1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrAAHairLinePathRenderer.h"
9 #include "GrBuffer.h"
10 #include "GrCaps.h"
11 #include "GrClip.h"
12 #include "GrContext.h"
13 #include "GrDefaultGeoProcFactory.h"
14 #include "GrDrawOpTest.h"
15 #include "GrOpFlushState.h"
16 #include "GrPathUtils.h"
17 #include "GrPipelineBuilder.h"
18 #include "GrProcessor.h"
19 #include "GrResourceProvider.h"
20 #include "SkGeometry.h"
21 #include "SkStroke.h"
22 #include "SkTemplates.h"
23 #include "effects/GrBezierEffect.h"
24 #include "ops/GrMeshDrawOp.h"
25 
26 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
27 
28 // quadratics are rendered as 5-sided polys in order to bound the
29 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
30 // bloat_quad. Quadratics and conics share an index buffer
31 
32 // lines are rendered as:
33 //      *______________*
34 //      |\ -_______   /|
35 //      | \        \ / |
36 //      |  *--------*  |
37 //      | /  ______/ \ |
38 //      */_-__________\*
39 // For: 6 vertices and 18 indices (for 6 triangles)
40 
41 // Each quadratic is rendered as a five sided polygon. This poly bounds
42 // the quadratic's bounding triangle but has been expanded so that the
43 // 1-pixel wide area around the curve is inside the poly.
44 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
45 // that is rendered would look like this:
46 //              b0
47 //              b
48 //
49 //     a0              c0
50 //      a            c
51 //       a1       c1
52 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
53 // specified by these 9 indices:
54 static const uint16_t kQuadIdxBufPattern[] = {
55     0, 1, 2,
56     2, 4, 3,
57     1, 4, 2
58 };
59 
60 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
61 static const int kQuadNumVertices = 5;
62 static const int kQuadsNumInIdxBuffer = 256;
63 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
64 
ref_quads_index_buffer(GrResourceProvider * resourceProvider)65 static const GrBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
66     GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
67     return resourceProvider->findOrCreateInstancedIndexBuffer(
68         kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
69         gQuadsIndexBufferKey);
70 }
71 
72 
73 // Each line segment is rendered as two quads and two triangles.
74 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
75 // The four external points are offset 1 pixel perpendicular to the
76 // line and half a pixel parallel to the line.
77 //
78 // p4                  p5
79 //      p0         p1
80 // p2                  p3
81 //
82 // Each is drawn as six triangles specified by these 18 indices:
83 
84 static const uint16_t kLineSegIdxBufPattern[] = {
85     0, 1, 3,
86     0, 3, 2,
87     0, 4, 5,
88     0, 5, 1,
89     0, 2, 4,
90     1, 5, 3
91 };
92 
93 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
94 static const int kLineSegNumVertices = 6;
95 static const int kLineSegsNumInIdxBuffer = 256;
96 
97 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
98 
ref_lines_index_buffer(GrResourceProvider * resourceProvider)99 static const GrBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
100     GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
101     return resourceProvider->findOrCreateInstancedIndexBuffer(
102         kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
103         gLinesIndexBufferKey);
104 }
105 
106 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)107 static int get_float_exp(float x) {
108     GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
109 #ifdef SK_DEBUG
110     static bool tested;
111     if (!tested) {
112         tested = true;
113         SkASSERT(get_float_exp(0.25f) == -2);
114         SkASSERT(get_float_exp(0.3f) == -2);
115         SkASSERT(get_float_exp(0.5f) == -1);
116         SkASSERT(get_float_exp(1.f) == 0);
117         SkASSERT(get_float_exp(2.f) == 1);
118         SkASSERT(get_float_exp(2.5f) == 1);
119         SkASSERT(get_float_exp(8.f) == 3);
120         SkASSERT(get_float_exp(100.f) == 6);
121         SkASSERT(get_float_exp(1000.f) == 9);
122         SkASSERT(get_float_exp(1024.f) == 10);
123         SkASSERT(get_float_exp(3000000.f) == 21);
124     }
125 #endif
126     const int* iptr = (const int*)&x;
127     return (((*iptr) & 0x7f800000) >> 23) - 127;
128 }
129 
130 // Uses the max curvature function for quads to estimate
131 // where to chop the conic. If the max curvature is not
132 // found along the curve segment it will return 1 and
133 // dst[0] is the original conic. If it returns 2 the dst[0]
134 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)135 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
136     SkScalar t = SkFindQuadMaxCurvature(src);
137     if (t == 0) {
138         if (dst) {
139             dst[0].set(src, weight);
140         }
141         return 1;
142     } else {
143         if (dst) {
144             SkConic conic;
145             conic.set(src, weight);
146             if (!conic.chopAt(t, dst)) {
147                 dst[0].set(src, weight);
148                 return 1;
149             }
150         }
151         return 2;
152     }
153 }
154 
155 // Calls split_conic on the entire conic and then once more on each subsection.
