1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkBmpRLECodec.h"
9 #include "SkCodecPriv.h"
10 #include "SkColorPriv.h"
11 #include "SkStream.h"
12
13 /*
14 * Creates an instance of the decoder
15 * Called only by NewFromStream
16 */
SkBmpRLECodec(int width,int height,const SkEncodedInfo & info,SkStream * stream,uint16_t bitsPerPixel,uint32_t numColors,uint32_t bytesPerColor,uint32_t offset,SkCodec::SkScanlineOrder rowOrder)17 SkBmpRLECodec::SkBmpRLECodec(int width, int height, const SkEncodedInfo& info, SkStream* stream,
18 uint16_t bitsPerPixel, uint32_t numColors,
19 uint32_t bytesPerColor, uint32_t offset,
20 SkCodec::SkScanlineOrder rowOrder)
21 : INHERITED(width, height, info, stream, bitsPerPixel, rowOrder)
22 , fColorTable(nullptr)
23 , fNumColors(numColors)
24 , fBytesPerColor(bytesPerColor)
25 , fOffset(offset)
26 , fBytesBuffered(0)
27 , fCurrRLEByte(0)
28 , fSampleX(1)
29 {}
30
31 /*
32 * Initiates the bitmap decode
33 */
onGetPixels(const SkImageInfo & dstInfo,void * dst,size_t dstRowBytes,const Options & opts,SkPMColor * inputColorPtr,int * inputColorCount,int * rowsDecoded)34 SkCodec::Result SkBmpRLECodec::onGetPixels(const SkImageInfo& dstInfo,
35 void* dst, size_t dstRowBytes,
36 const Options& opts,
37 SkPMColor* inputColorPtr,
38 int* inputColorCount,
39 int* rowsDecoded) {
40 if (opts.fSubset) {
41 // Subsets are not supported.
42 return kUnimplemented;
43 }
44
45 Result result = this->prepareToDecode(dstInfo, opts, inputColorPtr, inputColorCount);
46 if (kSuccess != result) {
47 return result;
48 }
49
50 // Perform the decode
51 int rows = this->decodeRows(dstInfo, dst, dstRowBytes, opts);
52 if (rows != dstInfo.height()) {
53 // We set rowsDecoded equal to the height because the background has already
54 // been filled. RLE encodings sometimes skip pixels, so we always start by
55 // filling the background.
56 *rowsDecoded = dstInfo.height();
57 return kIncompleteInput;
58 }
59
60 return kSuccess;
61 }
62
63 /*
64 * Process the color table for the bmp input
65 */
createColorTable(SkColorType dstColorType,int * numColors)66 bool SkBmpRLECodec::createColorTable(SkColorType dstColorType, int* numColors) {
67 // Allocate memory for color table
68 uint32_t colorBytes = 0;
69 SkPMColor colorTable[256];
70 if (this->bitsPerPixel() <= 8) {
71 // Inform the caller of the number of colors
72 uint32_t maxColors = 1 << this->bitsPerPixel();
73 if (nullptr != numColors) {
74 // We set the number of colors to maxColors in order to ensure
75 // safe memory accesses. Otherwise, an invalid pixel could
76 // access memory outside of our color table array.
77 *numColors = maxColors;
78 }
79 // Don't bother reading more than maxColors.
80 const uint32_t numColorsToRead =
81 fNumColors == 0 ? maxColors : SkTMin(fNumColors, maxColors);
82
83 // Read the color table from the stream
84 colorBytes = numColorsToRead * fBytesPerColor;
85 std::unique_ptr<uint8_t[]> cBuffer(new uint8_t[colorBytes]);
86 if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) {
87 SkCodecPrintf("Error: unable to read color table.\n");
88 return false;
89 }
90
91 // Fill in the color table
92 PackColorProc packARGB = choose_pack_color_proc(false, dstColorType);
93 uint32_t i = 0;
94 for (; i < numColorsToRead; i++) {
95 uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor);
96 uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1);
97 uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2);
98 colorTable[i] = packARGB(0xFF, red, green, blue);
99 }
100
101 // To avoid segmentation faults on bad pixel data, fill the end of the
102 // color table with black. This is the same the behavior as the
103 // chromium decoder.
104 for (; i < maxColors; i++) {
105 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
106 }
107
108 // Set the color table
109 fColorTable.reset(new SkColorTable(colorTable, maxColors));
110 }
111
112 // Check that we have not read past the pixel array offset
113 if(fOffset < colorBytes) {
114 // This may occur on OS 2.1 and other old versions where the color
115 // table defaults to max size, and the bmp tries to use a smaller
116 // color table. This is invalid, and our decision is to indicate
117 // an error, rather than try to guess the intended size of the
118 // color table.
