1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrAAHairLinePathRenderer.h"
9 #include "GrBuffer.h"
10 #include "GrCaps.h"
11 #include "GrClip.h"
12 #include "GrContext.h"
13 #include "GrDefaultGeoProcFactory.h"
14 #include "GrDrawOpTest.h"
15 #include "GrOpFlushState.h"
16 #include "GrPathUtils.h"
17 #include "GrPipelineBuilder.h"
18 #include "GrProcessor.h"
19 #include "GrResourceProvider.h"
20 #include "SkGeometry.h"
21 #include "SkStroke.h"
22 #include "SkTemplates.h"
23 #include "effects/GrBezierEffect.h"
24 #include "ops/GrMeshDrawOp.h"
25
26 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
27
28 // quadratics are rendered as 5-sided polys in order to bound the
29 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
30 // bloat_quad. Quadratics and conics share an index buffer
31
32 // lines are rendered as:
33 // *______________*
34 // |\ -_______ /|
35 // | \ \ / |
36 // | *--------* |
37 // | / ______/ \ |
38 // */_-__________\*
39 // For: 6 vertices and 18 indices (for 6 triangles)
40
41 // Each quadratic is rendered as a five sided polygon. This poly bounds
42 // the quadratic's bounding triangle but has been expanded so that the
43 // 1-pixel wide area around the curve is inside the poly.
44 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
45 // that is rendered would look like this:
46 // b0
47 // b
48 //
49 // a0 c0
50 // a c
51 // a1 c1
52 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
53 // specified by these 9 indices:
54 static const uint16_t kQuadIdxBufPattern[] = {
55 0, 1, 2,
56 2, 4, 3,
57 1, 4, 2
58 };
59
60 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
61 static const int kQuadNumVertices = 5;
62 static const int kQuadsNumInIdxBuffer = 256;
63 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
64
ref_quads_index_buffer(GrResourceProvider * resourceProvider)65 static const GrBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
66 GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
67 return resourceProvider->findOrCreateInstancedIndexBuffer(
68 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
69 gQuadsIndexBufferKey);
70 }
71
72
73 // Each line segment is rendered as two quads and two triangles.
74 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
75 // The four external points are offset 1 pixel perpendicular to the
76 // line and half a pixel parallel to the line.
77 //
78 // p4 p5
79 // p0 p1
80 // p2 p3
81 //
82 // Each is drawn as six triangles specified by these 18 indices:
83
84 static const uint16_t kLineSegIdxBufPattern[] = {
85 0, 1, 3,
86 0, 3, 2,
87 0, 4, 5,
88 0, 5, 1,
89 0, 2, 4,
90 1, 5, 3
91 };
92
93 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
94 static const int kLineSegNumVertices = 6;
95 static const int kLineSegsNumInIdxBuffer = 256;
96
97 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
98
ref_lines_index_buffer(GrResourceProvider * resourceProvider)99 static const GrBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
100 GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
101 return resourceProvider->findOrCreateInstancedIndexBuffer(
102 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
103 gLinesIndexBufferKey);
104 }
105
106 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)107 static int get_float_exp(float x) {
108 GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
109 #ifdef SK_DEBUG
110 static bool tested;
111 if (!tested) {
112 tested = true;
113 SkASSERT(get_float_exp(0.25f) == -2);
114 SkASSERT(get_float_exp(0.3f) == -2);
115 SkASSERT(get_float_exp(0.5f) == -1);
116 SkASSERT(get_float_exp(1.f) == 0);
117 SkASSERT(get_float_exp(2.f) == 1);
118 SkASSERT(get_float_exp(2.5f) == 1);
119 SkASSERT(get_float_exp(8.f) == 3);
120 SkASSERT(get_float_exp(100.f) == 6);
121 SkASSERT(get_float_exp(1000.f) == 9);
122 SkASSERT(get_float_exp(1024.f) == 10);
123 SkASSERT(get_float_exp(3000000.f) == 21);
124 }
125 #endif
126 const int* iptr = (const int*)&x;
127 return (((*iptr) & 0x7f800000) >> 23) - 127;
128 }
129
130 // Uses the max curvature function for quads to estimate
131 // where to chop the conic. If the max curvature is not
132 // found along the curve segment it will return 1 and
133 // dst[0] is the original conic. If it returns 2 the dst[0]
134 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)135 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
136 SkScalar t = SkFindQuadMaxCurvature(src);
137 if (t == 0) {
138 if (dst) {
139 dst[0].set(src, weight);
140 }
141 return 1;
142 } else {
143 if (dst) {
144 SkConic conic;
145 conic.set(src, weight);
146 if (!conic.chopAt(t, dst)) {
147 dst[0].set(src, weight);
148 return 1;
149 }
150 }
151 return 2;
152 }
153 }
154
155 // Calls split_conic on the entire conic and then once more on each subsection.
