1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrPathUtils.h"
9
10 #include "GrTypes.h"
11 #include "SkGeometry.h"
12 #include "SkMathPriv.h"
13
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const SkRect & pathBounds)14 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
15 const SkMatrix& viewM,
16 const SkRect& pathBounds) {
17 // In order to tesselate the path we get a bound on how much the matrix can
18 // scale when mapping to screen coordinates.
19 SkScalar stretch = viewM.getMaxScale();
20 SkScalar srcTol = devTol;
21
22 if (stretch < 0) {
23 // take worst case mapRadius amoung four corners.
24 // (less than perfect)
25 for (int i = 0; i < 4; ++i) {
26 SkMatrix mat;
27 mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
28 (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
29 mat.postConcat(viewM);
30 stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
31 }
32 }
33 return srcTol / stretch;
34 }
35
36 static const int MAX_POINTS_PER_CURVE = 1 << 10;
37 static const SkScalar gMinCurveTol = 0.0001f;
38
quadraticPointCount(const SkPoint points[],SkScalar tol)39 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[],
40 SkScalar tol) {
41 if (tol < gMinCurveTol) {
42 tol = gMinCurveTol;
43 }
44 SkASSERT(tol > 0);
45
46 SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
47 if (!SkScalarIsFinite(d)) {
48 return MAX_POINTS_PER_CURVE;
49 } else if (d <= tol) {
50 return 1;
51 } else {
52 // Each time we subdivide, d should be cut in 4. So we need to
53 // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
54 // points.
55 // 2^(log4(x)) = sqrt(x);
56 SkScalar divSqrt = SkScalarSqrt(d / tol);
57 if (((SkScalar)SK_MaxS32) <= divSqrt) {
58 return MAX_POINTS_PER_CURVE;
59 } else {
60 int temp = SkScalarCeilToInt(divSqrt);
61 int pow2 = GrNextPow2(temp);
62 // Because of NaNs & INFs we can wind up with a degenerate temp
63 // such that pow2 comes out negative. Also, our point generator
64 // will always output at least one pt.
65 if (pow2 < 1) {
66 pow2 = 1;
67 }
68 return SkTMin(pow2, MAX_POINTS_PER_CURVE);
69 }
70 }
71 }
72
generateQuadraticPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)73 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
74 const SkPoint& p1,
75 const SkPoint& p2,
76 SkScalar tolSqd,
77 SkPoint** points,
78 uint32_t pointsLeft) {
79 if (pointsLeft < 2 ||
80 (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
81 (*points)[0] = p2;
82 *points += 1;
83 return 1;
84 }
85
86 SkPoint q[] = {
87 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
88 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
89 };
90 SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
91
92 pointsLeft >>= 1;
93 uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
94 uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
95 return a + b;
96 }
97
cubicPointCount(const SkPoint points[],SkScalar tol)98 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
99 SkScalar tol) {
100 if (tol < gMinCurveTol) {
101 tol = gMinCurveTol;
102 }
103 SkASSERT(tol > 0);
104
105 SkScalar d = SkTMax(
106 points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
107 points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
108 d = SkScalarSqrt(d);
109 if (!SkScalarIsFinite(d)) {
110 return MAX_POINTS_PER_CURVE;
111 } else if (d <= tol) {
112 return 1;
113 } else {
114 SkScalar divSqrt = SkScalarSqrt(d / tol);
115 if (((SkScalar)SK_MaxS32) <= divSqrt) {
116 return MAX_POINTS_PER_CURVE;
117 } else {
118 int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
119 int pow2 = GrNextPow2(temp);
120 // Because of NaNs & INFs we can wind up with a degenerate temp
121 // such that pow2 comes out negative. Also, our point generator
122 // will always output at least one pt.
