1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a coalescing interval map for small objects.
11 //
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
14 //
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
17 //
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
21 // objects.
22 //
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
25 //
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
29 // iterator methods.
30 //
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
33 //
34 //===----------------------------------------------------------------------===//
35 //
36 // Synopsis:
37 //
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
40 // public:
41 // typedef KeyT key_type;
42 // typedef ValT mapped_type;
43 // typedef RecyclingAllocator<...> Allocator;
44 // class iterator;
45 // class const_iterator;
46 //
47 // explicit IntervalMap(Allocator&);
48 // ~IntervalMap():
49 //
50 // bool empty() const;
51 // KeyT start() const;
52 // KeyT stop() const;
53 // ValT lookup(KeyT x, Value NotFound = Value()) const;
54 //
55 // const_iterator begin() const;
56 // const_iterator end() const;
57 // iterator begin();
58 // iterator end();
59 // const_iterator find(KeyT x) const;
60 // iterator find(KeyT x);
61 //
62 // void insert(KeyT a, KeyT b, ValT y);
63 // void clear();
64 // };
65 //
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 // public std::iterator<std::bidirectional_iterator_tag, ValT> {
69 // public:
70 // bool operator==(const const_iterator &) const;
71 // bool operator!=(const const_iterator &) const;
72 // bool valid() const;
73 //
74 // const KeyT &start() const;
75 // const KeyT &stop() const;
76 // const ValT &value() const;
77 // const ValT &operator*() const;
78 // const ValT *operator->() const;
79 //
80 // const_iterator &operator++();
81 // const_iterator &operator++(int);
82 // const_iterator &operator--();
83 // const_iterator &operator--(int);
84 // void goToBegin();
85 // void goToEnd();
86 // void find(KeyT x);
87 // void advanceTo(KeyT x);
88 // };
89 //
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
92 // public:
93 // void insert(KeyT a, KeyT b, Value y);
94 // void erase();
95 // };
96 //
97 //===----------------------------------------------------------------------===//
98
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
101
102 #include "llvm/ADT/SmallVector.h"
103 #include "llvm/ADT/PointerIntPair.h"
104 #include "llvm/Support/Allocator.h"
105 #include "llvm/Support/RecyclingAllocator.h"
106 #include <iterator>
107
108 namespace llvm {
109
110
111 //===----------------------------------------------------------------------===//
112 //--- Key traits ---//
113 //===----------------------------------------------------------------------===//
114 //
115 // The IntervalMap works with closed or half-open intervals.
116 // Adjacent intervals that map to the same value are coalesced.
117 //
118 // The IntervalMapInfo traits class is used to determine if a key is contained
119 // in an interval, and if two intervals are adjacent so they can be coalesced.
120 // The provided implementation works for closed integer intervals, other keys
121 // probably need a specialized version.
122 //
123 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
124 //
125 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
126 // allowed. This is so that stopLess(a, b) can be used to determine if two
127 // intervals overlap.
128 //
129 //===----------------------------------------------------------------------===//
130
131 template <typename T>
132 struct IntervalMapInfo {
133
134 /// startLess - Return true if x is not in [a;b].
135 /// This is x < a both for closed intervals and for [a;b) half-open intervals.
startLessIntervalMapInfo136 static inline bool startLess(const T &x, const T &a) {
137 return x < a;
138 }
139
140 /// stopLess - Return true if x is not in [a;b].
141 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
stopLessIntervalMapInfo142 static inline bool stopLess(const T &b, const T &x) {
143 return b < x;
144 }
145
146 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
147 /// This is a+1 == b for closed intervals, a == b for half-open intervals.
adjacentIntervalMapInfo148 static inline bool adjacent(const T &a, const T &b) {
149 return a+1 == b;
150 }
151
152 };
153
154 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
155 /// It should be considered private to the implementation.
156 namespace IntervalMapImpl {
157
158 // Forward declarations.
159 template <typename, typename, unsigned, typename> class LeafNode;
160 template <typename, typename, unsigned, typename> class BranchNode;
161
162 typedef std::pair<unsigned,unsigned> IdxPair;
163
164
165 //===----------------------------------------------------------------------===//
166 //--- IntervalMapImpl::NodeBase ---//
167 //===----------------------------------------------------------------------===//
168 //
169 // Both leaf and branch nodes store vectors of pairs.
170 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
171 //
172 // Keys and values are stored in separate arrays to avoid padding caused by
173 // different object alignments. This also helps improve locality of reference
174 // when searching the keys.
175 //
176 // The nodes don't know how many elements they contain - that information is
177 // stored elsewhere. Omitting the size field prevents padding and allows a node
178 // to fill the allocated cache lines completely.
179 //
180 // These are typical key and value sizes, the node branching factor (N), and
181 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
182 //
183 // T1 T2 N Waste Used by
184 // 4 4 24 0 Branch<4> (32-bit pointers)
185 // 8 4 16 0 Leaf<4,4>, Branch<4>
186 // 8 8 12 0 Leaf<4,8>, Branch<8>
187 // 16 4 9 12 Leaf<8,4>
188 // 16 8 8 0 Leaf<8,8>
189 //
190 //===----------------------------------------------------------------------===//
191
192 template <typename T1, typename T2, unsigned N>
193 class NodeBase {
194 public:
195 enum { Capacity = N };
196
197 T1 first[N];
198 T2 second[N];
199
200 /// copy - Copy elements from another node.
201 /// @param Other Node elements are copied from.
202 /// @param i Beginning of the source range in other.
203 /// @param j Beginning of the destination range in this.
204 /// @param Count Number of elements to copy.
205 template <unsigned M>
copy(const NodeBase<T1,T2,M> & Other,unsigned i,unsigned j,unsigned Count)206 void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
207 unsigned j, unsigned Count) {
208 assert(i + Count <= M && "Invalid source range");
209 assert(j + Count <= N && "Invalid dest range");
210 for (unsigned e = i + Count; i != e; ++i, ++j) {
211 first[j] = Other.first[i];
212 second[j] = Other.second[i];
213 }
214 }
215
216 /// moveLeft - Move elements to the left.
217 /// @param i Beginning of the source range.
218 /// @param j Beginning of the destination range.
219 /// @param Count Number of elements to copy.
moveLeft(unsigned i,unsigned j,unsigned Count)220 void moveLeft(unsigned i, unsigned j, unsigned Count) {
221 assert(j <= i && "Use moveRight shift elements right");
222 copy(*this, i, j, Count);
223 }
224
225 /// moveRight - Move elements to the right.
226 /// @param i Beginning of the source range.
227 /// @param j Beginning of the destination range.
228 /// @param Count Number of elements to copy.
moveRight(unsigned i,unsigned j,unsigned Count)229 void moveRight(unsigned i, unsigned j, unsigned Count) {
230 assert(i <= j && "Use moveLeft shift elements left");
231 assert(j + Count <= N && "Invalid range");
232 while (Count--) {
233 first[j + Count] = first[i + Count];
234 second[j + Count] = second[i + Count];
235 }
236 }
237
238 /// erase - Erase elements [i;j).
