1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/LLVMContext.h"
5 #include "llvm/Module.h"
6 #include "llvm/PassManager.h"
7 #include "llvm/Analysis/Verifier.h"
8 #include "llvm/Analysis/Passes.h"
9 #include "llvm/Target/TargetData.h"
10 #include "llvm/Transforms/Scalar.h"
11 #include "llvm/Support/IRBuilder.h"
12 #include "llvm/Support/TargetSelect.h"
13 #include <cstdio>
14 #include <string>
15 #include <map>
16 #include <vector>
17 using namespace llvm;
18
19 //===----------------------------------------------------------------------===//
20 // Lexer
21 //===----------------------------------------------------------------------===//
22
23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24 // of these for known things.
25 enum Token {
26 tok_eof = -1,
27
28 // commands
29 tok_def = -2, tok_extern = -3,
30
31 // primary
32 tok_identifier = -4, tok_number = -5,
33
34 // control
35 tok_if = -6, tok_then = -7, tok_else = -8,
36 tok_for = -9, tok_in = -10
37 };
38
39 static std::string IdentifierStr; // Filled in if tok_identifier
40 static double NumVal; // Filled in if tok_number
41
42 /// gettok - Return the next token from standard input.
gettok()43 static int gettok() {
44 static int LastChar = ' ';
45
46 // Skip any whitespace.
47 while (isspace(LastChar))
48 LastChar = getchar();
49
50 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
51 IdentifierStr = LastChar;
52 while (isalnum((LastChar = getchar())))
53 IdentifierStr += LastChar;
54
55 if (IdentifierStr == "def") return tok_def;
56 if (IdentifierStr == "extern") return tok_extern;
57 if (IdentifierStr == "if") return tok_if;
58 if (IdentifierStr == "then") return tok_then;
59 if (IdentifierStr == "else") return tok_else;
60 if (IdentifierStr == "for") return tok_for;
61 if (IdentifierStr == "in") return tok_in;
62 return tok_identifier;
63 }
64
65 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
66 std::string NumStr;
67 do {
68 NumStr += LastChar;
69 LastChar = getchar();
70 } while (isdigit(LastChar) || LastChar == '.');
71
72 NumVal = strtod(NumStr.c_str(), 0);
73 return tok_number;
74 }
75
76 if (LastChar == '#') {
77 // Comment until end of line.
78 do LastChar = getchar();
79 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
80
81 if (LastChar != EOF)
82 return gettok();
83 }
84
85 // Check for end of file. Don't eat the EOF.
86 if (LastChar == EOF)
87 return tok_eof;
88
89 // Otherwise, just return the character as its ascii value.
90 int ThisChar = LastChar;
91 LastChar = getchar();
92 return ThisChar;
93 }
94
95 //===----------------------------------------------------------------------===//
96 // Abstract Syntax Tree (aka Parse Tree)
97 //===----------------------------------------------------------------------===//
98
99 /// ExprAST - Base class for all expression nodes.
100 class ExprAST {
101 public:
~ExprAST()102 virtual ~ExprAST() {}
103 virtual Value *Codegen() = 0;
104 };
105
106 /// NumberExprAST - Expression class for numeric literals like "1.0".
107 class NumberExprAST : public ExprAST {
108 double Val;
109 public:
NumberExprAST(double val)110 NumberExprAST(double val) : Val(val) {}
111 virtual Value *Codegen();
112 };
113
114 /// VariableExprAST - Expression class for referencing a variable, like "a".
115 class VariableExprAST : public ExprAST {
116 std::string Name;
117 public:
VariableExprAST(const std::string & name)118 VariableExprAST(const std::string &name) : Name(name) {}
119 virtual Value *Codegen();
120 };
121
122 /// BinaryExprAST - Expression class for a binary operator.
123 class BinaryExprAST : public ExprAST {
124 char Op;
125 ExprAST *LHS, *RHS;
126 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)127 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
128 : Op(op), LHS(lhs), RHS(rhs) {}
129 virtual Value *Codegen();
130 };
131
132 /// CallExprAST - Expression class for function calls.
133 class CallExprAST : public ExprAST {
134 std::string Callee;
135 std::vector<ExprAST*> Args;
136 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)137 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
138 : Callee(callee), Args(args) {}
139 virtual Value *Codegen();
140 };
141
142 /// IfExprAST - Expression class for if/then/else.