123 if (pow2 < 1) {
124 pow2 = 1;
125 }
126 return SkTMin(pow2, MAX_POINTS_PER_CURVE);
127 }
128 }
129 }
130
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)131 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
132 const SkPoint& p1,
133 const SkPoint& p2,
134 const SkPoint& p3,
135 SkScalar tolSqd,
136 SkPoint** points,
137 uint32_t pointsLeft) {
138 if (pointsLeft < 2 ||
139 (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
140 p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
141 (*points)[0] = p3;
142 *points += 1;
143 return 1;
144 }
145 SkPoint q[] = {
146 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
147 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
148 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
149 };
150 SkPoint r[] = {
151 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
152 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
153 };
154 SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
155 pointsLeft >>= 1;
156 uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
157 uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
158 return a + b;
159 }
160
worstCasePointCount(const SkPath & path,int * subpaths,SkScalar tol)161 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
162 SkScalar tol) {
163 if (tol < gMinCurveTol) {
164 tol = gMinCurveTol;
165 }
166 SkASSERT(tol > 0);
167
168 int pointCount = 0;
169 *subpaths = 1;
170
171 bool first = true;
172
173 SkPath::Iter iter(path, false);
174 SkPath::Verb verb;
175
176 SkPoint pts[4];
177 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
178
179 switch (verb) {
180 case SkPath::kLine_Verb:
181 pointCount += 1;
182 break;
183 case SkPath::kConic_Verb: {
184 SkScalar weight = iter.conicWeight();
185 SkAutoConicToQuads converter;
186 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f);
187 for (int i = 0; i < converter.countQuads(); ++i) {
188 pointCount += quadraticPointCount(quadPts + 2*i, tol);
189 }
190 }
191 case SkPath::kQuad_Verb:
192 pointCount += quadraticPointCount(pts, tol);
193 break;
194 case SkPath::kCubic_Verb:
195 pointCount += cubicPointCount(pts, tol);
196 break;
197 case SkPath::kMove_Verb:
198 pointCount += 1;
199 if (!first) {
200 ++(*subpaths);
201 }
202 break;
203 default:
204 break;
205 }
206 first = false;
207 }
208 return pointCount;
209 }
210
set(const SkPoint qPts[3])211 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
212 SkMatrix m;
213 // We want M such that M * xy_pt = uv_pt
214 // We know M * control_pts = [0 1/2 1]
215 // [0 0 1]
216 // [1 1 1]
217 // And control_pts = [x0 x1 x2]
218 // [y0 y1 y2]
219 // [1 1 1 ]
220 // We invert the control pt matrix and post concat to both sides to get M.
221 // Using the known form of the control point matrix and the result, we can
222 // optimize and improve precision.
223
224 double x0 = qPts[0].fX;
225 double y0 = qPts[0].fY;
226 double x1 = qPts[1].fX;
227 double y1 = qPts[1].fY;
228 double x2 = qPts[2].fX;
229 double y2 = qPts[2].fY;
230 double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
231
232 if (!sk_float_isfinite(det)
233 || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
234 // The quad is degenerate. Hopefully this is rare. Find the pts that are
235 // farthest apart to compute a line (unless it is really a pt).
236 SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
237 int maxEdge = 0;
238 SkScalar d = qPts[1].distanceToSqd(qPts[2]);
239 if (d > maxD) {
240 maxD = d;
241 maxEdge = 1;
242 }
243 d = qPts[2].distanceToSqd(qPts[0]);
244 if (d > maxD) {
245 maxD = d;
246 maxEdge = 2;
247 }
248 // We could have a tolerance here, not sure if it would improve anything
249 if (maxD > 0) {
250 // Set the matrix to give (u = 0, v = distance_to_line)
251 SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
252 // when looking from the point 0 down the line we want positive
253 // distances to be to the left. This matches the non-degenerate
254 // case.
255 lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
256 // first row
257 fM[0] = 0;
258 fM[1] = 0;
259 fM[2] = 0;
260 // second row
261 fM[3] = lineVec.fX;
262 fM[4] = lineVec.fY;
263 fM[5] = -lineVec.dot(qPts[maxEdge]);
264 } else {
265 // It's a point. It should cover zero area. Just set the matrix such
266 // that (u, v) will always be far away from the quad.