156 // Most cases will result in either 1 conic (chop point is not within t range)
157 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)158 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
159 SkConic dstTemp[2];
160 int conicCnt = split_conic(src, dstTemp, weight);
161 if (2 == conicCnt) {
162 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
163 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
164 } else {
165 dst[0] = dstTemp[0];
166 }
167 return conicCnt;
168 }
169
170 // returns 0 if quad/conic is degen or close to it
171 // in this case approx the path with lines
172 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)173 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
174 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
175 static const SkScalar gDegenerateToLineTolSqd =
176 gDegenerateToLineTol * gDegenerateToLineTol;
177
178 if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
179 p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
180 return 1;
181 }
182
183 *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
184 if (*dsqd < gDegenerateToLineTolSqd) {
185 return 1;
186 }
187
188 if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
189 return 1;
190 }
191 return 0;
192 }
193
is_degen_quad_or_conic(const SkPoint p[3])194 static int is_degen_quad_or_conic(const SkPoint p[3]) {
195 SkScalar dsqd;
196 return is_degen_quad_or_conic(p, &dsqd);
197 }
198
199 // we subdivide the quads to avoid huge overfill
200 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])201 static int num_quad_subdivs(const SkPoint p[3]) {
202 SkScalar dsqd;
203 if (is_degen_quad_or_conic(p, &dsqd)) {
204 return -1;
205 }
206
207 // tolerance of triangle height in pixels
208 // tuned on windows Quadro FX 380 / Z600
209 // trade off of fill vs cpu time on verts
210 // maybe different when do this using gpu (geo or tess shaders)
211 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
212
213 if (dsqd <= gSubdivTol * gSubdivTol) {
214 return 0;
215 } else {
216 static const int kMaxSub = 4;
217 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
218 // = log4(d*d/tol*tol)/2
219 // = log2(d*d/tol*tol)
220
221 // +1 since we're ignoring the mantissa contribution.
222 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
223 log = SkTMin(SkTMax(0, log), kMaxSub);
224 return log;
225 }
226 }
227
228 /**
229 * Generates the lines and quads to be rendered. Lines are always recorded in
230 * device space. We will do a device space bloat to account for the 1pixel
231 * thickness.
232 * Quads are recorded in device space unless m contains
233 * perspective, then in they are in src space. We do this because we will
234 * subdivide large quads to reduce over-fill. This subdivision has to be
235 * performed before applying the perspective matrix.
236 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,GrAAHairLinePathRenderer::PtArray * lines,GrAAHairLinePathRenderer::PtArray * quads,GrAAHairLinePathRenderer::PtArray * conics,GrAAHairLinePathRenderer::IntArray * quadSubdivCnts,GrAAHairLinePathRenderer::FloatArray * conicWeights)237 static int gather_lines_and_quads(const SkPath& path,
238 const SkMatrix& m,
239 const SkIRect& devClipBounds,
240 GrAAHairLinePathRenderer::PtArray* lines,
241 GrAAHairLinePathRenderer::PtArray* quads,
242 GrAAHairLinePathRenderer::PtArray* conics,
243 GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
244 GrAAHairLinePathRenderer::FloatArray* conicWeights) {
245 SkPath::Iter iter(path, false);
246
247 int totalQuadCount = 0;
248 SkRect bounds;
249 SkIRect ibounds;
250
251 bool persp = m.hasPerspective();
252
253 for (;;) {
254 SkPoint pathPts[4];
255 SkPoint devPts[4];
256 SkPath::Verb verb = iter.next(pathPts);
257 switch (verb) {
258 case SkPath::kConic_Verb: {
259 SkConic dst[4];
260 // We chop the conics to create tighter clipping to hide error
261 // that appears near max curvature of very thin conics. Thin
262 // hyperbolas with high weight still show error.