143 class IfExprAST : public ExprAST {
144 ExprAST *Cond, *Then, *Else;
145 public:
IfExprAST(ExprAST * cond,ExprAST * then,ExprAST * _else)146 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
147 : Cond(cond), Then(then), Else(_else) {}
148 virtual Value *Codegen();
149 };
150
151 /// ForExprAST - Expression class for for/in.
152 class ForExprAST : public ExprAST {
153 std::string VarName;
154 ExprAST *Start, *End, *Step, *Body;
155 public:
ForExprAST(const std::string & varname,ExprAST * start,ExprAST * end,ExprAST * step,ExprAST * body)156 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
157 ExprAST *step, ExprAST *body)
158 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
159 virtual Value *Codegen();
160 };
161
162 /// PrototypeAST - This class represents the "prototype" for a function,
163 /// which captures its name, and its argument names (thus implicitly the number
164 /// of arguments the function takes).
165 class PrototypeAST {
166 std::string Name;
167 std::vector<std::string> Args;
168 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args)169 PrototypeAST(const std::string &name, const std::vector<std::string> &args)
170 : Name(name), Args(args) {}
171
172 Function *Codegen();
173 };
174
175 /// FunctionAST - This class represents a function definition itself.
176 class FunctionAST {
177 PrototypeAST *Proto;
178 ExprAST *Body;
179 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)180 FunctionAST(PrototypeAST *proto, ExprAST *body)
181 : Proto(proto), Body(body) {}
182
183 Function *Codegen();
184 };
185
186 //===----------------------------------------------------------------------===//
187 // Parser
188 //===----------------------------------------------------------------------===//
189
190 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
191 /// token the parser is looking at. getNextToken reads another token from the
192 /// lexer and updates CurTok with its results.
193 static int CurTok;
getNextToken()194 static int getNextToken() {
195 return CurTok = gettok();
196 }
197
198 /// BinopPrecedence - This holds the precedence for each binary operator that is
199 /// defined.
200 static std::map<char, int> BinopPrecedence;
201
202 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()203 static int GetTokPrecedence() {
204 if (!isascii(CurTok))
205 return -1;
206
207 // Make sure it's a declared binop.
208 int TokPrec = BinopPrecedence[CurTok];
209 if (TokPrec <= 0) return -1;
210 return TokPrec;
211 }
212
213 /// Error* - These are little helper functions for error handling.
Error(const char * Str)214 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)215 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)216 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
217
218 static ExprAST *ParseExpression();
219
220 /// identifierexpr
221 /// ::= identifier
222 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()223 static ExprAST *ParseIdentifierExpr() {
224 std::string IdName = IdentifierStr;
225
226 getNextToken(); // eat identifier.
227
228 if (CurTok != '(') // Simple variable ref.
229 return new VariableExprAST(IdName);
230
231 // Call.
232 getNextToken(); // eat (
233 std::vector<ExprAST*> Args;
234 if (CurTok != ')') {
235 while (1) {
236 ExprAST *Arg = ParseExpression();
237 if (!Arg) return 0;
238 Args.push_back(Arg);
239
240 if (CurTok == ')') break;
241
242 if (CurTok != ',')
243 return Error("Expected ')' or ',' in argument list");
244 getNextToken();
245 }
246 }
247
248 // Eat the ')'.
249 getNextToken();
250
251 return new CallExprAST(IdName, Args);
252 }
253
254 /// numberexpr ::= number
ParseNumberExpr()255 static ExprAST *ParseNumberExpr() {
256 ExprAST *Result = new NumberExprAST(NumVal);
257 getNextToken(); // consume the number
258 return Result;
259 }
260
261 /// parenexpr ::= '(' expression ')'
ParseParenExpr()262 static ExprAST *ParseParenExpr() {
263 getNextToken(); // eat (.
264 ExprAST *V = ParseExpression();
265 if (!V) return 0;
266
267 if (CurTok != ')')
268 return Error("expected ')'");
269 getNextToken(); // eat ).
270 return V;
271 }
272
273 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()274 static ExprAST *ParseIfExpr() {
275 getNextToken(); // eat the if.
276
277 // condition.
278 ExprAST *Cond = ParseExpression();
279 if (!Cond) return 0;
280
281 if (CurTok != tok_then)
282 return Error("expected then");
283 getNextToken(); // eat the then
284
285 ExprAST *Then = ParseExpression();
286 if (Then == 0) return 0;
287
288 if (CurTok != tok_else)
289 return Error("expected else");
290
291 getNextToken();
292
293 ExprAST *Else = ParseExpression();
294 if (!Else) return 0;
295
296 return new IfExprAST(Cond, Then, Else);
297 }
298
299 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()300 static ExprAST *ParseForExpr() {
301 getNextToken(); // eat the for.