267 fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
268 fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
269 }
270 } else {
271 double scale = 1.0/det;
272
273 // compute adjugate matrix
274 double a2, a3, a4, a5, a6, a7, a8;
275 a2 = x1*y2-x2*y1;
276
277 a3 = y2-y0;
278 a4 = x0-x2;
279 a5 = x2*y0-x0*y2;
280
281 a6 = y0-y1;
282 a7 = x1-x0;
283 a8 = x0*y1-x1*y0;
284
285 // this performs the uv_pts*adjugate(control_pts) multiply,
286 // then does the scale by 1/det afterwards to improve precision
287 m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
288 m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale);
289 m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
290
291 m[SkMatrix::kMSkewY] = (float)(a6*scale);
292 m[SkMatrix::kMScaleY] = (float)(a7*scale);
293 m[SkMatrix::kMTransY] = (float)(a8*scale);
294
295 // kMPersp0 & kMPersp1 should algebraically be zero
296 m[SkMatrix::kMPersp0] = 0.0f;
297 m[SkMatrix::kMPersp1] = 0.0f;
298 m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
299
300 // It may not be normalized to have 1.0 in the bottom right
301 float m33 = m.get(SkMatrix::kMPersp2);
302 if (1.f != m33) {
303 m33 = 1.f / m33;
304 fM[0] = m33 * m.get(SkMatrix::kMScaleX);
305 fM[1] = m33 * m.get(SkMatrix::kMSkewX);
306 fM[2] = m33 * m.get(SkMatrix::kMTransX);
307 fM[3] = m33 * m.get(SkMatrix::kMSkewY);
308 fM[4] = m33 * m.get(SkMatrix::kMScaleY);
309 fM[5] = m33 * m.get(SkMatrix::kMTransY);
310 } else {
311 fM[0] = m.get(SkMatrix::kMScaleX);
312 fM[1] = m.get(SkMatrix::kMSkewX);
313 fM[2] = m.get(SkMatrix::kMTransX);
314 fM[3] = m.get(SkMatrix::kMSkewY);
315 fM[4] = m.get(SkMatrix::kMScaleY);
316 fM[5] = m.get(SkMatrix::kMTransY);
317 }
318 }
319 }
320
321 ////////////////////////////////////////////////////////////////////////////////
322
323 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
324 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
325 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
getConicKLM(const SkPoint p[3],const SkScalar weight,SkMatrix * out)326 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
327 SkMatrix& klm = *out;
328 const SkScalar w2 = 2.f * weight;
329 klm[0] = p[2].fY - p[0].fY;
330 klm[1] = p[0].fX - p[2].fX;
331 klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
332
333 klm[3] = w2 * (p[1].fY - p[0].fY);
334 klm[4] = w2 * (p[0].fX - p[1].fX);
335 klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
336
337 klm[6] = w2 * (p[2].fY - p[1].fY);
338 klm[7] = w2 * (p[1].fX - p[2].fX);
339 klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
340
341 // scale the max absolute value of coeffs to 10
342 SkScalar scale = 0.f;
343 for (int i = 0; i < 9; ++i) {
344 scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
345 }
346 SkASSERT(scale > 0.f);
347 scale = 10.f / scale;
348 for (int i = 0; i < 9; ++i) {
349 klm[i] *= scale;
350 }
351 }
352
353 ////////////////////////////////////////////////////////////////////////////////
354
355 namespace {
356
357 // a is the first control point of the cubic.
358 // ab is the vector from a to the second control point.
359 // dc is the vector from the fourth to the third control point.
360 // d is the fourth control point.
361 // p is the candidate quadratic control point.