239 /// @param i Beginning of the range to erase.
240 /// @param j End of the range. (Exclusive).
241 /// @param Size Number of elements in node.
erase(unsigned i,unsigned j,unsigned Size)242 void erase(unsigned i, unsigned j, unsigned Size) {
243 moveLeft(j, i, Size - j);
244 }
245
246 /// erase - Erase element at i.
247 /// @param i Index of element to erase.
248 /// @param Size Number of elements in node.
erase(unsigned i,unsigned Size)249 void erase(unsigned i, unsigned Size) {
250 erase(i, i+1, Size);
251 }
252
253 /// shift - Shift elements [i;size) 1 position to the right.
254 /// @param i Beginning of the range to move.
255 /// @param Size Number of elements in node.
shift(unsigned i,unsigned Size)256 void shift(unsigned i, unsigned Size) {
257 moveRight(i, i + 1, Size - i);
258 }
259
260 /// transferToLeftSib - Transfer elements to a left sibling node.
261 /// @param Size Number of elements in this.
262 /// @param Sib Left sibling node.
263 /// @param SSize Number of elements in sib.
264 /// @param Count Number of elements to transfer.
transferToLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)265 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
266 unsigned Count) {
267 Sib.copy(*this, 0, SSize, Count);
268 erase(0, Count, Size);
269 }
270
271 /// transferToRightSib - Transfer elements to a right sibling node.
272 /// @param Size Number of elements in this.
273 /// @param Sib Right sibling node.
274 /// @param SSize Number of elements in sib.
275 /// @param Count Number of elements to transfer.
transferToRightSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)276 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
277 unsigned Count) {
278 Sib.moveRight(0, Count, SSize);
279 Sib.copy(*this, Size-Count, 0, Count);
280 }
281
282 /// adjustFromLeftSib - Adjust the number if elements in this node by moving
283 /// elements to or from a left sibling node.
284 /// @param Size Number of elements in this.
285 /// @param Sib Right sibling node.
286 /// @param SSize Number of elements in sib.
287 /// @param Add The number of elements to add to this node, possibly < 0.
288 /// @return Number of elements added to this node, possibly negative.
adjustFromLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,int Add)289 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
290 if (Add > 0) {
291 // We want to grow, copy from sib.
292 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
293 Sib.transferToRightSib(SSize, *this, Size, Count);
294 return Count;
295 } else {
296 // We want to shrink, copy to sib.
297 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
298 transferToLeftSib(Size, Sib, SSize, Count);
299 return -Count;
300 }
301 }
302 };
303
304 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
305 /// @param Node Array of pointers to sibling nodes.
306 /// @param Nodes Number of nodes.
307 /// @param CurSize Array of current node sizes, will be overwritten.
308 /// @param NewSize Array of desired node sizes.
309 template <typename NodeT>
adjustSiblingSizes(NodeT * Node[],unsigned Nodes,unsigned CurSize[],const unsigned NewSize[])310 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
311 unsigned CurSize[], const unsigned NewSize[]) {
312 // Move elements right.
313 for (int n = Nodes - 1; n; --n) {
314 if (CurSize[n] == NewSize[n])
315 continue;
316 for (int m = n - 1; m != -1; --m) {
317 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
318 NewSize[n] - CurSize[n]);
319 CurSize[m] -= d;
320 CurSize[n] += d;
321 // Keep going if the current node was exhausted.
322 if (CurSize[n] >= NewSize[n])
323 break;
324 }
325 }
326
327 if (Nodes == 0)
328 return;
329
330 // Move elements left.
331 for (unsigned n = 0; n != Nodes - 1; ++n) {
332 if (CurSize[n] == NewSize[n])
333 continue;
334 for (unsigned m = n + 1; m != Nodes; ++m) {
335 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
336 CurSize[n] - NewSize[n]);
337 CurSize[m] += d;
338 CurSize[n] -= d;
339 // Keep going if the current node was exhausted.
340 if (CurSize[n] >= NewSize[n])
341 break;
342 }
343 }
344
345 #ifndef NDEBUG
346 for (unsigned n = 0; n != Nodes; n++)
347 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
348 #endif
349 }
350
351 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
352 /// after an overflow or underflow. Reserve space for a new element at Position,
353 /// and compute the node that will hold Position after redistributing node
354 /// elements.
355 ///
356 /// It is required that
357 ///
358 /// Elements == sum(CurSize), and
359 /// Elements + Grow <= Nodes * Capacity.
360 ///
361 /// NewSize[] will be filled in such that:
362 ///
363 /// sum(NewSize) == Elements, and
364 /// NewSize[i] <= Capacity.
365 ///
366 /// The returned index is the node where Position will go, so:
367 ///
368 /// sum(NewSize[0..idx-1]) <= Position
369 /// sum(NewSize[0..idx]) >= Position
370 ///
371 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
372 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
373 /// before the one holding the Position'th element where there is room for an
374 /// insertion.
375 ///
376 /// @param Nodes The number of nodes.
377 /// @param Elements Total elements in all nodes.
378 /// @param Capacity The capacity of each node.
379 /// @param CurSize Array[Nodes] of current node sizes, or NULL.
380 /// @param NewSize Array[Nodes] to receive the new node sizes.
381 /// @param Position Insert position.
382 /// @param Grow Reserve space for a new element at Position.
383 /// @return (node, offset) for Position.
384 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
385 const unsigned *CurSize, unsigned NewSize[],
386 unsigned Position, bool Grow);
387
388
389 //===----------------------------------------------------------------------===//
390 //--- IntervalMapImpl::NodeSizer ---//
391 //===----------------------------------------------------------------------===//
392 //
393 // Compute node sizes from key and value types.
394 //
395 // The branching factors are chosen to make nodes fit in three cache lines.
396 // This may not be possible if keys or values are very large. Such large objects
397 // are handled correctly, but a std::map would probably give better performance.
398 //
399 //===----------------------------------------------------------------------===//
400
401 enum {
402 // Cache line size. Most architectures have 32 or 64 byte cache lines.
403 // We use 64 bytes here because it provides good branching factors.
404 Log2CacheLine = 6,
405 CacheLineBytes = 1 << Log2CacheLine,
406 DesiredNodeBytes = 3 * CacheLineBytes
407 };
408
409 template <typename KeyT, typename ValT>
410 struct NodeSizer {
411 enum {
412 // Compute the leaf node branching factor that makes a node fit in three
413 // cache lines. The branching factor must be at least 3, or some B+-tree
414 // balancing algorithms won't work.
415 // LeafSize can't be larger than CacheLineBytes. This is required by the
416 // PointerIntPair used by NodeRef.
417 DesiredLeafSize = DesiredNodeBytes /
418 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
419 MinLeafSize = 3,
420 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
421 };
422
423 typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
424
425 enum {
426 // Now that we have the leaf branching factor, compute the actual allocation
427 // unit size by rounding up to a whole number of cache lines.
428 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
429
430 // Determine the branching factor for branch nodes.
431 BranchSize = AllocBytes /
432 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
433 };
434
435 /// Allocator - The recycling allocator used for both branch and leaf nodes.