263 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
264 for (int i = 0; i < conicCnt; ++i) {
265 SkPoint* chopPnts = dst[i].fPts;
266 m.mapPoints(devPts, chopPnts, 3);
267 bounds.setBounds(devPts, 3);
268 bounds.outset(SK_Scalar1, SK_Scalar1);
269 bounds.roundOut(&ibounds);
270 if (SkIRect::Intersects(devClipBounds, ibounds)) {
271 if (is_degen_quad_or_conic(devPts)) {
272 SkPoint* pts = lines->push_back_n(4);
273 pts[0] = devPts[0];
274 pts[1] = devPts[1];
275 pts[2] = devPts[1];
276 pts[3] = devPts[2];
277 } else {
278 // when in perspective keep conics in src space
279 SkPoint* cPts = persp ? chopPnts : devPts;
280 SkPoint* pts = conics->push_back_n(3);
281 pts[0] = cPts[0];
282 pts[1] = cPts[1];
283 pts[2] = cPts[2];
284 conicWeights->push_back() = dst[i].fW;
285 }
286 }
287 }
288 break;
289 }
290 case SkPath::kMove_Verb:
291 break;
292 case SkPath::kLine_Verb:
293 m.mapPoints(devPts, pathPts, 2);
294 bounds.setBounds(devPts, 2);
295 bounds.outset(SK_Scalar1, SK_Scalar1);
296 bounds.roundOut(&ibounds);
297 if (SkIRect::Intersects(devClipBounds, ibounds)) {
298 SkPoint* pts = lines->push_back_n(2);
299 pts[0] = devPts[0];
300 pts[1] = devPts[1];
301 }
302 break;
303 case SkPath::kQuad_Verb: {
304 SkPoint choppedPts[5];
305 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
306 // When it is degenerate it allows the approximation with lines to work since the
307 // chop point (if there is one) will be at the parabola's vertex. In the nearly
308 // degenerate the QuadUVMatrix computed for the points is almost singular which
309 // can cause rendering artifacts.
310 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
311 for (int i = 0; i < n; ++i) {
312 SkPoint* quadPts = choppedPts + i * 2;
313 m.mapPoints(devPts, quadPts, 3);
314 bounds.setBounds(devPts, 3);
315 bounds.outset(SK_Scalar1, SK_Scalar1);
316 bounds.roundOut(&ibounds);
317
318 if (SkIRect::Intersects(devClipBounds, ibounds)) {
319 int subdiv = num_quad_subdivs(devPts);
320 SkASSERT(subdiv >= -1);
321 if (-1 == subdiv) {
322 SkPoint* pts = lines->push_back_n(4);
323 pts[0] = devPts[0];
324 pts[1] = devPts[1];
325 pts[2] = devPts[1];
326 pts[3] = devPts[2];
327 } else {
328 // when in perspective keep quads in src space
329 SkPoint* qPts = persp ? quadPts : devPts;
330 SkPoint* pts = quads->push_back_n(3);
331 pts[0] = qPts[0];
332 pts[1] = qPts[1];
333 pts[2] = qPts[2];
334 quadSubdivCnts->push_back() = subdiv;
335 totalQuadCount += 1 << subdiv;
336 }
337 }
338 }
339 break;
340 }
341 case SkPath::kCubic_Verb:
342 m.mapPoints(devPts, pathPts, 4);
343 bounds.setBounds(devPts, 4);
344 bounds.outset(SK_Scalar1, SK_Scalar1);
345 bounds.roundOut(&ibounds);
346 if (SkIRect::Intersects(devClipBounds, ibounds)) {
347 PREALLOC_PTARRAY(32) q;
348 // We convert cubics to quadratics (for now).