362 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPathPriv::FirstDirection dir,const SkPoint p)363 bool is_point_within_cubic_tangents(const SkPoint& a,
364 const SkVector& ab,
365 const SkVector& dc,
366 const SkPoint& d,
367 SkPathPriv::FirstDirection dir,
368 const SkPoint p) {
369 SkVector ap = p - a;
370 SkScalar apXab = ap.cross(ab);
371 if (SkPathPriv::kCW_FirstDirection == dir) {
372 if (apXab > 0) {
373 return false;
374 }
375 } else {
376 SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
377 if (apXab < 0) {
378 return false;
379 }
380 }
381
382 SkVector dp = p - d;
383 SkScalar dpXdc = dp.cross(dc);
384 if (SkPathPriv::kCW_FirstDirection == dir) {
385 if (dpXdc < 0) {
386 return false;
387 }
388 } else {
389 SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
390 if (dpXdc > 0) {
391 return false;
392 }
393 }
394 return true;
395 }
396
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,bool constrainWithinTangents,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads,int sublevel=0)397 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
398 SkScalar toleranceSqd,
399 bool constrainWithinTangents,
400 SkPathPriv::FirstDirection dir,
401 SkTArray<SkPoint, true>* quads,
402 int sublevel = 0) {
403
404 // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
405 // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
406
407 SkVector ab = p[1] - p[0];
408 SkVector dc = p[2] - p[3];
409
410 if (ab.lengthSqd() < SK_ScalarNearlyZero) {
411 if (dc.lengthSqd() < SK_ScalarNearlyZero) {
412 SkPoint* degQuad = quads->push_back_n(3);
413 degQuad[0] = p[0];
414 degQuad[1] = p[0];
415 degQuad[2] = p[3];
416 return;
417 }
418 ab = p[2] - p[0];
419 }
420 if (dc.lengthSqd() < SK_ScalarNearlyZero) {
421 dc = p[1] - p[3];
422 }
423
424 // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
425 // constraint that the quad point falls between the tangents becomes hard to enforce and we are
426 // likely to hit the max subdivision count. However, in this case the cubic is approaching a
427 // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
428 // control points are very close to the baseline vector. If so then we just pick quadratic
429 // points on the control polygon.
430
431 if (constrainWithinTangents) {
432 SkVector da = p[0] - p[3];
433 bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
434 ab.lengthSqd() < SK_ScalarNearlyZero;
435 if (!doQuads) {
436 SkScalar invDALengthSqd = da.lengthSqd();
437 if (invDALengthSqd > SK_ScalarNearlyZero) {
438 invDALengthSqd = SkScalarInvert(invDALengthSqd);
439 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
440 // same goes for point c using vector cd.
441 SkScalar detABSqd = ab.cross(da);
442 detABSqd = SkScalarSquare(detABSqd);
443 SkScalar detDCSqd = dc.cross(da);
444 detDCSqd = SkScalarSquare(detDCSqd);
445 if (detABSqd * invDALengthSqd < toleranceSqd &&
446 detDCSqd * invDALengthSqd < toleranceSqd)
447 {
448 doQuads = true;
449 }
450 }
451 }
452 if (doQuads) {
453 SkPoint b = p[0] + ab;
454 SkPoint c = p[3] + dc;
455 SkPoint mid = b + c;
456 mid.scale(SK_ScalarHalf);
457 // Insert two quadratics to cover the case when ab points away from d and/or dc
458 // points away from a.
459 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
460 SkPoint* qpts = quads->push_back_n(6);
461 qpts[0] = p[0];
462 qpts[1] = b;
463 qpts[2] = mid;
464 qpts[3] = mid;
465 qpts[4] = c;
466 qpts[5] = p[3];
467 } else {
468 SkPoint* qpts = quads->push_back_n(3);
469 qpts[0] = p[0];
470 qpts[1] = mid;
471 qpts[2] = p[3];
472 }
473 return;
474 }
475 }
476
477 static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
478 static const int kMaxSubdivs = 10;
479
480 ab.scale(kLengthScale);
481 dc.scale(kLengthScale);
482
483 // e0 and e1 are extrapolations along vectors ab and dc.
484 SkVector c0 = p[0];
485 c0 += ab;
486 SkVector c1 = p[3];
487 c1 += dc;
488
489 SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
490 if (dSqd < toleranceSqd) {
491 SkPoint cAvg = c0;
492 cAvg += c1;
493 cAvg.scale(SK_ScalarHalf);
494
495 bool subdivide = false;
496
497 if (constrainWithinTangents &&
498 !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
499 // choose a new cAvg that is the intersection of the two tangent lines.
500 ab.setOrthog(ab);
501 SkScalar z0 = -ab.dot(p[0]);
502 dc.setOrthog(dc);
503 SkScalar z1 = -dc.dot(p[3]);
504 cAvg.fX = ab.fY * z1 - z0 * dc.fY;
505 cAvg.fY = z0 * dc.fX - ab.fX * z1;
506 SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
507 z = SkScalarInvert(z);
508 cAvg.fX *= z;
509 cAvg.fY *= z;
510 if (sublevel <= kMaxSubdivs) {
511 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
512 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
513 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
514 // the distances and tolerance can't be negative.