156 // Most cases will result in either 1 conic (chop point is not within t range)
157 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)158 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
159     SkConic dstTemp[2];
160     int conicCnt = split_conic(src, dstTemp, weight);
161     if (2 == conicCnt) {
162         int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
163         conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
164     } else {
165         dst[0] = dstTemp[0];
166     }
167     return conicCnt;
168 }
169 
170 // returns 0 if quad/conic is degen or close to it
171 // in this case approx the path with lines
172 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)173 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
174     static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
175     static const SkScalar gDegenerateToLineTolSqd =
176         gDegenerateToLineTol * gDegenerateToLineTol;
177 
178     if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
179         p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
180         return 1;
181     }
182 
183     *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
184     if (*dsqd < gDegenerateToLineTolSqd) {
185         return 1;
186     }
187 
188     if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
189         return 1;
190     }
191     return 0;
192 }
193 
is_degen_quad_or_conic(const SkPoint p[3])194 static int is_degen_quad_or_conic(const SkPoint p[3]) {
195     SkScalar dsqd;
196     return is_degen_quad_or_conic(p, &dsqd);
197 }
198 
199 // we subdivide the quads to avoid huge overfill
200 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])201 static int num_quad_subdivs(const SkPoint p[3]) {
202     SkScalar dsqd;
203     if (is_degen_quad_or_conic(p, &dsqd)) {
204         return -1;
205     }
206 
207     // tolerance of triangle height in pixels
208     // tuned on windows  Quadro FX 380 / Z600
209     // trade off of fill vs cpu time on verts
210     // maybe different when do this using gpu (geo or tess shaders)
211     static const SkScalar gSubdivTol = 175 * SK_Scalar1;
212 
213     if (dsqd <= gSubdivTol * gSubdivTol) {
214         return 0;
215     } else {
216         static const int kMaxSub = 4;
217         // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
218         // = log4(d*d/tol*tol)/2
219         // = log2(d*d/tol*tol)
220 
221         // +1 since we're ignoring the mantissa contribution.
222         int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
223         log = SkTMin(SkTMax(0, log), kMaxSub);
224         return log;
225     }
226 }
227 
228 /**
229  * Generates the lines and quads to be rendered. Lines are always recorded in
230  * device space. We will do a device space bloat to account for the 1pixel
231  * thickness.
232  * Quads are recorded in device space unless m contains
233  * perspective, then in they are in src space. We do this because we will
234  * subdivide large quads to reduce over-fill. This subdivision has to be
235  * performed before applying the perspective matrix.
236  */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,GrAAHairLinePathRenderer::PtArray * lines,GrAAHairLinePathRenderer::PtArray * quads,GrAAHairLinePathRenderer::PtArray * conics,GrAAHairLinePathRenderer::IntArray * quadSubdivCnts,GrAAHairLinePathRenderer::FloatArray * conicWeights)237 static int gather_lines_and_quads(const SkPath& path,
238                                   const SkMatrix& m,
239                                   const SkIRect& devClipBounds,
240                                   GrAAHairLinePathRenderer::PtArray* lines,
241                                   GrAAHairLinePathRenderer::PtArray* quads,
242                                   GrAAHairLinePathRenderer::PtArray* conics,
243                                   GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
244                                   GrAAHairLinePathRenderer::FloatArray* conicWeights) {
245     SkPath::Iter iter(path, false);
246 
247     int totalQuadCount = 0;
248     SkRect bounds;
249     SkIRect ibounds;
250 
251     bool persp = m.hasPerspective();
252 
253     for (;;) {
254         SkPoint pathPts[4];
255         SkPoint devPts[4];
256         SkPath::Verb verb = iter.next(pathPts);
257         switch (verb) {
258             case SkPath::kConic_Verb: {
259                 SkConic dst[4];
260                 // We chop the conics to create tighter clipping to hide error
261                 // that appears near max curvature of very thin conics. Thin
262                 // hyperbolas with high weight still show error.