119 SkCodecPrintf("Error: pixel data offset less than color table size.\n");
120 return false;
121 }
122
123 // After reading the color table, skip to the start of the pixel array
124 if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) {
125 SkCodecPrintf("Error: unable to skip to image data.\n");
126 return false;
127 }
128
129 // Return true on success
130 return true;
131 }
132
initializeStreamBuffer()133 bool SkBmpRLECodec::initializeStreamBuffer() {
134 fBytesBuffered = this->stream()->read(fStreamBuffer, kBufferSize);
135 if (fBytesBuffered == 0) {
136 SkCodecPrintf("Error: could not read RLE image data.\n");
137 return false;
138 }
139 fCurrRLEByte = 0;
140 return true;
141 }
142
143 /*
144 * @return the number of bytes remaining in the stream buffer after
145 * attempting to read more bytes from the stream
146 */
checkForMoreData()147 size_t SkBmpRLECodec::checkForMoreData() {
148 const size_t remainingBytes = fBytesBuffered - fCurrRLEByte;
149 uint8_t* buffer = fStreamBuffer;
150
151 // We will be reusing the same buffer, starting over from the beginning.
152 // Move any remaining bytes to the start of the buffer.
153 // We use memmove() instead of memcpy() because there is risk that the dst
154 // and src memory will overlap in corrupt images.
155 memmove(buffer, SkTAddOffset<uint8_t>(buffer, fCurrRLEByte), remainingBytes);
156
157 // Adjust the buffer ptr to the start of the unfilled data.
158 buffer += remainingBytes;
159
160 // Try to read additional bytes from the stream. There are fCurrRLEByte
161 // bytes of additional space remaining in the buffer, assuming that we
162 // have already copied remainingBytes to the start of the buffer.
163 size_t additionalBytes = this->stream()->read(buffer, fCurrRLEByte);
164
165 // Update counters and return the number of bytes we currently have
166 // available. We are at the start of the buffer again.
167 fCurrRLEByte = 0;
168 fBytesBuffered = remainingBytes + additionalBytes;
169 return fBytesBuffered;
170 }
171
172 /*
173 * Set an RLE pixel using the color table
174 */
setPixel(void * dst,size_t dstRowBytes,const SkImageInfo & dstInfo,uint32_t x,uint32_t y,uint8_t index)175 void SkBmpRLECodec::setPixel(void* dst, size_t dstRowBytes,
176 const SkImageInfo& dstInfo, uint32_t x, uint32_t y,
177 uint8_t index) {
178 if (dst && is_coord_necessary(x, fSampleX, dstInfo.width())) {
179 // Set the row
180 uint32_t row = this->getDstRow(y, dstInfo.height());
181
182 // Set the pixel based on destination color type
183 const int dstX = get_dst_coord(x, fSampleX);
184 switch (dstInfo.colorType()) {
185 case kRGBA_8888_SkColorType:
186 case kBGRA_8888_SkColorType: {
187 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
188 dstRow[dstX] = fColorTable->operator[](index);
189 break;
190 }
191 case kRGB_565_SkColorType: {
192 uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes);
193 dstRow[dstX] = SkPixel32ToPixel16(fColorTable->operator[](index));
194 break;
195 }
196 default:
197 // This case should not be reached. We should catch an invalid
198 // color type when we check that the conversion is possible.
199 SkASSERT(false);
200 break;
201 }
202 }
203 }
204
205 /*
206 * Set an RLE pixel from R, G, B values
207 */
setRGBPixel(void * dst,size_t dstRowBytes,const SkImageInfo & dstInfo,uint32_t x,uint32_t y,uint8_t red,uint8_t green,uint8_t blue)208 void SkBmpRLECodec::setRGBPixel(void* dst, size_t dstRowBytes,
209 const SkImageInfo& dstInfo, uint32_t x,
210 uint32_t y, uint8_t red, uint8_t green,
211 uint8_t blue) {
212 if (dst && is_coord_necessary(x, fSampleX, dstInfo.width())) {
213 // Set the row
214 uint32_t row = this->getDstRow(y, dstInfo.height());
215
216 // Set the pixel based on destination color type
217 const int dstX = get_dst_coord(x, fSampleX);
218 switch (dstInfo.colorType()) {
219 case kRGBA_8888_SkColorType: {
220 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
221 dstRow[dstX] = SkPackARGB_as_RGBA(0xFF, red, green, blue);
222 break;
223 }
224 case kBGRA_8888_SkColorType: {
225 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
226 dstRow[dstX] = SkPackARGB_as_BGRA(0xFF, red, green, blue);
227 break;
228 }
229 case kRGB_565_SkColorType: {
230 uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes);
231 dstRow[dstX] = SkPack888ToRGB16(red, green, blue);
232 break;
233 }
234 default:
235 // This case should not be reached. We should catch an invalid
236 // color type when we check that the conversion is possible.