436 /// This typedef is very likely to be identical for all IntervalMaps with
437 /// reasonably sized entries, so the same allocator can be shared among
438 /// different kinds of maps.
439 typedef RecyclingAllocator<BumpPtrAllocator, char,
440 AllocBytes, CacheLineBytes> Allocator;
441
442 };
443
444
445 //===----------------------------------------------------------------------===//
446 //--- IntervalMapImpl::NodeRef ---//
447 //===----------------------------------------------------------------------===//
448 //
449 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
450 // pointer that can point to both kinds.
451 //
452 // All nodes are cache line aligned and the low 6 bits of a node pointer are
453 // always 0. These bits are used to store the number of elements in the
454 // referenced node. Besides saving space, placing node sizes in the parents
455 // allow tree balancing algorithms to run without faulting cache lines for nodes
456 // that may not need to be modified.
457 //
458 // A NodeRef doesn't know whether it references a leaf node or a branch node.
459 // It is the responsibility of the caller to use the correct types.
460 //
461 // Nodes are never supposed to be empty, and it is invalid to store a node size
462 // of 0 in a NodeRef. The valid range of sizes is 1-64.
463 //
464 //===----------------------------------------------------------------------===//
465
466 class NodeRef {
467 struct CacheAlignedPointerTraits {
getAsVoidPointerCacheAlignedPointerTraits468 static inline void *getAsVoidPointer(void *P) { return P; }
getFromVoidPointerCacheAlignedPointerTraits469 static inline void *getFromVoidPointer(void *P) { return P; }
470 enum { NumLowBitsAvailable = Log2CacheLine };
471 };
472 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
473
474 public:
475 /// NodeRef - Create a null ref.
NodeRef()476 NodeRef() {}
477
478 /// operator bool - Detect a null ref.
479 operator bool() const { return pip.getOpaqueValue(); }
480
481 /// NodeRef - Create a reference to the node p with n elements.
482 template <typename NodeT>
NodeRef(NodeT * p,unsigned n)483 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
484 assert(n <= NodeT::Capacity && "Size too big for node");
485 }
486
487 /// size - Return the number of elements in the referenced node.
size()488 unsigned size() const { return pip.getInt() + 1; }
489
490 /// setSize - Update the node size.
setSize(unsigned n)491 void setSize(unsigned n) { pip.setInt(n - 1); }
492
493 /// subtree - Access the i'th subtree reference in a branch node.
494 /// This depends on branch nodes storing the NodeRef array as their first
495 /// member.
subtree(unsigned i)496 NodeRef &subtree(unsigned i) const {
497 return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
498 }
499
500 /// get - Dereference as a NodeT reference.
501 template <typename NodeT>
get()502 NodeT &get() const {
503 return *reinterpret_cast<NodeT*>(pip.getPointer());
504 }
505
506 bool operator==(const NodeRef &RHS) const {
507 if (pip == RHS.pip)
508 return true;
509 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
510 return false;
511 }
512
513 bool operator!=(const NodeRef &RHS) const {
514 return !operator==(RHS);
515 }
516 };
517
518 //===----------------------------------------------------------------------===//
519 //--- IntervalMapImpl::LeafNode ---//
520 //===----------------------------------------------------------------------===//
521 //
522 // Leaf nodes store up to N disjoint intervals with corresponding values.
523 //
524 // The intervals are kept sorted and fully coalesced so there are no adjacent
525 // intervals mapping to the same value.
526 //
527 // These constraints are always satisfied:
528 //
529 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
530 //
531 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
532 //
533 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
534 // - Fully coalesced.
535 //
536 //===----------------------------------------------------------------------===//
537
538 template <typename KeyT, typename ValT, unsigned N, typename Traits>
539 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
540 public:
start(unsigned i)541 const KeyT &start(unsigned i) const { return this->first[i].first; }
stop(unsigned i)542 const KeyT &stop(unsigned i) const { return this->first[i].second; }
value(unsigned i)543 const ValT &value(unsigned i) const { return this->second[i]; }
544
start(unsigned i)545 KeyT &start(unsigned i) { return this->first[i].first; }
stop(unsigned i)546 KeyT &stop(unsigned i) { return this->first[i].second; }
value(unsigned i)547 ValT &value(unsigned i) { return this->second[i]; }
548
549 /// findFrom - Find the first interval after i that may contain x.
550 /// @param i Starting index for the search.
551 /// @param Size Number of elements in node.
552 /// @param x Key to search for.
553 /// @return First index with !stopLess(key[i].stop, x), or size.
554 /// This is the first interval that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)555 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
556 assert(i <= Size && Size <= N && "Bad indices");
557 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
558 "Index is past the needed point");
559 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
560 return i;
561 }
562
563 /// safeFind - Find an interval that is known to exist. This is the same as
564 /// findFrom except is it assumed that x is at least within range of the last
565 /// interval.
566 /// @param i Starting index for the search.
567 /// @param x Key to search for.
568 /// @return First index with !stopLess(key[i].stop, x), never size.
569 /// This is the first interval that can possibly contain x.
safeFind(unsigned i,KeyT x)570 unsigned safeFind(unsigned i, KeyT x) const {
571 assert(i < N && "Bad index");
572 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
573 "Index is past the needed point");
574 while (Traits::stopLess(stop(i), x)) ++i;
575 assert(i < N && "Unsafe intervals");
576 return i;
577 }
578
579 /// safeLookup - Lookup mapped value for a safe key.
580 /// It is assumed that x is within range of the last entry.
581 /// @param x Key to search for.
582 /// @param NotFound Value to return if x is not in any interval.
583 /// @return The mapped value at x or NotFound.
safeLookup(KeyT x,ValT NotFound)584 ValT safeLookup(KeyT x, ValT NotFound) const {
585 unsigned i = safeFind(0, x);
586 return Traits::startLess(x, start(i)) ? NotFound : value(i);
587 }
588
589 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
590 };
591
592 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
593 /// possible. This may cause the node to grow by 1, or it may cause the node
594 /// to shrink because of coalescing.
595 /// @param i Starting index = insertFrom(0, size, a)
596 /// @param Size Number of elements in node.
597 /// @param a Interval start.
598 /// @param b Interval stop.
599 /// @param y Value be mapped.
600 /// @return (insert position, new size), or (i, Capacity+1) on overflow.
601 template <typename KeyT, typename ValT, unsigned N, typename Traits>
602 unsigned LeafNode<KeyT, ValT, N, Traits>::
insertFrom(unsigned & Pos,unsigned Size,KeyT a,KeyT b,ValT y)603 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
604 unsigned i = Pos;
605 assert(i <= Size && Size <= N && "Invalid index");
606 assert(!Traits::stopLess(b, a) && "Invalid interval");
607
608 // Verify the findFrom invariant.
609 assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
610 assert((i == Size || !Traits::stopLess(stop(i), a)));
611 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
612
613 // Coalesce with previous interval.
614 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
615 Pos = i - 1;
616 // Also coalesce with next interval?