302
303 if (CurTok != tok_identifier)
304 return Error("expected identifier after for");
305
306 std::string IdName = IdentifierStr;
307 getNextToken(); // eat identifier.
308
309 if (CurTok != '=')
310 return Error("expected '=' after for");
311 getNextToken(); // eat '='.
312
313
314 ExprAST *Start = ParseExpression();
315 if (Start == 0) return 0;
316 if (CurTok != ',')
317 return Error("expected ',' after for start value");
318 getNextToken();
319
320 ExprAST *End = ParseExpression();
321 if (End == 0) return 0;
322
323 // The step value is optional.
324 ExprAST *Step = 0;
325 if (CurTok == ',') {
326 getNextToken();
327 Step = ParseExpression();
328 if (Step == 0) return 0;
329 }
330
331 if (CurTok != tok_in)
332 return Error("expected 'in' after for");
333 getNextToken(); // eat 'in'.
334
335 ExprAST *Body = ParseExpression();
336 if (Body == 0) return 0;
337
338 return new ForExprAST(IdName, Start, End, Step, Body);
339 }
340
341 /// primary
342 /// ::= identifierexpr
343 /// ::= numberexpr
344 /// ::= parenexpr
345 /// ::= ifexpr
346 /// ::= forexpr
ParsePrimary()347 static ExprAST *ParsePrimary() {
348 switch (CurTok) {
349 default: return Error("unknown token when expecting an expression");
350 case tok_identifier: return ParseIdentifierExpr();
351 case tok_number: return ParseNumberExpr();
352 case '(': return ParseParenExpr();
353 case tok_if: return ParseIfExpr();
354 case tok_for: return ParseForExpr();
355 }
356 }
357
358 /// binoprhs
359 /// ::= ('+' primary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)360 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
361 // If this is a binop, find its precedence.
362 while (1) {
363 int TokPrec = GetTokPrecedence();
364
365 // If this is a binop that binds at least as tightly as the current binop,
366 // consume it, otherwise we are done.
367 if (TokPrec < ExprPrec)
368 return LHS;
369
370 // Okay, we know this is a binop.
371 int BinOp = CurTok;
372 getNextToken(); // eat binop
373
374 // Parse the primary expression after the binary operator.
375 ExprAST *RHS = ParsePrimary();
376 if (!RHS) return 0;
377
378 // If BinOp binds less tightly with RHS than the operator after RHS, let
379 // the pending operator take RHS as its LHS.
380 int NextPrec = GetTokPrecedence();
381 if (TokPrec < NextPrec) {
382 RHS = ParseBinOpRHS(TokPrec+1, RHS);
383 if (RHS == 0) return 0;
384 }
385
386 // Merge LHS/RHS.
387 LHS = new BinaryExprAST(BinOp, LHS, RHS);
388 }
389 }
390
391 /// expression
392 /// ::= primary binoprhs
393 ///
ParseExpression()394 static ExprAST *ParseExpression() {
395 ExprAST *LHS = ParsePrimary();
396 if (!LHS) return 0;
397
398 return ParseBinOpRHS(0, LHS);
399 }
400
401 /// prototype
402 /// ::= id '(' id* ')'
ParsePrototype()403 static PrototypeAST *ParsePrototype() {
404 if (CurTok != tok_identifier)
405 return ErrorP("Expected function name in prototype");
406
407 std::string FnName = IdentifierStr;
408 getNextToken();
409
410 if (CurTok != '(')
411 return ErrorP("Expected '(' in prototype");
412
413 std::vector<std::string> ArgNames;
414 while (getNextToken() == tok_identifier)
415 ArgNames.push_back(IdentifierStr);
416 if (CurTok != ')')
417 return ErrorP("Expected ')' in prototype");
418
419 // success.
420 getNextToken(); // eat ')'.
421
422 return new PrototypeAST(FnName, ArgNames);
423 }
424
425 /// definition ::= 'def' prototype expression
ParseDefinition()426 static FunctionAST *ParseDefinition() {
427 getNextToken(); // eat def.