515 // (d0 + d1)^2 > toleranceSqd
516 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
517 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
518 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
519 }
520 }
521 if (!subdivide) {
522 SkPoint* pts = quads->push_back_n(3);
523 pts[0] = p[0];
524 pts[1] = cAvg;
525 pts[2] = p[3];
526 return;
527 }
528 }
529 SkPoint choppedPts[7];
530 SkChopCubicAtHalf(p, choppedPts);
531 convert_noninflect_cubic_to_quads(choppedPts + 0,
532 toleranceSqd,
533 constrainWithinTangents,
534 dir,
535 quads,
536 sublevel + 1);
537 convert_noninflect_cubic_to_quads(choppedPts + 3,
538 toleranceSqd,
539 constrainWithinTangents,
540 dir,
541 quads,
542 sublevel + 1);
543 }
544 }
545
convertCubicToQuads(const SkPoint p[4],SkScalar tolScale,SkTArray<SkPoint,true> * quads)546 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
547 SkScalar tolScale,
548 SkTArray<SkPoint, true>* quads) {
549 SkPoint chopped[10];
550 int count = SkChopCubicAtInflections(p, chopped);
551
552 const SkScalar tolSqd = SkScalarSquare(tolScale);
553
554 for (int i = 0; i < count; ++i) {
555 SkPoint* cubic = chopped + 3*i;
556 // The direction param is ignored if the third param is false.
557 convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
558 SkPathPriv::kCCW_FirstDirection, quads);
559 }
560 }
561
convertCubicToQuadsConstrainToTangents(const SkPoint p[4],SkScalar tolScale,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads)562 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
563 SkScalar tolScale,
564 SkPathPriv::FirstDirection dir,
565 SkTArray<SkPoint, true>* quads) {
566 SkPoint chopped[10];
567 int count = SkChopCubicAtInflections(p, chopped);
568
569 const SkScalar tolSqd = SkScalarSquare(tolScale);
570
571 for (int i = 0; i < count; ++i) {
572 SkPoint* cubic = chopped + 3*i;
573 convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
574 }
575 }
576
577 ////////////////////////////////////////////////////////////////////////////////
578
579 /**
580 * Computes an SkMatrix that can find the cubic KLM functionals as follows:
581 *
582 * | ..K.. | | ..kcoeffs.. |
583 * | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix
584 * | ..M.. | | ..mcoeffs.. |
585 *
586 * 'kcoeffs' are the power basis coefficients to a scalar valued cubic function that returns the
587 * signed distance to line K from a given point on the curve:
588 *
589 * k(t,s) = C(t,s) * K [C(t,s) is defined in the following comment]
590 *
591 * The same applies for lcoeffs and mcoeffs. These are found separately, depending on the type of
592 * curve. There are 4 coefficients but 3 rows in the matrix, so in order to do this calculation the
593 * caller must first remove a specific column of coefficients.
594 *
595 * @return which column of klm coefficients to exclude from the calculation.
596 */
calc_inverse_transpose_power_basis_matrix(const SkPoint pts[4],SkMatrix * out)597 static int calc_inverse_transpose_power_basis_matrix(const SkPoint pts[4], SkMatrix* out) {
598 using SkScalar4 = SkNx<4, SkScalar>;
599
600 // First we convert the bezier coordinates 'pts' to power basis coefficients X,Y,W=[0 0 0 1].
601 // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
602 //
603 // | X Y 0 |
604 // C(t,s) = [t^3 t^2*s t*s^2 s^3] * | . . 0 |
605 // | . . 0 |
606 // | . . 1 |
607 //
608 const SkScalar4 M3[3] = {SkScalar4(-1, 3, -3, 1),
609 SkScalar4(3, -6, 3, 0),
610 SkScalar4(-3, 3, 0, 0)};
611 // 4th column of M3 = SkScalar4(1, 0, 0, 0)};
612 SkScalar4 X(pts[3].x(), 0, 0, 0);
613 SkScalar4 Y(pts[3].y(), 0, 0, 0);
614 for (int i = 2; i >= 0; --i) {
615 X += M3[i] * pts[i].x();
616 Y += M3[i] * pts[i].y();
617 }
618
619 // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
620 // of the top three rows. We toss the row that leaves us with the largest determinant. Since the
621 // right column will be [0 0 1], the determinant reduces to x0*y1 - y0*x1.