617 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
618 stop(i - 1) = stop(i);
619 this->erase(i, Size);
620 return Size - 1;
621 }
622 stop(i - 1) = b;
623 return Size;
624 }
625
626 // Detect overflow.
627 if (i == N)
628 return N + 1;
629
630 // Add new interval at end.
631 if (i == Size) {
632 start(i) = a;
633 stop(i) = b;
634 value(i) = y;
635 return Size + 1;
636 }
637
638 // Try to coalesce with following interval.
639 if (value(i) == y && Traits::adjacent(b, start(i))) {
640 start(i) = a;
641 return Size;
642 }
643
644 // We must insert before i. Detect overflow.
645 if (Size == N)
646 return N + 1;
647
648 // Insert before i.
649 this->shift(i, Size);
650 start(i) = a;
651 stop(i) = b;
652 value(i) = y;
653 return Size + 1;
654 }
655
656
657 //===----------------------------------------------------------------------===//
658 //--- IntervalMapImpl::BranchNode ---//
659 //===----------------------------------------------------------------------===//
660 //
661 // A branch node stores references to 1--N subtrees all of the same height.
662 //
663 // The key array in a branch node holds the rightmost stop key of each subtree.
664 // It is redundant to store the last stop key since it can be found in the
665 // parent node, but doing so makes tree balancing a lot simpler.
666 //
667 // It is unusual for a branch node to only have one subtree, but it can happen
668 // in the root node if it is smaller than the normal nodes.
669 //
670 // When all of the leaf nodes from all the subtrees are concatenated, they must
671 // satisfy the same constraints as a single leaf node. They must be sorted,
672 // sane, and fully coalesced.
673 //
674 //===----------------------------------------------------------------------===//
675
676 template <typename KeyT, typename ValT, unsigned N, typename Traits>
677 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
678 public:
stop(unsigned i)679 const KeyT &stop(unsigned i) const { return this->second[i]; }
subtree(unsigned i)680 const NodeRef &subtree(unsigned i) const { return this->first[i]; }
681
stop(unsigned i)682 KeyT &stop(unsigned i) { return this->second[i]; }
subtree(unsigned i)683 NodeRef &subtree(unsigned i) { return this->first[i]; }
684
685 /// findFrom - Find the first subtree after i that may contain x.
686 /// @param i Starting index for the search.
687 /// @param Size Number of elements in node.
688 /// @param x Key to search for.
689 /// @return First index with !stopLess(key[i], x), or size.
690 /// This is the first subtree that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)691 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
692 assert(i <= Size && Size <= N && "Bad indices");
693 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
694 "Index to findFrom is past the needed point");
695 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
696 return i;
697 }
698
699 /// safeFind - Find a subtree that is known to exist. This is the same as
700 /// findFrom except is it assumed that x is in range.
701 /// @param i Starting index for the search.
702 /// @param x Key to search for.
703 /// @return First index with !stopLess(key[i], x), never size.
704 /// This is the first subtree that can possibly contain x.
safeFind(unsigned i,KeyT x)705 unsigned safeFind(unsigned i, KeyT x) const {
706 assert(i < N && "Bad index");
707 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
708 "Index is past the needed point");
709 while (Traits::stopLess(stop(i), x)) ++i;
710 assert(i < N && "Unsafe intervals");
711 return i;
712 }
713
714 /// safeLookup - Get the subtree containing x, Assuming that x is in range.
715 /// @param x Key to search for.
716 /// @return Subtree containing x
safeLookup(KeyT x)717 NodeRef safeLookup(KeyT x) const {
718 return subtree(safeFind(0, x));
719 }
720
721 /// insert - Insert a new (subtree, stop) pair.
722 /// @param i Insert position, following entries will be shifted.
723 /// @param Size Number of elements in node.
724 /// @param Node Subtree to insert.
725 /// @param Stop Last key in subtree.
insert(unsigned i,unsigned Size,NodeRef Node,KeyT Stop)726 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
727 assert(Size < N && "branch node overflow");
728 assert(i <= Size && "Bad insert position");
729 this->shift(i, Size);
730 subtree(i) = Node;
731 stop(i) = Stop;
732 }
733 };
734
735 //===----------------------------------------------------------------------===//
736 //--- IntervalMapImpl::Path ---//
737 //===----------------------------------------------------------------------===//
738 //
739 // A Path is used by iterators to represent a position in a B+-tree, and the
740 // path to get there from the root.
741 //
742 // The Path class also constains the tree navigation code that doesn't have to
743 // be templatized.
744 //
745 //===----------------------------------------------------------------------===//
746
747 class Path {
748 /// Entry - Each step in the path is a node pointer and an offset into that
749 /// node.
750 struct Entry {
751 void *node;
752 unsigned size;
753 unsigned offset;
754
EntryEntry755 Entry(void *Node, unsigned Size, unsigned Offset)
756 : node(Node), size(Size), offset(Offset) {}
757
EntryEntry758 Entry(NodeRef Node, unsigned Offset)
759 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
760
subtreeEntry761 NodeRef &subtree(unsigned i) const {
762 return reinterpret_cast<NodeRef*>(node)[i];
763 }
764 };
765
766 /// path - The path entries, path[0] is the root node, path.back() is a leaf.
767 SmallVector<Entry, 4> path;
768
769 public:
770 // Node accessors.
node(unsigned Level)771 template <typename NodeT> NodeT &node(unsigned Level) const {
772 return *reinterpret_cast<NodeT*>(path[Level].node);
773 }
size(unsigned Level)774 unsigned size(unsigned Level) const { return path[Level].size; }
offset(unsigned Level)775 unsigned offset(unsigned Level) const { return path[Level].offset; }
offset(unsigned Level)776 unsigned &offset(unsigned Level) { return path[Level].offset; }
777
778 // Leaf accessors.
leaf()779 template <typename NodeT> NodeT &leaf() const {
780 return *reinterpret_cast<NodeT*>(path.back().node);
781 }
leafSize()782 unsigned leafSize() const { return path.back().size; }
leafOffset()783 unsigned leafOffset() const { return path.back().offset; }
leafOffset()784 unsigned &leafOffset() { return path.back().offset; }
785
786 /// valid - Return true if path is at a valid node, not at end().
valid()787 bool valid() const {
788 return !path.empty() && path.front().offset < path.front().size;
789 }
790
791 /// height - Return the height of the tree corresponding to this path.
792 /// This matches map->height in a full path.
height()793 unsigned height() const { return path.size() - 1; }
794
795 /// subtree - Get the subtree referenced from Level. When the path is
796 /// consistent, node(Level + 1) == subtree(Level).
797 /// @param Level 0..height-1. The leaves have no subtrees.
subtree(unsigned Level)798 NodeRef &subtree(unsigned Level) const {
799 return path[Level].subtree(path[Level].offset);
800 }
801
802 /// reset - Reset cached information about node(Level) from subtree(Level -1).
803 /// @param Level 1..height. THe node to update after parent node changed.
reset(unsigned Level)804 void reset(unsigned Level) {
805 path[Level] = Entry(subtree(Level - 1), offset(Level));
806 }
807
808 /// push - Add entry to path.
809 /// @param Node Node to add, should be subtree(path.size()-1).