349 // In perspective have to do conversion in src space.
350 if (persp) {
351 SkScalar tolScale =
352 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
353 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
354 } else {
355 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
356 }
357 for (int i = 0; i < q.count(); i += 3) {
358 SkPoint* qInDevSpace;
359 // bounds has to be calculated in device space, but q is
360 // in src space when there is perspective.
361 if (persp) {
362 m.mapPoints(devPts, &q[i], 3);
363 bounds.setBounds(devPts, 3);
364 qInDevSpace = devPts;
365 } else {
366 bounds.setBounds(&q[i], 3);
367 qInDevSpace = &q[i];
368 }
369 bounds.outset(SK_Scalar1, SK_Scalar1);
370 bounds.roundOut(&ibounds);
371 if (SkIRect::Intersects(devClipBounds, ibounds)) {
372 int subdiv = num_quad_subdivs(qInDevSpace);
373 SkASSERT(subdiv >= -1);
374 if (-1 == subdiv) {
375 SkPoint* pts = lines->push_back_n(4);
376 // lines should always be in device coords
377 pts[0] = qInDevSpace[0];
378 pts[1] = qInDevSpace[1];
379 pts[2] = qInDevSpace[1];
380 pts[3] = qInDevSpace[2];
381 } else {
382 SkPoint* pts = quads->push_back_n(3);
383 // q is already in src space when there is no
384 // perspective and dev coords otherwise.
385 pts[0] = q[0 + i];
386 pts[1] = q[1 + i];
387 pts[2] = q[2 + i];
388 quadSubdivCnts->push_back() = subdiv;
389 totalQuadCount += 1 << subdiv;
390 }
391 }
392 }
393 }
394 break;
395 case SkPath::kClose_Verb:
396 break;
397 case SkPath::kDone_Verb:
398 return totalQuadCount;
399 }
400 }
401 }
402
403 struct LineVertex {
404 SkPoint fPos;
405 float fCoverage;
406 };
407
408 struct BezierVertex {
409 SkPoint fPos;
410 union {
411 struct {
412 SkScalar fKLM[3];
413 } fConic;
414 SkVector fQuadCoord;
415 struct {
416 SkScalar fBogus[4];
417 };
418 };
419 };
420
421 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
422
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)423 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
424 const SkPoint& ptB, const SkVector& normB,
425 SkPoint* result) {
426
427 SkScalar lineAW = -normA.dot(ptA);
428 SkScalar lineBW = -normB.dot(ptB);
429
430 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
431 wInv = SkScalarInvert(wInv);
432
433 result->fX = normA.fY * lineBW - lineAW * normB.fY;
434 result->fX *= wInv;
435
436 result->fY = lineAW * normB.fX - normA.fX * lineBW;
437 result->fY *= wInv;
438 }
439
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])440 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
441 // this should be in the src space, not dev coords, when we have perspective
442 GrPathUtils::QuadUVMatrix DevToUV(qpts);
443 DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
444 }
445
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])446 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
447 const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
448 SkASSERT(!toDevice == !toSrc);
449 // original quad is specified by tri a,b,c
450 SkPoint a = qpts[0];
451 SkPoint b = qpts[1];
452 SkPoint c = qpts[2];
453
454 if (toDevice) {
455 toDevice->mapPoints(&a, 1);
456 toDevice->mapPoints(&b, 1);
457 toDevice->mapPoints(&c, 1);
458 }
459 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
460 // to edges ab and bc:
461 //
462 // before | after
463 // | b0
464 // b |
465 // |
466 // | a0 c0
467 // a c | a1 c1
468 //
469 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
470 // respectively.