237 SkASSERT(false);
238 break;
239 }
240 }
241 }
242
onPrepareToDecode(const SkImageInfo & dstInfo,const SkCodec::Options & options,SkPMColor inputColorPtr[],int * inputColorCount)243 SkCodec::Result SkBmpRLECodec::onPrepareToDecode(const SkImageInfo& dstInfo,
244 const SkCodec::Options& options, SkPMColor inputColorPtr[], int* inputColorCount) {
245 // FIXME: Support subsets for scanline decodes.
246 if (options.fSubset) {
247 // Subsets are not supported.
248 return kUnimplemented;
249 }
250
251 // Reset fSampleX. If it needs to be a value other than 1, it will get modified by
252 // the sampler.
253 fSampleX = 1;
254 fLinesToSkip = 0;
255
256 SkColorType colorTableColorType = dstInfo.colorType();
257 if (this->colorXform()) {
258 // Just set a known colorType for the colorTable. No need to actually transform
259 // the colors in the colorTable since we do not allow decoding RLE to kIndex8.
260 colorTableColorType = kBGRA_8888_SkColorType;
261 }
262
263 // Create the color table if necessary and prepare the stream for decode
264 // Note that if it is non-NULL, inputColorCount will be modified
265 if (!this->createColorTable(colorTableColorType, inputColorCount)) {
266 SkCodecPrintf("Error: could not create color table.\n");
267 return SkCodec::kInvalidInput;
268 }
269
270 // Copy the color table to the client if necessary
271 copy_color_table(dstInfo, fColorTable.get(), inputColorPtr, inputColorCount);
272
273 // Initialize a buffer for encoded RLE data
274 if (!this->initializeStreamBuffer()) {
275 SkCodecPrintf("Error: cannot initialize stream buffer.\n");
276 return SkCodec::kInvalidInput;
277 }
278
279 return SkCodec::kSuccess;
280 }
281
282 /*
283 * Performs the bitmap decoding for RLE input format
284 * RLE decoding is performed all at once, rather than a one row at a time
285 */
decodeRows(const SkImageInfo & info,void * dst,size_t dstRowBytes,const Options & opts)286 int SkBmpRLECodec::decodeRows(const SkImageInfo& info, void* dst, size_t dstRowBytes,
287 const Options& opts) {
288 const int width = this->getInfo().width();
289 int height = info.height();
290
291 // Account for sampling.
292 SkImageInfo dstInfo = info.makeWH(get_scaled_dimension(width, fSampleX), height);
293
294 // Set the background as transparent. Then, if the RLE code skips pixels,
295 // the skipped pixels will be transparent.
296 if (dst) {
297 SkSampler::Fill(dstInfo, dst, dstRowBytes, SK_ColorTRANSPARENT, opts.fZeroInitialized);
298 }
299
300 // Adjust the height and the dst if the previous call to decodeRows() left us
301 // with lines that need to be skipped.
302 if (height > fLinesToSkip) {
303 height -= fLinesToSkip;
304 if (dst) {
305 dst = SkTAddOffset<void>(dst, fLinesToSkip * dstRowBytes);
306 }
307 fLinesToSkip = 0;
308
309 dstInfo = dstInfo.makeWH(dstInfo.width(), height);
310 } else {
311 fLinesToSkip -= height;
312 return height;
313 }
314
315 void* decodeDst = dst;
316 size_t decodeRowBytes = dstRowBytes;
317 SkImageInfo decodeInfo = dstInfo;
318 if (decodeDst) {
319 if (this->colorXform()) {
320 decodeInfo = decodeInfo.makeColorType(kXformSrcColorType);
321 if (kRGBA_F16_SkColorType == dstInfo.colorType()) {
322 int count = height * dstInfo.width();
323 this->resetXformBuffer(count);
324 sk_bzero(this->xformBuffer(), count * sizeof(uint32_t));
325 decodeDst = this->xformBuffer();
326 decodeRowBytes = dstInfo.width() * sizeof(uint32_t);
327 }
328 }
329 }
330
331 int decodedHeight = this->decodeRLE(decodeInfo, decodeDst, decodeRowBytes);
332 if (this->colorXform() && decodeDst) {
333 for (int y = 0; y < decodedHeight; y++) {
334 this->applyColorXform(dstInfo, dst, decodeDst);
335 decodeDst = SkTAddOffset<void>(decodeDst, decodeRowBytes);
336 dst = SkTAddOffset<void>(dst, dstRowBytes);
337 }
338 }
339
340 return decodedHeight;
341 }
342
decodeRLE(const SkImageInfo & dstInfo,void * dst,size_t dstRowBytes)343 int SkBmpRLECodec::decodeRLE(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes) {
344 // Use the original width to count the number of pixels in each row.