810 /// @param Offset Offset into Node.
push(NodeRef Node,unsigned Offset)811 void push(NodeRef Node, unsigned Offset) {
812 path.push_back(Entry(Node, Offset));
813 }
814
815 /// pop - Remove the last path entry.
pop()816 void pop() {
817 path.pop_back();
818 }
819
820 /// setSize - Set the size of a node both in the path and in the tree.
821 /// @param Level 0..height. Note that setting the root size won't change
822 /// map->rootSize.
823 /// @param Size New node size.
setSize(unsigned Level,unsigned Size)824 void setSize(unsigned Level, unsigned Size) {
825 path[Level].size = Size;
826 if (Level)
827 subtree(Level - 1).setSize(Size);
828 }
829
830 /// setRoot - Clear the path and set a new root node.
831 /// @param Node New root node.
832 /// @param Size New root size.
833 /// @param Offset Offset into root node.
setRoot(void * Node,unsigned Size,unsigned Offset)834 void setRoot(void *Node, unsigned Size, unsigned Offset) {
835 path.clear();
836 path.push_back(Entry(Node, Size, Offset));
837 }
838
839 /// replaceRoot - Replace the current root node with two new entries after the
840 /// tree height has increased.
841 /// @param Root The new root node.
842 /// @param Size Number of entries in the new root.
843 /// @param Offsets Offsets into the root and first branch nodes.
844 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
845
846 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
847 /// @param Level Get the sibling to node(Level).
848 /// @return Left sibling, or NodeRef().
849 NodeRef getLeftSibling(unsigned Level) const;
850
851 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
852 /// unaltered.
853 /// @param Level Move node(Level).
854 void moveLeft(unsigned Level);
855
856 /// fillLeft - Grow path to Height by taking leftmost branches.
857 /// @param Height The target height.
fillLeft(unsigned Height)858 void fillLeft(unsigned Height) {
859 while (height() < Height)
860 push(subtree(height()), 0);
861 }
862
863 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
864 /// @param Level Get the sinbling to node(Level).
865 /// @return Left sibling, or NodeRef().
866 NodeRef getRightSibling(unsigned Level) const;
867
868 /// moveRight - Move path to the left sibling at Level. Leave nodes below
869 /// Level unaltered.
870 /// @param Level Move node(Level).
871 void moveRight(unsigned Level);
872
873 /// atBegin - Return true if path is at begin().
atBegin()874 bool atBegin() const {
875 for (unsigned i = 0, e = path.size(); i != e; ++i)
876 if (path[i].offset != 0)
877 return false;
878 return true;
879 }
880
881 /// atLastEntry - Return true if the path is at the last entry of the node at
882 /// Level.
883 /// @param Level Node to examine.
atLastEntry(unsigned Level)884 bool atLastEntry(unsigned Level) const {
885 return path[Level].offset == path[Level].size - 1;
886 }
887
888 /// legalizeForInsert - Prepare the path for an insertion at Level. When the
889 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
890 /// ensures that node(Level) is real by moving back to the last node at Level,
891 /// and setting offset(Level) to size(Level) if required.
892 /// @param Level The level where an insertion is about to take place.
legalizeForInsert(unsigned Level)893 void legalizeForInsert(unsigned Level) {
894 if (valid())
895 return;
896 moveLeft(Level);
897 ++path[Level].offset;
898 }
899 };
900
901 } // namespace IntervalMapImpl
902
903
904 //===----------------------------------------------------------------------===//
905 //--- IntervalMap ----//
906 //===----------------------------------------------------------------------===//
907
908 template <typename KeyT, typename ValT,
909 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
910 typename Traits = IntervalMapInfo<KeyT> >
911 class IntervalMap {
912 typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
913 typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
914 typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
915 Branch;
916 typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
917 typedef IntervalMapImpl::IdxPair IdxPair;
918
919 // The RootLeaf capacity is given as a template parameter. We must compute the
920 // corresponding RootBranch capacity.
921 enum {
922 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
923 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
924 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
925 };
926
927 typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
928 RootBranch;
929
930 // When branched, we store a global start key as well as the branch node.
931 struct RootBranchData {
932 KeyT start;
933 RootBranch node;
934 };
935
936 enum {
937 RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
938 sizeof(RootBranchData) : sizeof(RootLeaf)
939 };
940
941 public:
942 typedef typename Sizer::Allocator Allocator;
943 typedef KeyT KeyType;
944 typedef ValT ValueType;
945 typedef Traits KeyTraits;
946
947 private:
948 // The root data is either a RootLeaf or a RootBranchData instance.
949 // We can't put them in a union since C++03 doesn't allow non-trivial
950 // constructors in unions.
951 // Instead, we use a char array with pointer alignment. The alignment is
952 // ensured by the allocator member in the class, but still verified in the
953 // constructor. We don't support keys or values that are more aligned than a
954 // pointer.
955 char data[RootDataSize];
956
957 // Tree height.
958 // 0: Leaves in root.
959 // 1: Root points to leaf.
960 // 2: root->branch->leaf ...
961 unsigned height;
962
963 // Number of entries in the root node.
964 unsigned rootSize;
965
966 // Allocator used for creating external nodes.
967 Allocator &allocator;
968
969 /// dataAs - Represent data as a node type without breaking aliasing rules.
970 template <typename T>
dataAs()971 T &dataAs() const {
972 union {
973 const char *d;
974 T *t;
975 } u;
976 u.d = data;
977 return *u.t;
978 }
979
rootLeaf()980 const RootLeaf &rootLeaf() const {
981 assert(!branched() && "Cannot acces leaf data in branched root");
982 return dataAs<RootLeaf>();
983 }
rootLeaf()984 RootLeaf &rootLeaf() {
985 assert(!branched() && "Cannot acces leaf data in branched root");
986 return dataAs<RootLeaf>();
987 }
rootBranchData()988 RootBranchData &rootBranchData() const {
989 assert(branched() && "Cannot access branch data in non-branched root");
990 return dataAs<RootBranchData>();
991 }
rootBranchData()992 RootBranchData &rootBranchData() {
993 assert(branched() && "Cannot access branch data in non-branched root");
994 return dataAs<RootBranchData>();
995 }
rootBranch()996 const RootBranch &rootBranch() const { return rootBranchData().node; }
rootBranch()997 RootBranch &rootBranch() { return rootBranchData().node; }
rootBranchStart()998 KeyT rootBranchStart() const { return rootBranchData().start; }
rootBranchStart()999 KeyT &rootBranchStart() { return rootBranchData().start; }
1000
newNode()1001 template <typename NodeT> NodeT *newNode() {
1002 return new(allocator.template Allocate<NodeT>()) NodeT();
1003 }
1004
deleteNode(NodeT * P)1005 template <typename NodeT> void deleteNode(NodeT *P) {
1006 P->~NodeT();
1007 allocator.Deallocate(P);
1008 }
1009
1010 IdxPair branchRoot(unsigned Position);
1011 IdxPair splitRoot(unsigned Position);
1012
switchRootToBranch()1013 void switchRootToBranch() {
1014 rootLeaf().~RootLeaf();
1015 height = 1;
1016 new (&rootBranchData()) RootBranchData();
1017 }
1018
switchRootToLeaf()1019 void switchRootToLeaf() {
1020 rootBranchData().~RootBranchData();
1021 height = 0;
1022 new(&rootLeaf()) RootLeaf();
1023 }
1024
branched()1025 bool branched() const { return height > 0; }
1026
1027 ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1028 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1029 unsigned Level));
1030 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1031
1032 public:
IntervalMap(Allocator & a)1033 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1034 assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1035 "Insufficient alignment");
1036 new(&rootLeaf()) RootLeaf();
1037 }
1038
~IntervalMap()1039 ~IntervalMap() {
1040 clear();
1041 rootLeaf().~RootLeaf();
1042 }
1043
1044 /// empty - Return true when no intervals are mapped.