428 PrototypeAST *Proto = ParsePrototype();
429 if (Proto == 0) return 0;
430
431 if (ExprAST *E = ParseExpression())
432 return new FunctionAST(Proto, E);
433 return 0;
434 }
435
436 /// toplevelexpr ::= expression
ParseTopLevelExpr()437 static FunctionAST *ParseTopLevelExpr() {
438 if (ExprAST *E = ParseExpression()) {
439 // Make an anonymous proto.
440 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
441 return new FunctionAST(Proto, E);
442 }
443 return 0;
444 }
445
446 /// external ::= 'extern' prototype
ParseExtern()447 static PrototypeAST *ParseExtern() {
448 getNextToken(); // eat extern.
449 return ParsePrototype();
450 }
451
452 //===----------------------------------------------------------------------===//
453 // Code Generation
454 //===----------------------------------------------------------------------===//
455
456 static Module *TheModule;
457 static IRBuilder<> Builder(getGlobalContext());
458 static std::map<std::string, Value*> NamedValues;
459 static FunctionPassManager *TheFPM;
460
ErrorV(const char * Str)461 Value *ErrorV(const char *Str) { Error(Str); return 0; }
462
Codegen()463 Value *NumberExprAST::Codegen() {
464 return ConstantFP::get(getGlobalContext(), APFloat(Val));
465 }
466
Codegen()467 Value *VariableExprAST::Codegen() {
468 // Look this variable up in the function.
469 Value *V = NamedValues[Name];
470 return V ? V : ErrorV("Unknown variable name");
471 }
472
Codegen()473 Value *BinaryExprAST::Codegen() {
474 Value *L = LHS->Codegen();
475 Value *R = RHS->Codegen();
476 if (L == 0 || R == 0) return 0;
477
478 switch (Op) {
479 case '+': return Builder.CreateFAdd(L, R, "addtmp");
480 case '-': return Builder.CreateFSub(L, R, "subtmp");
481 case '*': return Builder.CreateFMul(L, R, "multmp");
482 case '<':
483 L = Builder.CreateFCmpULT(L, R, "cmptmp");
484 // Convert bool 0/1 to double 0.0 or 1.0
485 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
486 "booltmp");
487 default: return ErrorV("invalid binary operator");
488 }
489 }
490
Codegen()491 Value *CallExprAST::Codegen() {
492 // Look up the name in the global module table.
493 Function *CalleeF = TheModule->getFunction(Callee);
494 if (CalleeF == 0)
495 return ErrorV("Unknown function referenced");
496
497 // If argument mismatch error.
498 if (CalleeF->arg_size() != Args.size())
499 return ErrorV("Incorrect # arguments passed");
500
501 std::vector<Value*> ArgsV;
502 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
503 ArgsV.push_back(Args[i]->Codegen());
504 if (ArgsV.back() == 0) return 0;
505 }
506
507 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
508 }
509
Codegen()510 Value *IfExprAST::Codegen() {
511 Value *CondV = Cond->Codegen();
512 if (CondV == 0) return 0;
513
514 // Convert condition to a bool by comparing equal to 0.0.
515 CondV = Builder.CreateFCmpONE(CondV,
516 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
517 "ifcond");
518
519 Function *TheFunction = Builder.GetInsertBlock()->getParent();
520
521 // Create blocks for the then and else cases. Insert the 'then' block at the
522 // end of the function.
523 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
524 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
525 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
526
527 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
528
529 // Emit then value.
530 Builder.SetInsertPoint(ThenBB);
531
532 Value *ThenV = Then->Codegen();
533 if (ThenV == 0) return 0;
534
535 Builder.CreateBr(MergeBB);
536 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
537 ThenBB = Builder.GetInsertBlock();
538
539 // Emit else block.
540 TheFunction->getBasicBlockList().push_back(ElseBB);
541 Builder.SetInsertPoint(ElseBB);
542
543 Value *ElseV = Else->Codegen();
544 if (ElseV == 0) return 0;
545
546 Builder.CreateBr(MergeBB);
547 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
548 ElseBB = Builder.GetInsertBlock();
549
550 // Emit merge block.
551 TheFunction->getBasicBlockList().push_back(MergeBB);
552 Builder.SetInsertPoint(MergeBB);
553 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
554 "iftmp");
555
556 PN->addIncoming(ThenV, ThenBB);
557 PN->addIncoming(ElseV, ElseBB);
558 return PN;
559 }
560
Codegen()561 Value *ForExprAST::Codegen() {
562 // Output this as:
563 // ...
564 // start = startexpr
565 // goto loop
566 // loop:
567 // variable = phi [start, loopheader], [nextvariable, loopend]
568 // ...