622 SkScalar det[4];
623 SkScalar4 DETX1 = SkNx_shuffle<1,0,0,3>(X), DETY1 = SkNx_shuffle<1,0,0,3>(Y);
624 SkScalar4 DETX2 = SkNx_shuffle<2,2,1,3>(X), DETY2 = SkNx_shuffle<2,2,1,3>(Y);
625 (DETX1 * DETY2 - DETY1 * DETX2).store(det);
626 const int skipRow = det[0] > det[2] ? (det[0] > det[1] ? 0 : 1)
627 : (det[1] > det[2] ? 1 : 2);
628 const SkScalar rdet = 1 / det[skipRow];
629 const int row0 = (0 != skipRow) ? 0 : 1;
630 const int row1 = (2 == skipRow) ? 1 : 2;
631
632 // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
633 // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
634 //
635 // | y1 -x1 x1*y2 - y1*x2 |
636 // 1/det * | -y0 x0 -x0*y2 + y0*x2 |
637 // | 0 0 det |
638 //
639 const SkScalar4 R(rdet, rdet, rdet, 1);
640 X *= R;
641 Y *= R;
642
643 SkScalar x[4], y[4], z[4];
644 X.store(x);
645 Y.store(y);
646 (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);
647
648 out->setAll( y[row1], -x[row1], z[row1],
649 -y[row0], x[row0], -z[row0],
650 0, 0, 1);
651
652 return skipRow;
653 }
654
negate_kl(SkMatrix * klm)655 static void negate_kl(SkMatrix* klm) {
656 // We could use klm->postScale(-1, -1), but it ends up doing a full matrix multiply.
657 for (int i = 0; i < 6; ++i) {
658 (*klm)[i] = -(*klm)[i];
659 }
660 }
661
calc_serp_klm(const SkPoint pts[4],const SkScalar d[3],SkMatrix * klm)662 static void calc_serp_klm(const SkPoint pts[4], const SkScalar d[3], SkMatrix* klm) {
663 SkMatrix CIT;
664 int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
665
666 const SkScalar root = SkScalarSqrt(9 * d[1] * d[1] - 12 * d[0] * d[2]);
667
668 const SkScalar tl = 3 * d[1] + root;
669 const SkScalar sl = 6 * d[0];
670 const SkScalar tm = 3 * d[1] - root;
671 const SkScalar sm = 6 * d[0];
672
673 SkMatrix klmCoeffs;
674 int col = 0;
675 if (0 != skipCol) {
676 klmCoeffs[0] = 0;
677 klmCoeffs[3] = -sl * sl * sl;
678 klmCoeffs[6] = -sm * sm * sm;
679 ++col;
680 }
681 if (1 != skipCol) {
682 klmCoeffs[col + 0] = sl * sm;
683 klmCoeffs[col + 3] = 3 * sl * sl * tl;
684 klmCoeffs[col + 6] = 3 * sm * sm * tm;
685 ++col;
686 }
687 if (2 != skipCol) {
688 klmCoeffs[col + 0] = -tl * sm - tm * sl;
689 klmCoeffs[col + 3] = -3 * sl * tl * tl;
690 klmCoeffs[col + 6] = -3 * sm * tm * tm;
691 ++col;
692 }
693
694 SkASSERT(2 == col);
695 klmCoeffs[2] = tl * tm;
696 klmCoeffs[5] = tl * tl * tl;
697 klmCoeffs[8] = tm * tm * tm;
698
699 klm->setConcat(klmCoeffs, CIT);
700
701 // If d0 > 0 we need to flip the orientation of our curve
702 // This is done by negating the k and l values
703 // We want negative distance values to be on the inside
704 if (d[0] > 0) {
705 negate_kl(klm);
706 }
707 }
708
calc_loop_klm(const SkPoint pts[4],SkScalar d1,SkScalar td,SkScalar sd,SkScalar te,SkScalar se,SkMatrix * klm)709 static void calc_loop_klm(const SkPoint pts[4], SkScalar d1, SkScalar td, SkScalar sd,
710 SkScalar te, SkScalar se, SkMatrix* klm) {
711 SkMatrix CIT;
712 int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
713