empty()1045 bool empty() const {
1046 return rootSize == 0;
1047 }
1048
1049 /// start - Return the smallest mapped key in a non-empty map.
start()1050 KeyT start() const {
1051 assert(!empty() && "Empty IntervalMap has no start");
1052 return !branched() ? rootLeaf().start(0) : rootBranchStart();
1053 }
1054
1055 /// stop - Return the largest mapped key in a non-empty map.
stop()1056 KeyT stop() const {
1057 assert(!empty() && "Empty IntervalMap has no stop");
1058 return !branched() ? rootLeaf().stop(rootSize - 1) :
1059 rootBranch().stop(rootSize - 1);
1060 }
1061
1062 /// lookup - Return the mapped value at x or NotFound.
1063 ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1064 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1065 return NotFound;
1066 return branched() ? treeSafeLookup(x, NotFound) :
1067 rootLeaf().safeLookup(x, NotFound);
1068 }
1069
1070 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1071 /// It is assumed that no key in the interval is mapped to another value, but
1072 /// overlapping intervals already mapped to y will be coalesced.
insert(KeyT a,KeyT b,ValT y)1073 void insert(KeyT a, KeyT b, ValT y) {
1074 if (branched() || rootSize == RootLeaf::Capacity)
1075 return find(a).insert(a, b, y);
1076
1077 // Easy insert into root leaf.
1078 unsigned p = rootLeaf().findFrom(0, rootSize, a);
1079 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1080 }
1081
1082 /// clear - Remove all entries.
1083 void clear();
1084
1085 class const_iterator;
1086 class iterator;
1087 friend class const_iterator;
1088 friend class iterator;
1089
begin()1090 const_iterator begin() const {
1091 const_iterator I(*this);
1092 I.goToBegin();
1093 return I;
1094 }
1095
begin()1096 iterator begin() {
1097 iterator I(*this);
1098 I.goToBegin();
1099 return I;
1100 }
1101
end()1102 const_iterator end() const {
1103 const_iterator I(*this);
1104 I.goToEnd();
1105 return I;
1106 }
1107
end()1108 iterator end() {
1109 iterator I(*this);
1110 I.goToEnd();
1111 return I;
1112 }
1113
1114 /// find - Return an iterator pointing to the first interval ending at or
1115 /// after x, or end().
find(KeyT x)1116 const_iterator find(KeyT x) const {
1117 const_iterator I(*this);
1118 I.find(x);
1119 return I;
1120 }
1121
find(KeyT x)1122 iterator find(KeyT x) {
1123 iterator I(*this);
1124 I.find(x);
1125 return I;
1126 }
1127 };
1128
1129 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1130 /// branched root.
1131 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1132 ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x,ValT NotFound)1133 treeSafeLookup(KeyT x, ValT NotFound) const {
1134 assert(branched() && "treeLookup assumes a branched root");
1135
1136 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1137 for (unsigned h = height-1; h; --h)
1138 NR = NR.get<Branch>().safeLookup(x);
1139 return NR.get<Leaf>().safeLookup(x, NotFound);
1140 }
1141
1142
1143 // branchRoot - Switch from a leaf root to a branched root.
1144 // Return the new (root offset, node offset) corresponding to Position.
1145 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1146 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position)1147 branchRoot(unsigned Position) {
1148 using namespace IntervalMapImpl;
1149 // How many external leaf nodes to hold RootLeaf+1?
1150 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1151
1152 // Compute element distribution among new nodes.
1153 unsigned size[Nodes];
1154 IdxPair NewOffset(0, Position);
1155
1156 // Is is very common for the root node to be smaller than external nodes.
1157 if (Nodes == 1)
1158 size[0] = rootSize;
1159 else
1160 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
1161 Position, true);
1162
1163 // Allocate new nodes.
1164 unsigned pos = 0;
1165 NodeRef node[Nodes];
1166 for (unsigned n = 0; n != Nodes; ++n) {
1167 Leaf *L = newNode<Leaf>();
1168 L->copy(rootLeaf(), pos, 0, size[n]);
1169 node[n] = NodeRef(L, size[n]);
1170 pos += size[n];
1171 }
1172
1173 // Destroy the old leaf node, construct branch node instead.
1174 switchRootToBranch();
1175 for (unsigned n = 0; n != Nodes; ++n) {
1176 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1177 rootBranch().subtree(n) = node[n];
1178 }
1179 rootBranchStart() = node[0].template get<Leaf>().start(0);
1180 rootSize = Nodes;
1181 return NewOffset;
1182 }
1183
1184 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1185 // Return the new (root offset, node offset) corresponding to Position.
1186 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1187 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position)1188 splitRoot(unsigned Position) {
1189 using namespace IntervalMapImpl;
1190 // How many external leaf nodes to hold RootBranch+1?
1191 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1192
1193 // Compute element distribution among new nodes.
1194 unsigned Size[Nodes];
1195 IdxPair NewOffset(0, Position);
1196
1197 // Is is very common for the root node to be smaller than external nodes.
1198 if (Nodes == 1)
1199 Size[0] = rootSize;
1200 else
1201 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size,
1202 Position, true);
1203
1204 // Allocate new nodes.
1205 unsigned Pos = 0;
1206 NodeRef Node[Nodes];
1207 for (unsigned n = 0; n != Nodes; ++n) {
1208 Branch *B = newNode<Branch>();
1209 B->copy(rootBranch(), Pos, 0, Size[n]);
1210 Node[n] = NodeRef(B, Size[n]);
1211 Pos += Size[n];
1212 }
1213
1214 for (unsigned n = 0; n != Nodes; ++n) {
1215 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1216 rootBranch().subtree(n) = Node[n];
1217 }
1218 rootSize = Nodes;
1219 ++height;
1220 return NewOffset;
1221 }
1222
1223 /// visitNodes - Visit each external node.
1224 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1225 void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::* f)(IntervalMapImpl::NodeRef,unsigned Height))1226 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1227 if (!branched())
1228 return;
1229 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1230
1231 // Collect level 0 nodes from the root.
1232 for (unsigned i = 0; i != rootSize; ++i)
1233 Refs.push_back(rootBranch().subtree(i));
1234
1235 // Visit all branch nodes.