569 // bodyexpr
570 // ...
571 // loopend:
572 // step = stepexpr
573 // nextvariable = variable + step
574 // endcond = endexpr
575 // br endcond, loop, endloop
576 // outloop:
577
578 // Emit the start code first, without 'variable' in scope.
579 Value *StartVal = Start->Codegen();
580 if (StartVal == 0) return 0;
581
582 // Make the new basic block for the loop header, inserting after current
583 // block.
584 Function *TheFunction = Builder.GetInsertBlock()->getParent();
585 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
586 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
587
588 // Insert an explicit fall through from the current block to the LoopBB.
589 Builder.CreateBr(LoopBB);
590
591 // Start insertion in LoopBB.
592 Builder.SetInsertPoint(LoopBB);
593
594 // Start the PHI node with an entry for Start.
595 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
596 Variable->addIncoming(StartVal, PreheaderBB);
597
598 // Within the loop, the variable is defined equal to the PHI node. If it
599 // shadows an existing variable, we have to restore it, so save it now.
600 Value *OldVal = NamedValues[VarName];
601 NamedValues[VarName] = Variable;
602
603 // Emit the body of the loop. This, like any other expr, can change the
604 // current BB. Note that we ignore the value computed by the body, but don't
605 // allow an error.
606 if (Body->Codegen() == 0)
607 return 0;
608
609 // Emit the step value.
610 Value *StepVal;
611 if (Step) {
612 StepVal = Step->Codegen();
613 if (StepVal == 0) return 0;
614 } else {
615 // If not specified, use 1.0.
616 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
617 }
618
619 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
620
621 // Compute the end condition.
622 Value *EndCond = End->Codegen();
623 if (EndCond == 0) return EndCond;
624
625 // Convert condition to a bool by comparing equal to 0.0.
626 EndCond = Builder.CreateFCmpONE(EndCond,
627 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
628 "loopcond");
629
630 // Create the "after loop" block and insert it.
631 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
632 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
633
634 // Insert the conditional branch into the end of LoopEndBB.
635 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
636
637 // Any new code will be inserted in AfterBB.
638 Builder.SetInsertPoint(AfterBB);
639
640 // Add a new entry to the PHI node for the backedge.
641 Variable->addIncoming(NextVar, LoopEndBB);
642
643 // Restore the unshadowed variable.
644 if (OldVal)
645 NamedValues[VarName] = OldVal;
646 else
647 NamedValues.erase(VarName);
648
649
650 // for expr always returns 0.0.
651 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
652 }
653
Codegen()654 Function *PrototypeAST::Codegen() {
655 // Make the function type: double(double,double) etc.
656 std::vector<Type*> Doubles(Args.size(),
657 Type::getDoubleTy(getGlobalContext()));
658 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
659 Doubles, false);
660
661 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
662
663 // If F conflicted, there was already something named 'Name'. If it has a
664 // body, don't allow redefinition or reextern.
665 if (F->getName() != Name) {
666 // Delete the one we just made and get the existing one.
667 F->eraseFromParent();
668 F = TheModule->getFunction(Name);
669
670 // If F already has a body, reject this.
671 if (!F->empty()) {
672 ErrorF("redefinition of function");
673 return 0;
674 }
675
676 // If F took a different number of args, reject.
677 if (F->arg_size() != Args.size()) {
678 ErrorF("redefinition of function with different # args");
679 return 0;
680 }
681 }
682
683 // Set names for all arguments.
684 unsigned Idx = 0;
685 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
686 ++AI, ++Idx) {
687 AI->setName(Args[Idx]);
688
689 // Add arguments to variable symbol table.
690 NamedValues[Args[Idx]] = AI;
691 }
692
693 return F;
694 }
695
Codegen()696 Function *FunctionAST::Codegen() {
697 NamedValues.clear();
698
699 Function *TheFunction = Proto->Codegen();
700 if (TheFunction == 0)
701 return 0;
702
703 // Create a new basic block to start insertion into.
704 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
705 Builder.SetInsertPoint(BB);
706
707 if (Value *RetVal = Body->Codegen()) {
708 // Finish off the function.
709 Builder.CreateRet(RetVal);
710
711 // Validate the generated code, checking for consistency.
712 verifyFunction(*TheFunction);
713
714 // Optimize the function.
715 TheFPM->run(*TheFunction);
716
717 return TheFunction;
718 }
719
720 // Error reading body, remove function.
