; ip--)
1098 n -= stride;
1099 }
1100 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1101 }
1102 }
1103 }
1104
1105 /*
1106 * Encode a chunk of pixels.
1107 */
1108 static int
PixarLogEncode(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)1109 PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
1110 {
1111 static const char module[] = "PixarLogEncode";
1112 TIFFDirectory *td = &tif->tif_dir;
1113 PixarLogState *sp = EncoderState(tif);
1114 tmsize_t i;
1115 tmsize_t n;
1116 int llen;
1117 unsigned short * up;
1118
1119 (void) s;
1120
1121 switch (sp->user_datafmt) {
1122 case PIXARLOGDATAFMT_FLOAT:
1123 n = cc / sizeof(float); /* XXX float == 32 bits */
1124 break;
1125 case PIXARLOGDATAFMT_16BIT:
1126 case PIXARLOGDATAFMT_12BITPICIO:
1127 case PIXARLOGDATAFMT_11BITLOG:
1128 n = cc / sizeof(uint16); /* XXX uint16 == 16 bits */
1129 break;
1130 case PIXARLOGDATAFMT_8BIT:
1131 case PIXARLOGDATAFMT_8BITABGR:
1132 n = cc;
1133 break;
1134 default:
1135 TIFFErrorExt(tif->tif_clientdata, module,
1136 "%d bit input not supported in PixarLog",
1137 td->td_bitspersample);
1138 return 0;
1139 }
1140
1141 llen = sp->stride * td->td_imagewidth;
1142
1143 for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1144 switch (sp->user_datafmt) {
1145 case PIXARLOGDATAFMT_FLOAT:
1146 horizontalDifferenceF((float *)bp, llen,
1147 sp->stride, up, sp->FromLT2);
1148 bp += llen * sizeof(float);
1149 break;
1150 case PIXARLOGDATAFMT_16BIT:
1151 horizontalDifference16((uint16 *)bp, llen,
1152 sp->stride, up, sp->From14);
1153 bp += llen * sizeof(uint16);
1154 break;
1155 case PIXARLOGDATAFMT_8BIT:
1156 horizontalDifference8((unsigned char *)bp, llen,
1157 sp->stride, up, sp->From8);
1158 bp += llen * sizeof(unsigned char);
1159 break;
1160 default:
1161 TIFFErrorExt(tif->tif_clientdata, module,
1162 "%d bit input not supported in PixarLog",
1163 td->td_bitspersample);
1164 return 0;
1165 }
1166 }
1167
1168 sp->stream.next_in = (unsigned char *) sp->tbuf;
1169 assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
1170 we need to simplify this code to reflect a ZLib that is likely updated
1171 to deal with 8byte memory sizes, though this code will respond
1172 apropriately even before we simplify it */
1173 sp->stream.avail_in = (uInt) (n * sizeof(uint16));
1174 if ((sp->stream.avail_in / sizeof(uint16)) != (uInt) n)
1175 {
1176 TIFFErrorExt(tif->tif_clientdata, module,
1177 "ZLib cannot deal with buffers this size");
1178 return (0);
1179 }
1180
1181 do {
1182 if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1183 TIFFErrorExt(tif->tif_clientdata, module, "Encoder error: %s",
1184 sp->stream.msg);
1185 return (0);
1186 }
1187 if (sp->stream.avail_out == 0) {
1188 tif->tif_rawcc = tif->tif_rawdatasize;
1189 TIFFFlushData1(tif);
1190 sp->stream.next_out = tif->tif_rawdata;
1191 sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1192 }
1193 } while (sp->stream.avail_in > 0);
1194 return (1);
1195 }
1196
1197 /*
1198 * Finish off an encoded strip by flushing the last
1199 * string and tacking on an End Of Information code.