1236 for (unsigned h = height - 1; h; --h) {
1237 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1238 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1239 NextRefs.push_back(Refs[i].subtree(j));
1240 (this->*f)(Refs[i], h);
1241 }
1242 Refs.clear();
1243 Refs.swap(NextRefs);
1244 }
1245
1246 // Visit all leaf nodes.
1247 for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1248 (this->*f)(Refs[i], 0);
1249 }
1250
1251 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1252 void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(IntervalMapImpl::NodeRef Node,unsigned Level)1253 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1254 if (Level)
1255 deleteNode(&Node.get<Branch>());
1256 else
1257 deleteNode(&Node.get<Leaf>());
1258 }
1259
1260 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1261 void IntervalMap<KeyT, ValT, N, Traits>::
clear()1262 clear() {
1263 if (branched()) {
1264 visitNodes(&IntervalMap::deleteNode);
1265 switchRootToLeaf();
1266 }
1267 rootSize = 0;
1268 }
1269
1270 //===----------------------------------------------------------------------===//
1271 //--- IntervalMap::const_iterator ----//
1272 //===----------------------------------------------------------------------===//
1273
1274 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1275 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1276 public std::iterator<std::bidirectional_iterator_tag, ValT> {
1277 protected:
1278 friend class IntervalMap;
1279
1280 // The map referred to.
1281 IntervalMap *map;
1282
1283 // We store a full path from the root to the current position.
1284 // The path may be partially filled, but never between iterator calls.
1285 IntervalMapImpl::Path path;
1286
const_iterator(const IntervalMap & map)1287 explicit const_iterator(const IntervalMap &map) :
1288 map(const_cast<IntervalMap*>(&map)) {}
1289
branched()1290 bool branched() const {
1291 assert(map && "Invalid iterator");
1292 return map->branched();
1293 }
1294
setRoot(unsigned Offset)1295 void setRoot(unsigned Offset) {
1296 if (branched())
1297 path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1298 else
1299 path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1300 }
1301
1302 void pathFillFind(KeyT x);
1303 void treeFind(KeyT x);
1304 void treeAdvanceTo(KeyT x);
1305
1306 /// unsafeStart - Writable access to start() for iterator.
unsafeStart()1307 KeyT &unsafeStart() const {
1308 assert(valid() && "Cannot access invalid iterator");
1309 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1310 path.leaf<RootLeaf>().start(path.leafOffset());
1311 }
1312
1313 /// unsafeStop - Writable access to stop() for iterator.
unsafeStop()1314 KeyT &unsafeStop() const {
1315 assert(valid() && "Cannot access invalid iterator");
1316 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1317 path.leaf<RootLeaf>().stop(path.leafOffset());
1318 }
1319
1320 /// unsafeValue - Writable access to value() for iterator.
unsafeValue()1321 ValT &unsafeValue() const {
1322 assert(valid() && "Cannot access invalid iterator");
1323 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1324 path.leaf<RootLeaf>().value(path.leafOffset());
1325 }
1326
1327 public:
1328 /// const_iterator - Create an iterator that isn't pointing anywhere.
const_iterator()1329 const_iterator() : map(0) {}
1330
1331 /// setMap - Change the map iterated over. This call must be followed by a
1332 /// call to goToBegin(), goToEnd(), or find()
setMap(const IntervalMap & m)1333 void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1334
1335 /// valid - Return true if the current position is valid, false for end().
valid()1336 bool valid() const { return path.valid(); }
1337
1338 /// atBegin - Return true if the current position is the first map entry.
atBegin()1339 bool atBegin() const { return path.atBegin(); }
1340
1341 /// start - Return the beginning of the current interval.
start()1342 const KeyT &start() const { return unsafeStart(); }
1343
1344 /// stop - Return the end of the current interval.
stop()1345 const KeyT &stop() const { return unsafeStop(); }
1346
1347 /// value - Return the mapped value at the current interval.
value()1348 const ValT &value() const { return unsafeValue(); }
1349
1350 const ValT &operator*() const { return value(); }
1351
1352 bool operator==(const const_iterator &RHS) const {
1353 assert(map == RHS.map && "Cannot compare iterators from different maps");
1354 if (!valid())
1355 return !RHS.valid();
1356 if (path.leafOffset() != RHS.path.leafOffset())
1357 return false;
1358 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1359 }
1360
1361 bool operator!=(const const_iterator &RHS) const {
1362 return !operator==(RHS);
1363 }
1364
1365 /// goToBegin - Move to the first interval in map.
goToBegin()1366 void goToBegin() {
1367 setRoot(0);
1368 if (branched())
1369 path.fillLeft(map->height);
1370 }
1371
1372 /// goToEnd - Move beyond the last interval in map.
goToEnd()1373 void goToEnd() {
1374 setRoot(map->rootSize);
1375 }
1376
1377 /// preincrement - move to the next interval.
1378 const_iterator &operator++() {
1379 assert(valid() && "Cannot increment end()");
1380 if (++path.leafOffset() == path.leafSize() && branched())
1381 path.moveRight(map->height);
1382 return *this;
1383 }
1384
1385 /// postincrement - Dont do that!
1386 const_iterator operator++(int) {
1387 const_iterator tmp = *this;
1388 operator++();
1389 return tmp;
1390 }
1391
1392 /// predecrement - move to the previous interval.
1393 const_iterator &operator--() {
1394 if (path.leafOffset() && (valid() || !branched()))
1395 --path.leafOffset();
1396 else
1397 path.moveLeft(map->height);
1398 return *this;
1399 }
1400
1401 /// postdecrement - Dont do that!
1402 const_iterator operator--(int) {
1403 const_iterator tmp = *this;
1404 operator--();
1405 return tmp;
1406 }
1407
1408 /// find - Move to the first interval with stop >= x, or end().
1409 /// This is a full search from the root, the current position is ignored.
find(KeyT x)1410 void find(KeyT x) {
1411 if (branched())
1412 treeFind(x);
1413 else
1414 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1415 }
1416
1417 /// advanceTo - Move to the first interval with stop >= x, or end().
1418 /// The search is started from the current position, and no earlier positions
1419 /// can be found. This is much faster than find() for small moves.
advanceTo(KeyT x)1420 void advanceTo(KeyT x) {
1421 if (!valid())
1422 return;
1423 if (branched())
1424 treeAdvanceTo(x);
1425 else
1426 path.leafOffset() =
1427 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1428 }
1429
1430 };
1431
1432 /// pathFillFind - Complete path by searching for x.
1433 /// @param x Key to search for.
1434 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1435 void IntervalMap<KeyT, ValT, N, Traits>::
pathFillFind(KeyT x)1436 const_iterator::pathFillFind(KeyT x) {
1437 IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1438 for (unsigned i = map->height - path.height() - 1; i; --i) {
1439 unsigned p = NR.get<Branch>().safeFind(0, x);
1440 path.push(NR, p);
1441 NR = NR.subtree(p);
1442 }
1443 path.push(NR, NR.get<Leaf>().safeFind(0, x));
1444 }
1445
1446 /// treeFind - Find in a branched tree.
1447 /// @param x Key to search for.