345 const int width = this->getInfo().width();
346
347 // This tells us the number of rows that we are meant to decode.
348 const int height = dstInfo.height();
349
350 // Set RLE flags
351 static const uint8_t RLE_ESCAPE = 0;
352 static const uint8_t RLE_EOL = 0;
353 static const uint8_t RLE_EOF = 1;
354 static const uint8_t RLE_DELTA = 2;
355
356 // Destination parameters
357 int x = 0;
358 int y = 0;
359
360 while (true) {
361 // If we have reached a row that is beyond the requested height, we have
362 // succeeded.
363 if (y >= height) {
364 // It would be better to check for the EOF marker before indicating
365 // success, but we may be performing a scanline decode, which
366 // would require us to stop before decoding the full height.
367 return height;
368 }
369
370 // Every entry takes at least two bytes
371 if ((int) fBytesBuffered - fCurrRLEByte < 2) {
372 if (this->checkForMoreData() < 2) {
373 return y;
374 }
375 }
376
377 // Read the next two bytes. These bytes have different meanings
378 // depending on their values. In the first interpretation, the first
379 // byte is an escape flag and the second byte indicates what special
380 // task to perform.
381 const uint8_t flag = fStreamBuffer[fCurrRLEByte++];
382 const uint8_t task = fStreamBuffer[fCurrRLEByte++];
383
384 // Perform decoding
385 if (RLE_ESCAPE == flag) {
386 switch (task) {
387 case RLE_EOL:
388 x = 0;
389 y++;
390 break;
391 case RLE_EOF:
392 return height;
393 case RLE_DELTA: {
394 // Two bytes are needed to specify delta
395 if ((int) fBytesBuffered - fCurrRLEByte < 2) {
396 if (this->checkForMoreData() < 2) {
397 return y;
398 }
399 }
400 // Modify x and y
401 const uint8_t dx = fStreamBuffer[fCurrRLEByte++];
402 const uint8_t dy = fStreamBuffer[fCurrRLEByte++];
403 x += dx;
404 y += dy;
405 if (x > width) {
406 SkCodecPrintf("Warning: invalid RLE input.\n");
407 return y - dy;
408 } else if (y > height) {
409 fLinesToSkip = y - height;
410 return height;
411 }
412 break;
413 }
414 default: {
415 // If task does not match any of the above signals, it
416 // indicates that we have a sequence of non-RLE pixels.
417 // Furthermore, the value of task is equal to the number
418 // of pixels to interpret.
419 uint8_t numPixels = task;
420 const size_t rowBytes = compute_row_bytes(numPixels,
421 this->bitsPerPixel());
422 // Abort if setting numPixels moves us off the edge of the
423 // image.
424 if (x + numPixels > width) {
425 SkCodecPrintf("Warning: invalid RLE input.\n");
426 return y;
427 }
428
429 // Also abort if there are not enough bytes
430 // remaining in the stream to set numPixels.
431
432 // At most, alignedRowBytes can be 255 (max uint8_t) *
433 // 3 (max bytes per pixel) + 1 (aligned) = 766. If
434 // fStreamBuffer was smaller than this,
435 // checkForMoreData would never succeed for some bmps.