471 BezierVertex& a0 = verts[0];
472 BezierVertex& a1 = verts[1];
473 BezierVertex& b0 = verts[2];
474 BezierVertex& c0 = verts[3];
475 BezierVertex& c1 = verts[4];
476
477 SkVector ab = b;
478 ab -= a;
479 SkVector ac = c;
480 ac -= a;
481 SkVector cb = b;
482 cb -= c;
483
484 // We should have already handled degenerates
485 SkASSERT(ab.length() > 0 && cb.length() > 0);
486
487 ab.normalize();
488 SkVector abN;
489 abN.setOrthog(ab, SkVector::kLeft_Side);
490 if (abN.dot(ac) > 0) {
491 abN.negate();
492 }
493
494 cb.normalize();
495 SkVector cbN;
496 cbN.setOrthog(cb, SkVector::kLeft_Side);
497 if (cbN.dot(ac) < 0) {
498 cbN.negate();
499 }
500
501 a0.fPos = a;
502 a0.fPos += abN;
503 a1.fPos = a;
504 a1.fPos -= abN;
505
506 c0.fPos = c;
507 c0.fPos += cbN;
508 c1.fPos = c;
509 c1.fPos -= cbN;
510
511 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
512
513 if (toSrc) {
514 toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
515 }
516 }
517
518 // Equations based off of Loop-Blinn Quadratic GPU Rendering
519 // Input Parametric:
520 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
521 // Output Implicit:
522 // f(x, y, w) = f(P) = K^2 - LM
523 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
524 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)525 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
526 const SkScalar weight) {
527 SkMatrix klm;
528
529 GrPathUtils::getConicKLM(p, weight, &klm);
530
531 for (int i = 0; i < kQuadNumVertices; ++i) {
532 const SkScalar pt3[3] = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
533 klm.mapHomogeneousPoints(verts[i].fConic.fKLM, pt3, 1);
534 }
535 }
536
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)537 static void add_conics(const SkPoint p[3],
538 const SkScalar weight,
539 const SkMatrix* toDevice,
540 const SkMatrix* toSrc,
541 BezierVertex** vert) {
542 bloat_quad(p, toDevice, toSrc, *vert);
543 set_conic_coeffs(p, *vert, weight);
544 *vert += kQuadNumVertices;
545 }
546
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)547 static void add_quads(const SkPoint p[3],
548 int subdiv,
549 const SkMatrix* toDevice,
550 const SkMatrix* toSrc,
551 BezierVertex** vert) {
552 SkASSERT(subdiv >= 0);
553 if (subdiv) {
554 SkPoint newP[5];
555 SkChopQuadAtHalf(p, newP);
556 add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
557 add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
558 } else {
559 bloat_quad(p, toDevice, toSrc, *vert);
560 set_uv_quad(p, *vert);
561 *vert += kQuadNumVertices;
562 }
563 }
564
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)565 static void add_line(const SkPoint p[2],
566 const SkMatrix* toSrc,
567 uint8_t coverage,
568 LineVertex** vert) {
569 const SkPoint& a = p[0];
570 const SkPoint& b = p[1];
571
572 SkVector ortho, vec = b;
573 vec -= a;
574
575 if (vec.setLength(SK_ScalarHalf)) {
576 // Create a vector orthogonal to 'vec' and of unit length
577 ortho.fX = 2.0f * vec.fY;
578 ortho.fY = -2.0f * vec.fX;
579
580 float floatCoverage = GrNormalizeByteToFloat(coverage);
581
582 (*vert)[0].fPos = a;
583 (*vert)[0].fCoverage = floatCoverage;
584 (*vert)[1].fPos = b;
585 (*vert)[1].fCoverage = floatCoverage;
586 (*vert)[2].fPos = a - vec + ortho;
587 (*vert)[2].fCoverage = 0;
588 (*vert)[3].fPos = b + vec + ortho;
589 (*vert)[3].fCoverage = 0;
590 (*vert)[4].fPos = a - vec - ortho;
591 (*vert)[4].fCoverage = 0;
592 (*vert)[5].fPos = b + vec - ortho;
593 (*vert)[5].fCoverage = 0;
594
595 if (toSrc) {
596 toSrc->mapPointsWithStride(&(*vert)->fPos,
597 sizeof(LineVertex),
598 kLineSegNumVertices);
599 }
600 } else {
601 // just make it degenerate and likely offscreen
602 for (int i = 0; i < kLineSegNumVertices; ++i) {
603 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
604 }
605 }
606
607 *vert += kLineSegNumVertices;
608 }
609
610 ///////////////////////////////////////////////////////////////////////////////
611
onCanDrawPath(const CanDrawPathArgs & args) const612 bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
613 if (GrAAType::kCoverage != args.fAAType) {
614 return false;
615 }
616
617 if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
618 return false;
619 }
620
621 // We don't currently handle dashing in this class though perhaps we should.