263                 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
264                 for (int i = 0; i < conicCnt; ++i) {
265                     SkPoint* chopPnts = dst[i].fPts;
266                     m.mapPoints(devPts, chopPnts, 3);
267                     bounds.setBounds(devPts, 3);
268                     bounds.outset(SK_Scalar1, SK_Scalar1);
269                     bounds.roundOut(&ibounds);
270                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
271                         if (is_degen_quad_or_conic(devPts)) {
272                             SkPoint* pts = lines->push_back_n(4);
273                             pts[0] = devPts[0];
274                             pts[1] = devPts[1];
275                             pts[2] = devPts[1];
276                             pts[3] = devPts[2];
277                         } else {
278                             // when in perspective keep conics in src space
279                             SkPoint* cPts = persp ? chopPnts : devPts;
280                             SkPoint* pts = conics->push_back_n(3);
281                             pts[0] = cPts[0];
282                             pts[1] = cPts[1];
283                             pts[2] = cPts[2];
284                             conicWeights->push_back() = dst[i].fW;
285                         }
286                     }
287                 }
288                 break;
289             }
290             case SkPath::kMove_Verb:
291                 break;
292             case SkPath::kLine_Verb:
293                 m.mapPoints(devPts, pathPts, 2);
294                 bounds.setBounds(devPts, 2);
295                 bounds.outset(SK_Scalar1, SK_Scalar1);
296                 bounds.roundOut(&ibounds);
297                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
298                     SkPoint* pts = lines->push_back_n(2);
299                     pts[0] = devPts[0];
300                     pts[1] = devPts[1];
301                 }
302                 break;
303             case SkPath::kQuad_Verb: {
304                 SkPoint choppedPts[5];
305                 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
306                 // When it is degenerate it allows the approximation with lines to work since the
307                 // chop point (if there is one) will be at the parabola's vertex. In the nearly
308                 // degenerate the QuadUVMatrix computed for the points is almost singular which
309                 // can cause rendering artifacts.
310                 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
311                 for (int i = 0; i < n; ++i) {
312                     SkPoint* quadPts = choppedPts + i * 2;
313                     m.mapPoints(devPts, quadPts, 3);
314                     bounds.setBounds(devPts, 3);
315                     bounds.outset(SK_Scalar1, SK_Scalar1);
316                     bounds.roundOut(&ibounds);
317 
318                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
319                         int subdiv = num_quad_subdivs(devPts);
320                         SkASSERT(subdiv >= -1);
321                         if (-1 == subdiv) {
322                             SkPoint* pts = lines->push_back_n(4);
323                             pts[0] = devPts[0];
324                             pts[1] = devPts[1];
325                             pts[2] = devPts[1];
326                             pts[3] = devPts[2];
327                         } else {
328                             // when in perspective keep quads in src space
329                             SkPoint* qPts = persp ? quadPts : devPts;
330                             SkPoint* pts = quads->push_back_n(3);
331                             pts[0] = qPts[0];
332                             pts[1] = qPts[1];
333                             pts[2] = qPts[2];
334                             quadSubdivCnts->push_back() = subdiv;
335                             totalQuadCount += 1 << subdiv;
336                         }
337                     }
338                 }
339                 break;
340             }
341             case SkPath::kCubic_Verb:
342                 m.mapPoints(devPts, pathPts, 4);
343                 bounds.setBounds(devPts, 4);
344                 bounds.outset(SK_Scalar1, SK_Scalar1);
345                 bounds.roundOut(&ibounds);
346                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
347                     PREALLOC_PTARRAY(32) q;
348                     // We convert cubics to quadratics (for now).
349                     // In perspective have to do conversion in src space.