721 TheFunction->eraseFromParent();
722 return 0;
723 }
724
725 //===----------------------------------------------------------------------===//
726 // Top-Level parsing and JIT Driver
727 //===----------------------------------------------------------------------===//
728
729 static ExecutionEngine *TheExecutionEngine;
730
HandleDefinition()731 static void HandleDefinition() {
732 if (FunctionAST *F = ParseDefinition()) {
733 if (Function *LF = F->Codegen()) {
734 fprintf(stderr, "Read function definition:");
735 LF->dump();
736 }
737 } else {
738 // Skip token for error recovery.
739 getNextToken();
740 }
741 }
742
HandleExtern()743 static void HandleExtern() {
744 if (PrototypeAST *P = ParseExtern()) {
745 if (Function *F = P->Codegen()) {
746 fprintf(stderr, "Read extern: ");
747 F->dump();
748 }
749 } else {
750 // Skip token for error recovery.
751 getNextToken();
752 }
753 }
754
HandleTopLevelExpression()755 static void HandleTopLevelExpression() {
756 // Evaluate a top-level expression into an anonymous function.
757 if (FunctionAST *F = ParseTopLevelExpr()) {
758 if (Function *LF = F->Codegen()) {
759 // JIT the function, returning a function pointer.
760 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
761
762 // Cast it to the right type (takes no arguments, returns a double) so we
763 // can call it as a native function.
764 double (*FP)() = (double (*)())(intptr_t)FPtr;
765 fprintf(stderr, "Evaluated to %f\n", FP());
766 }
767 } else {
768 // Skip token for error recovery.
769 getNextToken();
770 }
771 }
772
773 /// top ::= definition | external | expression | ';'
MainLoop()774 static void MainLoop() {
775 while (1) {
776 fprintf(stderr, "ready> ");
777 switch (CurTok) {
778 case tok_eof: return;
779 case ';': getNextToken(); break; // ignore top-level semicolons.
780 case tok_def: HandleDefinition(); break;
781 case tok_extern: HandleExtern(); break;
782 default: HandleTopLevelExpression(); break;
783 }
784 }
785 }
786
787 //===----------------------------------------------------------------------===//
788 // "Library" functions that can be "extern'd" from user code.
789 //===----------------------------------------------------------------------===//
790
791 /// putchard - putchar that takes a double and returns 0.
792 extern "C"
putchard(double X)793 double putchard(double X) {
794 putchar((char)X);
795 return 0;
796 }
797
798 //===----------------------------------------------------------------------===//
799 // Main driver code.
800 //===----------------------------------------------------------------------===//
801
main()802 int main() {
803 InitializeNativeTarget();
804 LLVMContext &Context = getGlobalContext();
805
806 // Install standard binary operators.
807 // 1 is lowest precedence.
808 BinopPrecedence['<'] = 10;
809 BinopPrecedence['+'] = 20;
810 BinopPrecedence['-'] = 20;
811 BinopPrecedence['*'] = 40; // highest.
812
813 // Prime the first token.
814 fprintf(stderr, "ready> ");
815 getNextToken();
816
817 // Make the module, which holds all the code.
818 TheModule = new Module("my cool jit", Context);
819
820 // Create the JIT. This takes ownership of the module.
821 std::string ErrStr;
822 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
823 if (!TheExecutionEngine) {
824 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
825 exit(1);
826 }
827
828 FunctionPassManager OurFPM(TheModule);
829
830 // Set up the optimizer pipeline. Start with registering info about how the
831 // target lays out data structures.
832 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
833 // Provide basic AliasAnalysis support for GVN.
834 OurFPM.add(createBasicAliasAnalysisPass());
835 // Do simple "peephole" optimizations and bit-twiddling optzns.
836 OurFPM.add(createInstructionCombiningPass());
837 // Reassociate expressions.
838 OurFPM.add(createReassociatePass());
839 // Eliminate Common SubExpressions.
840 OurFPM.add(createGVNPass());
841 // Simplify the control flow graph (deleting unreachable blocks, etc).
842 OurFPM.add(createCFGSimplificationPass());
843
844 OurFPM.doInitialization();
845
846 // Set the global so the code gen can use this.
847 TheFPM = &OurFPM;
848
849 // Run the main "interpreter loop" now.
850 MainLoop();
851
852 TheFPM = 0;
853
854 // Print out all of the generated code.
855 TheModule->dump();
856
857 return 0;
858 }
859