1200 */
1201
1202 static int
PixarLogPostEncode(TIFF * tif)1203 PixarLogPostEncode(TIFF* tif)
1204 {
1205 static const char module[] = "PixarLogPostEncode";
1206 PixarLogState *sp = EncoderState(tif);
1207 int state;
1208
1209 sp->stream.avail_in = 0;
1210
1211 do {
1212 state = deflate(&sp->stream, Z_FINISH);
1213 switch (state) {
1214 case Z_STREAM_END:
1215 case Z_OK:
1216 if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) {
1217 tif->tif_rawcc =
1218 tif->tif_rawdatasize - sp->stream.avail_out;
1219 TIFFFlushData1(tif);
1220 sp->stream.next_out = tif->tif_rawdata;
1221 sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1222 }
1223 break;
1224 default:
1225 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1226 sp->stream.msg);
1227 return (0);
1228 }
1229 } while (state != Z_STREAM_END);
1230 return (1);
1231 }
1232
1233 static void
PixarLogClose(TIFF * tif)1234 PixarLogClose(TIFF* tif)
1235 {
1236 TIFFDirectory *td = &tif->tif_dir;
1237
1238 /* In a really sneaky (and really incorrect, and untruthfull, and
1239 * troublesome, and error-prone) maneuver that completely goes against
1240 * the spirit of TIFF, and breaks TIFF, on close, we covertly
1241 * modify both bitspersample and sampleformat in the directory to
1242 * indicate 8-bit linear. This way, the decode "just works" even for
1243 * readers that don't know about PixarLog, or how to set
1244 * the PIXARLOGDATFMT pseudo-tag.
1245 */
1246 td->td_bitspersample = 8;
1247 td->td_sampleformat = SAMPLEFORMAT_UINT;
1248 }
1249
1250 static void
PixarLogCleanup(TIFF * tif)1251 PixarLogCleanup(TIFF* tif)
1252 {
1253 PixarLogState* sp = (PixarLogState*) tif->tif_data;
1254
1255 assert(sp != 0);
1256
1257 (void)TIFFPredictorCleanup(tif);
1258
1259 tif->tif_tagmethods.vgetfield = sp->vgetparent;
1260 tif->tif_tagmethods.vsetfield = sp->vsetparent;
1261
1262 if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1263 if (sp->From14) _TIFFfree(sp->From14);
1264 if (sp->From8) _TIFFfree(sp->From8);
1265 if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1266 if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1267 if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1268 if (sp->state&PLSTATE_INIT) {
1269 if (tif->tif_mode == O_RDONLY)
1270 inflateEnd(&sp->stream);
1271 else
1272 deflateEnd(&sp->stream);
1273 }
1274 if (sp->tbuf)
1275 _TIFFfree(sp->tbuf);
1276 _TIFFfree(sp);
1277 tif->tif_data = NULL;
1278
1279 _TIFFSetDefaultCompressionState(tif);
1280 }
1281
1282 static int
PixarLogVSetField(TIFF * tif,uint32 tag,va_list ap)1283 PixarLogVSetField(TIFF* tif, uint32 tag, va_list ap)
1284 {
1285 static const char module[] = "PixarLogVSetField";
1286 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1287 int result;
1288
1289 switch (tag) {
1290 case TIFFTAG_PIXARLOGQUALITY:
1291 sp->quality = (int) va_arg(ap, int);
1292 if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1293 if (deflateParams(&sp->stream,
1294 sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1295 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1296 sp->stream.msg);
1297 return (0);
1298 }
1299 }
1300 return (1);
1301 case TIFFTAG_PIXARLOGDATAFMT:
1302 sp->user_datafmt = (int) va_arg(ap, int);
1303 /* Tweak the TIFF header so that the rest of libtiff knows what
1304 * size of data will be passed between app and library, and
1305 * assume that the app knows what it is doing and is not
1306 * confused by these header manipulations...
1307 */
1308 switch (sp->user_datafmt) {
1309 case PIXARLOGDATAFMT_8BIT:
1310 case PIXARLOGDATAFMT_8BITABGR:
1311 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1312 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1313 break;
1314 case PIXARLOGDATAFMT_11BITLOG:
1315 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1316 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1317 break;
1318 case PIXARLOGDATAFMT_12BITPICIO:
1319 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1320 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1321 break;
1322 case PIXARLOGDATAFMT_16BIT:
1323 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1324 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1325 break;
1326 case PIXARLOGDATAFMT_FLOAT:
1327 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1328 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1329 break;
1330 }
1331 /*
1332 * Must recalculate sizes should bits/sample change.