350                     if (persp) {
351                         SkScalar tolScale =
352                             GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
353                         GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
354                     } else {
355                         GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
356                     }
357                     for (int i = 0; i < q.count(); i += 3) {
358                         SkPoint* qInDevSpace;
359                         // bounds has to be calculated in device space, but q is
360                         // in src space when there is perspective.
361                         if (persp) {
362                             m.mapPoints(devPts, &q[i], 3);
363                             bounds.setBounds(devPts, 3);
364                             qInDevSpace = devPts;
365                         } else {
366                             bounds.setBounds(&q[i], 3);
367                             qInDevSpace = &q[i];
368                         }
369                         bounds.outset(SK_Scalar1, SK_Scalar1);
370                         bounds.roundOut(&ibounds);
371                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
372                             int subdiv = num_quad_subdivs(qInDevSpace);
373                             SkASSERT(subdiv >= -1);
374                             if (-1 == subdiv) {
375                                 SkPoint* pts = lines->push_back_n(4);
376                                 // lines should always be in device coords
377                                 pts[0] = qInDevSpace[0];
378                                 pts[1] = qInDevSpace[1];
379                                 pts[2] = qInDevSpace[1];
380                                 pts[3] = qInDevSpace[2];
381                             } else {
382                                 SkPoint* pts = quads->push_back_n(3);
383                                 // q is already in src space when there is no
384                                 // perspective and dev coords otherwise.
385                                 pts[0] = q[0 + i];
386                                 pts[1] = q[1 + i];
387                                 pts[2] = q[2 + i];
388                                 quadSubdivCnts->push_back() = subdiv;
389                                 totalQuadCount += 1 << subdiv;
390                             }
391                         }
392                     }
393                 }
394                 break;
395             case SkPath::kClose_Verb:
396                 break;
397             case SkPath::kDone_Verb:
398                 return totalQuadCount;
399         }
400     }
401 }
402 
403 struct LineVertex {
404     SkPoint fPos;
405     float fCoverage;
406 };
407 
408 struct BezierVertex {
409     SkPoint fPos;
410     union {
411         struct {
412             SkScalar fKLM[3];
413         } fConic;
414         SkVector   fQuadCoord;
415         struct {
416             SkScalar fBogus[4];
417         };
418     };
419 };
420 
421 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
422 
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)423 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
424                             const SkPoint& ptB, const SkVector& normB,
425                             SkPoint* result) {
426 
427     SkScalar lineAW = -normA.dot(ptA);
428     SkScalar lineBW = -normB.dot(ptB);
429 
430     SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
431     wInv = SkScalarInvert(wInv);
432 
433     result->fX = normA.fY * lineBW - lineAW * normB.fY;
434     result->fX *= wInv;
435 
436     result->fY = lineAW * normB.fX - normA.fX * lineBW;
437     result->fY *= wInv;
438 }
439 
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])440 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
441     // this should be in the src space, not dev coords, when we have perspective
442     GrPathUtils::QuadUVMatrix DevToUV(qpts);
443     DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
444 }
445 
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])446 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
447                        const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
448     SkASSERT(!toDevice == !toSrc);
449     // original quad is specified by tri a,b,c
450     SkPoint a = qpts[0];
451     SkPoint b = qpts[1];
452     SkPoint c = qpts[2];
453 
454     if (toDevice) {
455         toDevice->mapPoints(&a, 1);
456         toDevice->mapPoints(&b, 1);
457         toDevice->mapPoints(&c, 1);
458     }
459     // make a new poly where we replace a and c by a 1-pixel wide edges orthog
460     // to edges ab and bc:
461     //
462     //   before       |        after
463     //                |              b0
464     //         b      |
465     //                |
466     //                |     a0            c0
467     // a         c    |        a1       c1
468     //
469     // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
470     // respectively.