714 const SkScalar tesd = te * sd;
715 const SkScalar tdse = td * se;
716
717 SkMatrix klmCoeffs;
718 int col = 0;
719 if (0 != skipCol) {
720 klmCoeffs[0] = 0;
721 klmCoeffs[3] = -sd * sd * se;
722 klmCoeffs[6] = -se * se * sd;
723 ++col;
724 }
725 if (1 != skipCol) {
726 klmCoeffs[col + 0] = sd * se;
727 klmCoeffs[col + 3] = sd * (2 * tdse + tesd);
728 klmCoeffs[col + 6] = se * (2 * tesd + tdse);
729 ++col;
730 }
731 if (2 != skipCol) {
732 klmCoeffs[col + 0] = -tdse - tesd;
733 klmCoeffs[col + 3] = -td * (tdse + 2 * tesd);
734 klmCoeffs[col + 6] = -te * (tesd + 2 * tdse);
735 ++col;
736 }
737
738 SkASSERT(2 == col);
739 klmCoeffs[2] = td * te;
740 klmCoeffs[5] = td * td * te;
741 klmCoeffs[8] = te * te * td;
742
743 klm->setConcat(klmCoeffs, CIT);
744
745 // For the general loop curve, we flip the orientation in the same pattern as the serp case
746 // above. Thus we only check d1. Technically we should check the value of the hessian as well
747 // cause we care about the sign of d1*Hessian. However, the Hessian is always negative outside
748 // the loop section and positive inside. We take care of the flipping for the loop sections
749 // later on.
750 if (d1 > 0) {
751 negate_kl(klm);
752 }
753 }
754
755 // For the case when we have a cusp at a parameter value of infinity (discr == 0, d1 == 0).
calc_inf_cusp_klm(const SkPoint pts[4],SkScalar d2,SkScalar d3,SkMatrix * klm)756 static void calc_inf_cusp_klm(const SkPoint pts[4], SkScalar d2, SkScalar d3, SkMatrix* klm) {
757 SkMatrix CIT;
758 int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
759
760 const SkScalar tn = d3;
761 const SkScalar sn = 3 * d2;
762
763 SkMatrix klmCoeffs;
764 int col = 0;
765 if (0 != skipCol) {
766 klmCoeffs[0] = 0;
767 klmCoeffs[3] = -sn * sn * sn;
768 ++col;
769 }
770 if (1 != skipCol) {
771 klmCoeffs[col + 0] = 0;
772 klmCoeffs[col + 3] = 3 * sn * sn * tn;
773 ++col;
774 }
775 if (2 != skipCol) {
776 klmCoeffs[col + 0] = -sn;
777 klmCoeffs[col + 3] = -3 * sn * tn * tn;
778 ++col;
779 }
780
781 SkASSERT(2 == col);
782 klmCoeffs[2] = tn;
783 klmCoeffs[5] = tn * tn * tn;
784
785 klmCoeffs[6] = 0;
786 klmCoeffs[7] = 0;
787 klmCoeffs[8] = 1;
788
789 klm->setConcat(klmCoeffs, CIT);
790 }
791
792 // For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
793 // implicit becomes:
794 //
795 // k^3 - l*m == k^3 - l*k == k * (k^2 - l)
796 //
797 // In the quadratic case we can simply assign fixed values at each control point:
798 //
799 // | ..K.. | | pts[0] pts[1] pts[2] pts[3] | | 0 1/3 2/3 1 |
800 // | ..L.. | * | . . . . | == | 0 0 1/3 1 |
801 // | ..K.. | | 1 1 1 1 | | 0 1/3 2/3 1 |
802 //
calc_quadratic_klm(const SkPoint pts[4],SkScalar d3,SkMatrix * klm)803 static void calc_quadratic_klm(const SkPoint pts[4], SkScalar d3, SkMatrix* klm) {
804 SkMatrix klmAtPts;
805 klmAtPts.setAll(0, 1.f/3, 1,
806 0, 0, 1,
807 0, 1.f/3, 1);
808
809 SkMatrix inversePts;
810 inversePts.setAll(pts[0].x(), pts[1].x(), pts[3].x(),
811 pts[0].y(), pts[1].y(), pts[3].y(),