622 if (args.fShape->style().pathEffect()) {
623 return false;
624 }
625
626 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
627 args.fShaderCaps->shaderDerivativeSupport()) {
628 return true;
629 }
630
631 return false;
632 }
633
634 template <class VertexType>
check_bounds(const SkMatrix & viewMatrix,const SkRect & devBounds,void * vertices,int vCount)635 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
636 {
637 SkRect tolDevBounds = devBounds;
638 // The bounds ought to be tight, but in perspective the below code runs the verts
639 // through the view matrix to get back to dev coords, which can introduce imprecision.
640 if (viewMatrix.hasPerspective()) {
641 tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
642 } else {
643 // Non-persp matrices cause this path renderer to draw in device space.
644 SkASSERT(viewMatrix.isIdentity());
645 }
646 SkRect actualBounds;
647
648 VertexType* verts = reinterpret_cast<VertexType*>(vertices);
649 bool first = true;
650 for (int i = 0; i < vCount; ++i) {
651 SkPoint pos = verts[i].fPos;
652 // This is a hack to workaround the fact that we move some degenerate segments offscreen.
653 if (SK_ScalarMax == pos.fX) {
654 continue;
655 }
656 viewMatrix.mapPoints(&pos, 1);
657 if (first) {
658 actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
659 first = false;
660 } else {
661 actualBounds.growToInclude(pos.fX, pos.fY);
662 }
663 }
664 if (!first) {
665 return tolDevBounds.contains(actualBounds);
666 }
667
668 return true;
669 }
670
671 class AAHairlineOp final : public GrMeshDrawOp {
672 public:
673 DEFINE_OP_CLASS_ID
674
Make(GrColor color,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds)675 static std::unique_ptr<GrMeshDrawOp> Make(GrColor color,
676 const SkMatrix& viewMatrix,
677 const SkPath& path,
678 const GrStyle& style,
679 const SkIRect& devClipBounds) {
680 SkScalar hairlineCoverage;
681 uint8_t newCoverage = 0xff;
682 if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
683 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
684 }
685
686 return std::unique_ptr<GrMeshDrawOp>(
687 new AAHairlineOp(color, newCoverage, viewMatrix, path, devClipBounds));
688 }
689
name() const690 const char* name() const override { return "AAHairlineOp"; }
691
dumpInfo() const692 SkString dumpInfo() const override {
693 SkString string;
694 string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
695 fPaths.count());
696 string.append(INHERITED::dumpInfo());
697 return string;
698 }
699
700 private:
AAHairlineOp(GrColor color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds)701 AAHairlineOp(GrColor color,
702 uint8_t coverage,
703 const SkMatrix& viewMatrix,
704 const SkPath& path,
705 SkIRect devClipBounds)
706 : INHERITED(ClassID()), fColor(color), fCoverage(coverage) {
707 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds});
708
709 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
710 IsZeroArea::kYes);
711 }
712
getFragmentProcessorAnalysisInputs(GrPipelineAnalysisColor * color,GrPipelineAnalysisCoverage * coverage) const713 void getFragmentProcessorAnalysisInputs(GrPipelineAnalysisColor* color,
714 GrPipelineAnalysisCoverage* coverage) const override {
715 color->setToConstant(fColor);
716 *coverage = GrPipelineAnalysisCoverage::kSingleChannel;
717 }
718
applyPipelineOptimizations(const GrPipelineOptimizations & optimizations)719 void applyPipelineOptimizations(const GrPipelineOptimizations& optimizations) override {
720 optimizations.getOverrideColorIfSet(&fColor);
721 fUsesLocalCoords = optimizations.readsLocalCoords();
722 }
723
724 void onPrepareDraws(Target*) const override;
725
726 typedef SkTArray<SkPoint, true> PtArray;
727 typedef SkTArray<int, true> IntArray;
728 typedef SkTArray<float, true> FloatArray;
729
onCombineIfPossible(GrOp * t,const GrCaps & caps)730 bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
731 AAHairlineOp* that = t->cast<AAHairlineOp>();
732
733 if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
734 that->bounds(), caps)) {
735 return false;
736 }
737
738 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
739 return false;
740 }
741
742 // We go to identity if we don't have perspective
743 if (this->viewMatrix().hasPerspective() &&
744 !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
745 return false;
746 }
747
748 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
749 // method but we haven't implemented this yet
750 // TODO investigate going to vertex color and coverage?