471     BezierVertex& a0 = verts[0];
472     BezierVertex& a1 = verts[1];
473     BezierVertex& b0 = verts[2];
474     BezierVertex& c0 = verts[3];
475     BezierVertex& c1 = verts[4];
476 
477     SkVector ab = b;
478     ab -= a;
479     SkVector ac = c;
480     ac -= a;
481     SkVector cb = b;
482     cb -= c;
483 
484     // We should have already handled degenerates
485     SkASSERT(ab.length() > 0 && cb.length() > 0);
486 
487     ab.normalize();
488     SkVector abN;
489     abN.setOrthog(ab, SkVector::kLeft_Side);
490     if (abN.dot(ac) > 0) {
491         abN.negate();
492     }
493 
494     cb.normalize();
495     SkVector cbN;
496     cbN.setOrthog(cb, SkVector::kLeft_Side);
497     if (cbN.dot(ac) < 0) {
498         cbN.negate();
499     }
500 
501     a0.fPos = a;
502     a0.fPos += abN;
503     a1.fPos = a;
504     a1.fPos -= abN;
505 
506     c0.fPos = c;
507     c0.fPos += cbN;
508     c1.fPos = c;
509     c1.fPos -= cbN;
510 
511     intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
512 
513     if (toSrc) {
514         toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
515     }
516 }
517 
518 // Equations based off of Loop-Blinn Quadratic GPU Rendering
519 // Input Parametric:
520 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
521 // Output Implicit:
522 // f(x, y, w) = f(P) = K^2 - LM
523 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
524 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)525 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
526                              const SkScalar weight) {
527     SkMatrix klm;
528 
529     GrPathUtils::getConicKLM(p, weight, &klm);
530 
531     for (int i = 0; i < kQuadNumVertices; ++i) {
532         const SkScalar pt3[3] = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
533         klm.mapHomogeneousPoints(verts[i].fConic.fKLM, pt3, 1);
534     }
535 }
536 
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)537 static void add_conics(const SkPoint p[3],
538                        const SkScalar weight,
539                        const SkMatrix* toDevice,
540                        const SkMatrix* toSrc,
541                        BezierVertex** vert) {
542     bloat_quad(p, toDevice, toSrc, *vert);
543     set_conic_coeffs(p, *vert, weight);
544     *vert += kQuadNumVertices;
545 }
546 
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)547 static void add_quads(const SkPoint p[3],
548                       int subdiv,
549                       const SkMatrix* toDevice,
550                       const SkMatrix* toSrc,
551                       BezierVertex** vert) {
552     SkASSERT(subdiv >= 0);
553     if (subdiv) {
554         SkPoint newP[5];
555         SkChopQuadAtHalf(p, newP);
556         add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
557         add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
558     } else {
559         bloat_quad(p, toDevice, toSrc, *vert);
560         set_uv_quad(p, *vert);
561         *vert += kQuadNumVertices;
562     }
563 }
564 
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)565 static void add_line(const SkPoint p[2],
566                      const SkMatrix* toSrc,
567                      uint8_t coverage,
568                      LineVertex** vert) {
569     const SkPoint& a = p[0];
570     const SkPoint& b = p[1];
571 
572     SkVector ortho, vec = b;
573     vec -= a;
574 
575     if (vec.setLength(SK_ScalarHalf)) {
576         // Create a vector orthogonal to 'vec' and of unit length
577         ortho.fX = 2.0f * vec.fY;
578         ortho.fY = -2.0f * vec.fX;
579 
580         float floatCoverage = GrNormalizeByteToFloat(coverage);
581 
582         (*vert)[0].fPos = a;
583         (*vert)[0].fCoverage = floatCoverage;
584         (*vert)[1].fPos = b;
585         (*vert)[1].fCoverage = floatCoverage;
586         (*vert)[2].fPos = a - vec + ortho;
587         (*vert)[2].fCoverage = 0;
588         (*vert)[3].fPos = b + vec + ortho;
589         (*vert)[3].fCoverage = 0;
590         (*vert)[4].fPos = a - vec - ortho;
591         (*vert)[4].fCoverage = 0;
592         (*vert)[5].fPos = b + vec - ortho;
593         (*vert)[5].fCoverage = 0;
594 
595         if (toSrc) {
596             toSrc->mapPointsWithStride(&(*vert)->fPos,
597                                        sizeof(LineVertex),
598                                        kLineSegNumVertices);
599         }
600     } else {
601         // just make it degenerate and likely offscreen
602         for (int i = 0; i < kLineSegNumVertices; ++i) {
603             (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
604         }
605     }
606 
607     *vert += kLineSegNumVertices;
608 }
609 
610 ///////////////////////////////////////////////////////////////////////////////
611 
onCanDrawPath(const CanDrawPathArgs & args) const612 bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
613     if (GrAAType::kCoverage != args.fAAType) {
614         return false;
615     }
616 
617     if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
618         return false;
619     }
620 
621     // We don't currently handle dashing in this class though perhaps we should.