436 static_assert(255 * 3 + 1 < kBufferSize,
437 "kBufferSize needs to be larger!");
438 const size_t alignedRowBytes = SkAlign2(rowBytes);
439 if ((int) fBytesBuffered - fCurrRLEByte < alignedRowBytes) {
440 SkASSERT(alignedRowBytes < kBufferSize);
441 if (this->checkForMoreData() < alignedRowBytes) {
442 return y;
443 }
444 }
445 // Set numPixels number of pixels
446 while (numPixels > 0) {
447 switch(this->bitsPerPixel()) {
448 case 4: {
449 SkASSERT(fCurrRLEByte < fBytesBuffered);
450 uint8_t val = fStreamBuffer[fCurrRLEByte++];
451 setPixel(dst, dstRowBytes, dstInfo, x++,
452 y, val >> 4);
453 numPixels--;
454 if (numPixels != 0) {
455 setPixel(dst, dstRowBytes, dstInfo,
456 x++, y, val & 0xF);
457 numPixels--;
458 }
459 break;
460 }
461 case 8:
462 SkASSERT(fCurrRLEByte < fBytesBuffered);
463 setPixel(dst, dstRowBytes, dstInfo, x++,
464 y, fStreamBuffer[fCurrRLEByte++]);
465 numPixels--;
466 break;
467 case 24: {
468 SkASSERT(fCurrRLEByte + 2 < fBytesBuffered);
469 uint8_t blue = fStreamBuffer[fCurrRLEByte++];
470 uint8_t green = fStreamBuffer[fCurrRLEByte++];
471 uint8_t red = fStreamBuffer[fCurrRLEByte++];
472 setRGBPixel(dst, dstRowBytes, dstInfo,
473 x++, y, red, green, blue);
474 numPixels--;
475 break;
476 }
477 default:
478 SkASSERT(false);
479 return y;
480 }
481 }
482 // Skip a byte if necessary to maintain alignment
483 if (!SkIsAlign2(rowBytes)) {
484 fCurrRLEByte++;
485 }
486 break;
487 }
488 }
489 } else {
490 // If the first byte read is not a flag, it indicates the number of
491 // pixels to set in RLE mode.
492 const uint8_t numPixels = flag;
493 const int endX = SkTMin<int>(x + numPixels, width);
494
495 if (24 == this->bitsPerPixel()) {
496 // In RLE24, the second byte read is part of the pixel color.
497 // There are two more required bytes to finish encoding the
498 // color.
499 if ((int) fBytesBuffered - fCurrRLEByte < 2) {
500 if (this->checkForMoreData() < 2) {
501 return y;
502 }
503 }
504
505 // Fill the pixels up to endX with the specified color
506 uint8_t blue = task;
507 uint8_t green = fStreamBuffer[fCurrRLEByte++];
508 uint8_t red = fStreamBuffer[fCurrRLEByte++];
509 while (x < endX) {
510 setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, green, blue);
511 }
512 } else {
513 // In RLE8 or RLE4, the second byte read gives the index in the
514 // color table to look up the pixel color.
515 // RLE8 has one color index that gets repeated
516 // RLE4 has two color indexes in the upper and lower 4 bits of
517 // the bytes, which are alternated
518 uint8_t indices[2] = { task, task };
519 if (4 == this->bitsPerPixel()) {
520 indices[0] >>= 4;
521 indices[1] &= 0xf;
522 }
523
524 // Set the indicated number of pixels
525 for (int which = 0; x < endX; x++) {
526 setPixel(dst, dstRowBytes, dstInfo, x, y, indices[which]);
527 which = !which;
528 }
529 }
530 }
531 }
532 }
533
skipRows(int count)534 bool SkBmpRLECodec::skipRows(int count) {
535 const SkImageInfo rowInfo = SkImageInfo::Make(this->getInfo().width(), count, kN32_SkColorType,
536 kUnpremul_SkAlphaType);
537
538 return count == this->decodeRows(rowInfo, nullptr, 0, this->options());
539 }
540
541 // FIXME: Make SkBmpRLECodec have no knowledge of sampling.
542 // Or it should do all sampling natively.
543 // It currently is a hybrid that needs to know what SkScaledCodec is doing.
544 class SkBmpRLESampler : public SkSampler {
545 public:
SkBmpRLESampler(SkBmpRLECodec * codec)546 SkBmpRLESampler(SkBmpRLECodec* codec)
547 : fCodec(codec)
548 {
549 SkASSERT(fCodec);
550 }
551
552 private:
onSetSampleX(int sampleX)553 int onSetSampleX(int sampleX) override {
554 return fCodec->setSampleX(sampleX);
555 }
556
557 // Unowned pointer. fCodec will delete this class in its destructor.
558 SkBmpRLECodec* fCodec;
559 };
560
getSampler(bool)561 SkSampler* SkBmpRLECodec::getSampler(bool /*createIfNecessary*/) {
562 // We will always create an SkBmpRLESampler if one is requested.
563 // This allows clients to always use the SkBmpRLESampler's
564 // version of fill(), which does nothing since RLE decodes have
565 // already filled pixel memory. This seems fine, since creating
566 // an SkBmpRLESampler is pretty inexpensive.
567 if (!fSampler) {
568 fSampler.reset(new SkBmpRLESampler(this));
569 }
570
571 return fSampler.get();
572 }
573
setSampleX(int sampleX)574 int SkBmpRLECodec::setSampleX(int sampleX){
575 fSampleX = sampleX;
576 return get_scaled_dimension(this->getInfo().width(), sampleX);
577 }
578