1333 */
1334 tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1);
1335 tif->tif_scanlinesize = TIFFScanlineSize(tif);
1336 result = 1; /* NB: pseudo tag */
1337 break;
1338 default:
1339 result = (*sp->vsetparent)(tif, tag, ap);
1340 }
1341 return (result);
1342 }
1343
1344 static int
PixarLogVGetField(TIFF * tif,uint32 tag,va_list ap)1345 PixarLogVGetField(TIFF* tif, uint32 tag, va_list ap)
1346 {
1347 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1348
1349 switch (tag) {
1350 case TIFFTAG_PIXARLOGQUALITY:
1351 *va_arg(ap, int*) = sp->quality;
1352 break;
1353 case TIFFTAG_PIXARLOGDATAFMT:
1354 *va_arg(ap, int*) = sp->user_datafmt;
1355 break;
1356 default:
1357 return (*sp->vgetparent)(tif, tag, ap);
1358 }
1359 return (1);
1360 }
1361
1362 static const TIFFField pixarlogFields[] = {
1363 {TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL},
1364 {TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}
1365 };
1366
1367 int
TIFFInitPixarLog(TIFF * tif,int scheme)1368 TIFFInitPixarLog(TIFF* tif, int scheme)
1369 {
1370 static const char module[] = "TIFFInitPixarLog";
1371
1372 PixarLogState* sp;
1373
1374 assert(scheme == COMPRESSION_PIXARLOG);
1375
1376 /*
1377 * Merge codec-specific tag information.
1378 */
1379 if (!_TIFFMergeFields(tif, pixarlogFields,
1380 TIFFArrayCount(pixarlogFields))) {
1381 TIFFErrorExt(tif->tif_clientdata, module,
1382 "Merging PixarLog codec-specific tags failed");
1383 return 0;
1384 }
1385
1386 /*
1387 * Allocate state block so tag methods have storage to record values.
1388 */
1389 tif->tif_data = (uint8*) _TIFFmalloc(sizeof (PixarLogState));
1390 if (tif->tif_data == NULL)
1391 goto bad;
1392 sp = (PixarLogState*) tif->tif_data;
1393 _TIFFmemset(sp, 0, sizeof (*sp));
1394 sp->stream.data_type = Z_BINARY;
1395 sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1396
1397 /*
1398 * Install codec methods.
1399 */
1400 tif->tif_fixuptags = PixarLogFixupTags;
1401 tif->tif_setupdecode = PixarLogSetupDecode;
1402 tif->tif_predecode = PixarLogPreDecode;
1403 tif->tif_decoderow = PixarLogDecode;
1404 tif->tif_decodestrip = PixarLogDecode;
1405 tif->tif_decodetile = PixarLogDecode;
1406 tif->tif_setupencode = PixarLogSetupEncode;
1407 tif->tif_preencode = PixarLogPreEncode;
1408 tif->tif_postencode = PixarLogPostEncode;
1409 tif->tif_encoderow = PixarLogEncode;
1410 tif->tif_encodestrip = PixarLogEncode;
1411 tif->tif_encodetile = PixarLogEncode;
1412 tif->tif_close = PixarLogClose;
1413 tif->tif_cleanup = PixarLogCleanup;
1414
1415 /* Override SetField so we can handle our private pseudo-tag */
1416 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1417 tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */
1418 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1419 tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */
1420
1421 /* Default values for codec-specific fields */
1422 sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1423 sp->state = 0;
1424
1425 /* we don't wish to use the predictor,
1426 * the default is none, which predictor value 1
1427 */
1428 (void) TIFFPredictorInit(tif);
1429
1430 /*
1431 * build the companding tables
1432 */
1433 PixarLogMakeTables(sp);
1434
1435 return (1);
1436 bad:
1437 TIFFErrorExt(tif->tif_clientdata, module,
1438 "No space for PixarLog state block");
1439 return (0);
1440 }
1441 #endif /* PIXARLOG_SUPPORT */
1442
1443 /* vim: set ts=8 sts=8 sw=8 noet: */
1444 /*
1445 * Local Variables:
1446 * mode: c
1447 * c-basic-offset: 8
1448 * fill-column: 78
1449 * End:
1450 */
1451