622     if (args.fShape->style().pathEffect()) {
623         return false;
624     }
625 
626     if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
627         args.fShaderCaps->shaderDerivativeSupport()) {
628         return true;
629     }
630 
631     return false;
632 }
633 
634 template <class VertexType>
check_bounds(const SkMatrix & viewMatrix,const SkRect & devBounds,void * vertices,int vCount)635 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
636 {
637     SkRect tolDevBounds = devBounds;
638     // The bounds ought to be tight, but in perspective the below code runs the verts
639     // through the view matrix to get back to dev coords, which can introduce imprecision.
640     if (viewMatrix.hasPerspective()) {
641         tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
642     } else {
643         // Non-persp matrices cause this path renderer to draw in device space.
644         SkASSERT(viewMatrix.isIdentity());
645     }
646     SkRect actualBounds;
647 
648     VertexType* verts = reinterpret_cast<VertexType*>(vertices);
649     bool first = true;
650     for (int i = 0; i < vCount; ++i) {
651         SkPoint pos = verts[i].fPos;
652         // This is a hack to workaround the fact that we move some degenerate segments offscreen.
653         if (SK_ScalarMax == pos.fX) {
654             continue;
655         }
656         viewMatrix.mapPoints(&pos, 1);
657         if (first) {
658             actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
659             first = false;
660         } else {
661             actualBounds.growToInclude(pos.fX, pos.fY);
662         }
663     }
664     if (!first) {
665         return tolDevBounds.contains(actualBounds);
666     }
667 
668     return true;
669 }
670 
671 class AAHairlineOp final : public GrMeshDrawOp {
672 public:
673     DEFINE_OP_CLASS_ID
674 
Make(GrColor color,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds)675     static std::unique_ptr<GrMeshDrawOp> Make(GrColor color,
676                                               const SkMatrix& viewMatrix,
677                                               const SkPath& path,
678                                               const GrStyle& style,
679                                               const SkIRect& devClipBounds) {
680         SkScalar hairlineCoverage;
681         uint8_t newCoverage = 0xff;
682         if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
683             newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
684         }
685 
686         return std::unique_ptr<GrMeshDrawOp>(
687                 new AAHairlineOp(color, newCoverage, viewMatrix, path, devClipBounds));
688     }
689 
name() const690     const char* name() const override { return "AAHairlineOp"; }
691 
dumpInfo() const692     SkString dumpInfo() const override {
693         SkString string;
694         string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
695                        fPaths.count());
696         string.append(INHERITED::dumpInfo());
697         return string;
698     }
699 
700 private:
AAHairlineOp(GrColor color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds)701     AAHairlineOp(GrColor color,
702                  uint8_t coverage,
703                  const SkMatrix& viewMatrix,
704                  const SkPath& path,
705                  SkIRect devClipBounds)
706             : INHERITED(ClassID()), fColor(color), fCoverage(coverage) {
707         fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds});
708 
709         this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
710                                    IsZeroArea::kYes);
711     }
712 
getFragmentProcessorAnalysisInputs(GrPipelineAnalysisColor * color,GrPipelineAnalysisCoverage * coverage) const713     void getFragmentProcessorAnalysisInputs(GrPipelineAnalysisColor* color,
714                                             GrPipelineAnalysisCoverage* coverage) const override {
715         color->setToConstant(fColor);
716         *coverage = GrPipelineAnalysisCoverage::kSingleChannel;
717     }
718 
applyPipelineOptimizations(const GrPipelineOptimizations & optimizations)719     void applyPipelineOptimizations(const GrPipelineOptimizations& optimizations) override {
720         optimizations.getOverrideColorIfSet(&fColor);
721         fUsesLocalCoords = optimizations.readsLocalCoords();
722     }
723 
724     void onPrepareDraws(Target*) const override;
725 
726     typedef SkTArray<SkPoint, true> PtArray;
727     typedef SkTArray<int, true> IntArray;
728     typedef SkTArray<float, true> FloatArray;
729 
onCombineIfPossible(GrOp * t,const GrCaps & caps)730     bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
731         AAHairlineOp* that = t->cast<AAHairlineOp>();
732 
733         if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
734                                     that->bounds(), caps)) {
735             return false;
736         }
737 
738         if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
739             return false;
740         }
741 
742         // We go to identity if we don't have perspective
743         if (this->viewMatrix().hasPerspective() &&
744             !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
745             return false;
746         }
747 
748         // TODO we can actually combine hairlines if they are the same color in a kind of bulk
749         // method but we haven't implemented this yet
750         // TODO investigate going to vertex color and coverage?