751 if (this->coverage() != that->coverage()) {
752 return false;
753 }
754
755 if (this->color() != that->color()) {
756 return false;
757 }
758
759 SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
760 if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
761 return false;
762 }
763
764 fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
765 this->joinBounds(*that);
766 return true;
767 }
768
color() const769 GrColor color() const { return fColor; }
coverage() const770 uint8_t coverage() const { return fCoverage; }
usesLocalCoords() const771 bool usesLocalCoords() const { return fUsesLocalCoords; }
viewMatrix() const772 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
773
774 struct PathData {
775 SkMatrix fViewMatrix;
776 SkPath fPath;
777 SkIRect fDevClipBounds;
778 };
779
780 GrColor fColor;
781 uint8_t fCoverage;
782 bool fUsesLocalCoords;
783
784 SkSTArray<1, PathData, true> fPaths;
785
786 typedef GrMeshDrawOp INHERITED;
787 };
788
onPrepareDraws(Target * target) const789 void AAHairlineOp::onPrepareDraws(Target* target) const {
790 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
791 SkMatrix invert;
792 if (!this->viewMatrix().invert(&invert)) {
793 return;
794 }
795
796 // we will transform to identity space if the viewmatrix does not have perspective
797 bool hasPerspective = this->viewMatrix().hasPerspective();
798 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
799 const SkMatrix* geometryProcessorLocalM = &invert;
800 const SkMatrix* toDevice = nullptr;
801 const SkMatrix* toSrc = nullptr;
802 if (hasPerspective) {
803 geometryProcessorViewM = &this->viewMatrix();
804 geometryProcessorLocalM = &SkMatrix::I();
805 toDevice = &this->viewMatrix();
806 toSrc = &invert;
807 }
808
809 // This is hand inlined for maximum performance.
810 PREALLOC_PTARRAY(128) lines;
811 PREALLOC_PTARRAY(128) quads;
812 PREALLOC_PTARRAY(128) conics;
813 IntArray qSubdivs;
814 FloatArray cWeights;
815 int quadCount = 0;
816
817 int instanceCount = fPaths.count();
818 for (int i = 0; i < instanceCount; i++) {
819 const PathData& args = fPaths[i];
820 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
821 &lines, &quads, &conics, &qSubdivs, &cWeights);
822 }
823
824 int lineCount = lines.count() / 2;
825 int conicCount = conics.count() / 3;
826
827 // do lines first
828 if (lineCount) {
829 sk_sp<GrGeometryProcessor> lineGP;
830 {
831 using namespace GrDefaultGeoProcFactory;
832
833 Color color(this->color());
834 LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
835 LocalCoords::kUnused_Type);
836 localCoords.fMatrix = geometryProcessorLocalM;
837 lineGP = GrDefaultGeoProcFactory::Make(color, Coverage::kAttribute_Type, localCoords,
838 *geometryProcessorViewM);
839 }
840
841 sk_sp<const GrBuffer> linesIndexBuffer(
842 ref_lines_index_buffer(target->resourceProvider()));
843
844 const GrBuffer* vertexBuffer;
845 int firstVertex;
846
847 size_t vertexStride = lineGP->getVertexStride();
848 int vertexCount = kLineSegNumVertices * lineCount;
849 LineVertex* verts = reinterpret_cast<LineVertex*>(
850 target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
851
852 if (!verts|| !linesIndexBuffer) {
853 SkDebugf("Could not allocate vertices\n");
854 return;
855 }
856
857 SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
858
859 for (int i = 0; i < lineCount; ++i) {
860 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
861 }
862
863 GrMesh mesh;
864 mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer.get(),