812 1, 1, 1);
813 SkAssertResult(inversePts.invert(&inversePts));
814
815 klm->setConcat(klmAtPts, inversePts);
816
817 // If d3 > 0 we need to flip the orientation of our curve
818 // This is done by negating the k and l values
819 if (d3 > 0) {
820 negate_kl(klm);
821 }
822 }
823
824 // For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
825 // the following implicit:
826 //
827 // k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
828 //
calc_line_klm(const SkPoint pts[4],SkMatrix * klm)829 static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
830 SkScalar ny = pts[0].x() - pts[3].x();
831 SkScalar nx = pts[3].y() - pts[0].y();
832 SkScalar k = nx * pts[0].x() + ny * pts[0].y();
833 klm->setAll( 0, 0, 0,
834 0, 0, 1,
835 -nx, -ny, k);
836 }
837
chopCubicAtLoopIntersection(const SkPoint src[4],SkPoint dst[10],SkMatrix * klm,int * loopIndex)838 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
839 int* loopIndex) {
840 // Variables to store the two parametric values at the loop double point.
841 SkScalar t1 = 0, t2 = 0;
842
843 // Homogeneous parametric values at the loop double point.
844 SkScalar td, sd, te, se;
845
846 SkScalar d[3];
847 SkCubicType cType = SkClassifyCubic(src, d);
848
849 int chop_count = 0;
850 if (kLoop_SkCubicType == cType) {
851 SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
852 td = d[1] + tempSqrt;
853 sd = 2.f * d[0];
854 te = d[1] - tempSqrt;
855 se = 2.f * d[0];
856
857 t1 = td / sd;
858 t2 = te / se;
859 // need to have t values sorted since this is what is expected by SkChopCubicAt
860 if (t1 > t2) {
861 SkTSwap(t1, t2);
862 }
863
864 SkScalar chop_ts[2];
865 if (t1 > 0.f && t1 < 1.f) {
866 chop_ts[chop_count++] = t1;
867 }
868 if (t2 > 0.f && t2 < 1.f) {
869 chop_ts[chop_count++] = t2;
870 }
871 if(dst) {
872 SkChopCubicAt(src, dst, chop_ts, chop_count);
873 }
874 } else {
875 if (dst) {
876 memcpy(dst, src, sizeof(SkPoint) * 4);
877 }
878 }
879
880 if (loopIndex) {
881 if (2 == chop_count) {
882 *loopIndex = 1;
883 } else if (1 == chop_count) {
884 if (t1 < 0.f) {
885 *loopIndex = 0;
886 } else {
887 *loopIndex = 1;
888 }
889 } else {
890 if (t1 < 0.f && t2 > 1.f) {
891 *loopIndex = 0;
892 } else {
893 *loopIndex = -1;
894 }
895 }
896 }
897
898 if (klm) {
899 switch (cType) {
900 case kSerpentine_SkCubicType:
901 calc_serp_klm(src, d, klm);
902 break;
903 case kLoop_SkCubicType:
904 calc_loop_klm(src, d[0], td, sd, te, se, klm);
905 break;
906 case kCusp_SkCubicType:
907 if (0 != d[0]) {
908 // FIXME: SkClassifyCubic has a tolerance, but we need an exact classification
909 // here to be sure we won't get a negative in the square root.
910 calc_serp_klm(src, d, klm);
911 } else {
912 calc_inf_cusp_klm(src, d[1], d[2], klm);
913 }
914 break;
915 case kQuadratic_SkCubicType:
916 calc_quadratic_klm(src, d[2], klm);
917 break;
918 case kLine_SkCubicType:
919 case kPoint_SkCubicType:
920 calc_line_klm(src, klm);
921 break;
922 };
923 }
924 return chop_count + 1;
925 }
926