751         if (this->coverage() != that->coverage()) {
752             return false;
753         }
754 
755         if (this->color() != that->color()) {
756             return false;
757         }
758 
759         SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
760         if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
761             return false;
762         }
763 
764         fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
765         this->joinBounds(*that);
766         return true;
767     }
768 
color() const769     GrColor color() const { return fColor; }
coverage() const770     uint8_t coverage() const { return fCoverage; }
usesLocalCoords() const771     bool usesLocalCoords() const { return fUsesLocalCoords; }
viewMatrix() const772     const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
773 
774     struct PathData {
775         SkMatrix fViewMatrix;
776         SkPath fPath;
777         SkIRect fDevClipBounds;
778     };
779 
780     GrColor fColor;
781     uint8_t fCoverage;
782     bool fUsesLocalCoords;
783 
784     SkSTArray<1, PathData, true> fPaths;
785 
786     typedef GrMeshDrawOp INHERITED;
787 };
788 
onPrepareDraws(Target * target) const789 void AAHairlineOp::onPrepareDraws(Target* target) const {
790     // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
791     SkMatrix invert;
792     if (!this->viewMatrix().invert(&invert)) {
793         return;
794     }
795 
796     // we will transform to identity space if the viewmatrix does not have perspective
797     bool hasPerspective = this->viewMatrix().hasPerspective();
798     const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
799     const SkMatrix* geometryProcessorLocalM = &invert;
800     const SkMatrix* toDevice = nullptr;
801     const SkMatrix* toSrc = nullptr;
802     if (hasPerspective) {
803         geometryProcessorViewM = &this->viewMatrix();
804         geometryProcessorLocalM = &SkMatrix::I();
805         toDevice = &this->viewMatrix();
806         toSrc = &invert;
807     }
808 
809     // This is hand inlined for maximum performance.
810     PREALLOC_PTARRAY(128) lines;
811     PREALLOC_PTARRAY(128) quads;
812     PREALLOC_PTARRAY(128) conics;
813     IntArray qSubdivs;
814     FloatArray cWeights;
815     int quadCount = 0;
816 
817     int instanceCount = fPaths.count();
818     for (int i = 0; i < instanceCount; i++) {
819         const PathData& args = fPaths[i];
820         quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
821                                             &lines, &quads, &conics, &qSubdivs, &cWeights);
822     }
823 
824     int lineCount = lines.count() / 2;
825     int conicCount = conics.count() / 3;
826 
827     // do lines first
828     if (lineCount) {
829         sk_sp<GrGeometryProcessor> lineGP;
830         {
831             using namespace GrDefaultGeoProcFactory;
832 
833             Color color(this->color());
834             LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
835                                     LocalCoords::kUnused_Type);
836             localCoords.fMatrix = geometryProcessorLocalM;
837             lineGP = GrDefaultGeoProcFactory::Make(color, Coverage::kAttribute_Type, localCoords,
838                                                    *geometryProcessorViewM);
839         }
840 
841         sk_sp<const GrBuffer> linesIndexBuffer(
842             ref_lines_index_buffer(target->resourceProvider()));
843 
844         const GrBuffer* vertexBuffer;
845         int firstVertex;
846 
847         size_t vertexStride = lineGP->getVertexStride();
848         int vertexCount = kLineSegNumVertices * lineCount;
849         LineVertex* verts = reinterpret_cast<LineVertex*>(
850             target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
851 
852         if (!verts|| !linesIndexBuffer) {
853             SkDebugf("Could not allocate vertices\n");
854             return;
855         }
856 
857         SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
858 
859         for (int i = 0; i < lineCount; ++i) {
860             add_line(&lines[2*i], toSrc, this->coverage(), &verts);
861         }
862 
863         GrMesh mesh;
864         mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer.get(),
865                            firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
866                            kLineSegsNumInIdxBuffer);
867         target->draw(lineGP.get(), mesh);
868     }
869 