865 firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
866 kLineSegsNumInIdxBuffer);
867 target->draw(lineGP.get(), mesh);
868 }
869
870 if (quadCount || conicCount) {
871 sk_sp<GrGeometryProcessor> quadGP(
872 GrQuadEffect::Make(this->color(),
873 *geometryProcessorViewM,
874 kHairlineAA_GrProcessorEdgeType,
875 target->caps(),
876 *geometryProcessorLocalM,
877 this->usesLocalCoords(),
878 this->coverage()));
879
880 sk_sp<GrGeometryProcessor> conicGP(
881 GrConicEffect::Make(this->color(),
882 *geometryProcessorViewM,
883 kHairlineAA_GrProcessorEdgeType,
884 target->caps(),
885 *geometryProcessorLocalM,
886 this->usesLocalCoords(),
887 this->coverage()));
888
889 const GrBuffer* vertexBuffer;
890 int firstVertex;
891
892 sk_sp<const GrBuffer> quadsIndexBuffer(
893 ref_quads_index_buffer(target->resourceProvider()));
894
895 size_t vertexStride = sizeof(BezierVertex);
896 int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
897 void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
898 &vertexBuffer, &firstVertex);
899
900 if (!vertices || !quadsIndexBuffer) {
901 SkDebugf("Could not allocate vertices\n");
902 return;
903 }
904
905 // Setup vertices
906 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
907
908 int unsubdivQuadCnt = quads.count() / 3;
909 for (int i = 0; i < unsubdivQuadCnt; ++i) {
910 SkASSERT(qSubdivs[i] >= 0);
911 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
912 }
913
914 // Start Conics
915 for (int i = 0; i < conicCount; ++i) {
916 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
917 }
918
919 if (quadCount > 0) {
920 GrMesh mesh;
921 mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
922 firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
923 kQuadsNumInIdxBuffer);
924 target->draw(quadGP.get(), mesh);
925 firstVertex += quadCount * kQuadNumVertices;
926 }
927
928 if (conicCount > 0) {
929 GrMesh mesh;
930 mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
931 firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
932 kQuadsNumInIdxBuffer);
933 target->draw(conicGP.get(), mesh);
934 }
935 }
936 }
937
onDrawPath(const DrawPathArgs & args)938 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
939 GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
940 "GrAAHairlinePathRenderer::onDrawPath");
941 SkASSERT(!args.fRenderTargetContext->isUnifiedMultisampled());
942
943 SkIRect devClipBounds;
944 args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
945 args.fRenderTargetContext->height(),
946 &devClipBounds);
947 SkPath path;
948 args.fShape->asPath(&path);
949 std::unique_ptr<GrMeshDrawOp> op = AAHairlineOp::Make(
950 args.fPaint.getColor(), *args.fViewMatrix, path, args.fShape->style(), devClipBounds);
951 GrPipelineBuilder pipelineBuilder(std::move(args.fPaint), args.fAAType);
952 pipelineBuilder.setUserStencil(args.fUserStencilSettings);
953 args.fRenderTargetContext->addMeshDrawOp(pipelineBuilder, *args.fClip, std::move(op));
954 return true;
955 }
956
957 ///////////////////////////////////////////////////////////////////////////////////////////////////
958
959 #if GR_TEST_UTILS
960
DRAW_OP_TEST_DEFINE(AAHairlineOp)961 DRAW_OP_TEST_DEFINE(AAHairlineOp) {
962 GrColor color = GrRandomColor(random);
963 SkMatrix viewMatrix = GrTest::TestMatrix(random);
964 SkPath path = GrTest::TestPath(random);
965 SkIRect devClipBounds;
966 devClipBounds.setEmpty();
967 return AAHairlineOp::Make(color, viewMatrix, path, GrStyle::SimpleHairline(), devClipBounds);
968 }
969
970 #endif
971