870     if (quadCount || conicCount) {
871         sk_sp<GrGeometryProcessor> quadGP(
872             GrQuadEffect::Make(this->color(),
873                                *geometryProcessorViewM,
874                                kHairlineAA_GrProcessorEdgeType,
875                                target->caps(),
876                                *geometryProcessorLocalM,
877                                this->usesLocalCoords(),
878                                this->coverage()));
879 
880         sk_sp<GrGeometryProcessor> conicGP(
881             GrConicEffect::Make(this->color(),
882                                 *geometryProcessorViewM,
883                                 kHairlineAA_GrProcessorEdgeType,
884                                 target->caps(),
885                                 *geometryProcessorLocalM,
886                                 this->usesLocalCoords(),
887                                 this->coverage()));
888 
889         const GrBuffer* vertexBuffer;
890         int firstVertex;
891 
892         sk_sp<const GrBuffer> quadsIndexBuffer(
893             ref_quads_index_buffer(target->resourceProvider()));
894 
895         size_t vertexStride = sizeof(BezierVertex);
896         int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
897         void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
898                                                  &vertexBuffer, &firstVertex);
899 
900         if (!vertices || !quadsIndexBuffer) {
901             SkDebugf("Could not allocate vertices\n");
902             return;
903         }
904 
905         // Setup vertices
906         BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
907 
908         int unsubdivQuadCnt = quads.count() / 3;
909         for (int i = 0; i < unsubdivQuadCnt; ++i) {
910             SkASSERT(qSubdivs[i] >= 0);
911             add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
912         }
913 
914         // Start Conics
915         for (int i = 0; i < conicCount; ++i) {
916             add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
917         }
918 
919         if (quadCount > 0) {
920             GrMesh mesh;
921             mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
922                                firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
923                                kQuadsNumInIdxBuffer);
924             target->draw(quadGP.get(), mesh);
925             firstVertex += quadCount * kQuadNumVertices;
926         }
927 
928         if (conicCount > 0) {
929             GrMesh mesh;
930             mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
931                                firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
932                                kQuadsNumInIdxBuffer);
933             target->draw(conicGP.get(), mesh);
934         }
935     }
936 }
937 
onDrawPath(const DrawPathArgs & args)938 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
939     GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
940                               "GrAAHairlinePathRenderer::onDrawPath");
941     SkASSERT(!args.fRenderTargetContext->isUnifiedMultisampled());
942 
943     SkIRect devClipBounds;
944     args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
945                                       args.fRenderTargetContext->height(),
946                                       &devClipBounds);
947     SkPath path;
948     args.fShape->asPath(&path);
949     std::unique_ptr<GrMeshDrawOp> op = AAHairlineOp::Make(
950             args.fPaint.getColor(), *args.fViewMatrix, path, args.fShape->style(), devClipBounds);
951     GrPipelineBuilder pipelineBuilder(std::move(args.fPaint), args.fAAType);
952     pipelineBuilder.setUserStencil(args.fUserStencilSettings);
953     args.fRenderTargetContext->addMeshDrawOp(pipelineBuilder, *args.fClip, std::move(op));
954     return true;
955 }
956 
957 ///////////////////////////////////////////////////////////////////////////////////////////////////
958 
959 #if GR_TEST_UTILS
960 
DRAW_OP_TEST_DEFINE(AAHairlineOp)961 DRAW_OP_TEST_DEFINE(AAHairlineOp) {
962     GrColor color = GrRandomColor(random);
963     SkMatrix viewMatrix = GrTest::TestMatrix(random);
964     SkPath path = GrTest::TestPath(random);
965     SkIRect devClipBounds;
966     devClipBounds.setEmpty();
967     return AAHairlineOp::Make(color, viewMatrix, path, GrStyle::SimpleHairline(), devClipBounds);
968 }
969 
970 #endif
971