1448 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1449 void IntervalMap<KeyT, ValT, N, Traits>::
treeFind(KeyT x)1450 const_iterator::treeFind(KeyT x) {
1451 setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1452 if (valid())
1453 pathFillFind(x);
1454 }
1455
1456 /// treeAdvanceTo - Find position after the current one.
1457 /// @param x Key to search for.
1458 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1459 void IntervalMap<KeyT, ValT, N, Traits>::
treeAdvanceTo(KeyT x)1460 const_iterator::treeAdvanceTo(KeyT x) {
1461 // Can we stay on the same leaf node?
1462 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1463 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1464 return;
1465 }
1466
1467 // Drop the current leaf.
1468 path.pop();
1469
1470 // Search towards the root for a usable subtree.
1471 if (path.height()) {
1472 for (unsigned l = path.height() - 1; l; --l) {
1473 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1474 // The branch node at l+1 is usable
1475 path.offset(l + 1) =
1476 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1477 return pathFillFind(x);
1478 }
1479 path.pop();
1480 }
1481 // Is the level-1 Branch usable?
1482 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1483 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1484 return pathFillFind(x);
1485 }
1486 }
1487
1488 // We reached the root.
1489 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1490 if (valid())
1491 pathFillFind(x);
1492 }
1493
1494 //===----------------------------------------------------------------------===//
1495 //--- IntervalMap::iterator ----//
1496 //===----------------------------------------------------------------------===//
1497
1498 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1499 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1500 friend class IntervalMap;
1501 typedef IntervalMapImpl::IdxPair IdxPair;
1502
iterator(IntervalMap & map)1503 explicit iterator(IntervalMap &map) : const_iterator(map) {}
1504
1505 void setNodeStop(unsigned Level, KeyT Stop);
1506 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1507 template <typename NodeT> bool overflow(unsigned Level);
1508 void treeInsert(KeyT a, KeyT b, ValT y);
1509 void eraseNode(unsigned Level);
1510 void treeErase(bool UpdateRoot = true);
1511 bool canCoalesceLeft(KeyT Start, ValT x);
1512 bool canCoalesceRight(KeyT Stop, ValT x);
1513
1514 public:
1515 /// iterator - Create null iterator.
iterator()1516 iterator() {}
1517
1518 /// setStart - Move the start of the current interval.
1519 /// This may cause coalescing with the previous interval.
1520 /// @param a New start key, must not overlap the previous interval.
1521 void setStart(KeyT a);
1522
1523 /// setStop - Move the end of the current interval.
1524 /// This may cause coalescing with the following interval.
1525 /// @param b New stop key, must not overlap the following interval.
1526 void setStop(KeyT b);
1527
1528 /// setValue - Change the mapped value of the current interval.
1529 /// This may cause coalescing with the previous and following intervals.
1530 /// @param x New value.
1531 void setValue(ValT x);
1532
1533 /// setStartUnchecked - Move the start of the current interval without
1534 /// checking for coalescing or overlaps.
1535 /// This should only be used when it is known that coalescing is not required.
1536 /// @param a New start key.
setStartUnchecked(KeyT a)1537 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1538
1539 /// setStopUnchecked - Move the end of the current interval without checking
1540 /// for coalescing or overlaps.
1541 /// This should only be used when it is known that coalescing is not required.
1542 /// @param b New stop key.
setStopUnchecked(KeyT b)1543 void setStopUnchecked(KeyT b) {
1544 this->unsafeStop() = b;
1545 // Update keys in branch nodes as well.
1546 if (this->path.atLastEntry(this->path.height()))
1547 setNodeStop(this->path.height(), b);
1548 }
1549
1550 /// setValueUnchecked - Change the mapped value of the current interval
1551 /// without checking for coalescing.
1552 /// @param x New value.
setValueUnchecked(ValT x)1553 void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1554
1555 /// insert - Insert mapping [a;b] -> y before the current position.
1556 void insert(KeyT a, KeyT b, ValT y);
1557
1558 /// erase - Erase the current interval.
1559 void erase();
1560
1561 iterator &operator++() {
1562 const_iterator::operator++();
1563 return *this;
1564 }
1565
1566 iterator operator++(int) {
1567 iterator tmp = *this;
1568 operator++();
1569 return tmp;
1570 }
1571
1572 iterator &operator--() {
1573 const_iterator::operator--();
1574 return *this;
1575 }
1576
1577 iterator operator--(int) {
1578 iterator tmp = *this;
1579 operator--();
1580 return tmp;
1581 }
1582
1583 };
1584
1585 /// canCoalesceLeft - Can the current interval coalesce to the left after
1586 /// changing start or value?
1587 /// @param Start New start of current interval.
1588 /// @param Value New value for current interval.
1589 /// @return True when updating the current interval would enable coalescing.
1590 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1591 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceLeft(KeyT Start,ValT Value)1592 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1593 using namespace IntervalMapImpl;
1594 Path &P = this->path;
1595 if (!this->branched()) {
1596 unsigned i = P.leafOffset();
1597 RootLeaf &Node = P.leaf<RootLeaf>();
1598 return i && Node.value(i-1) == Value &&
1599 Traits::adjacent(Node.stop(i-1), Start);
1600 }
1601 // Branched.
1602 if (unsigned i = P.leafOffset()) {
1603 Leaf &Node = P.leaf<Leaf>();
1604 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1605 } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1606 unsigned i = NR.size() - 1;
1607 Leaf &Node = NR.get<Leaf>();
1608 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1609 }
1610 return false;
1611 }
1612
1613 /// canCoalesceRight - Can the current interval coalesce to the right after
1614 /// changing stop or value?
1615 /// @param Stop New stop of current interval.
1616 /// @param Value New value for current interval.
1617 /// @return True when updating the current interval would enable coalescing.
1618 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1619 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceRight(KeyT Stop,ValT Value)1620 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1621 using namespace IntervalMapImpl;
1622 Path &P = this->path;
1623 unsigned i = P.leafOffset() + 1;
1624 if (!this->branched()) {
1625 if (i >= P.leafSize())
1626 return false;
1627 RootLeaf &Node = P.leaf<RootLeaf>();
1628 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1629 }
1630 // Branched.
1631 if (i < P.leafSize()) {
1632 Leaf &Node = P.leaf<Leaf>();
1633 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1634 } else if (NodeRef NR = P.getRightSibling(P.height())) {
1635 Leaf &Node = NR.get<Leaf>();
1636 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1637 }
1638 return false;
1639 }
1640
1641 /// setNodeStop - Update the stop key of the current node at level and above.
1642 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1643 void IntervalMap<KeyT, ValT, N, Traits>::
setNodeStop(unsigned Level,KeyT Stop)1644 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1645 // There are no references to the root node, so nothing to update.
1646 if (!Level)
1647 return;
1648 IntervalMapImpl::Path &P = this->path;
1649 // Update nodes pointing to the current node.
1650 while (--Level) {
1651 P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1652 if (!P.atLastEntry(Level))
1653 return;
1654 }
1655 // Update root separately since it has a different layout.
1656 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1657 }
1658
1659 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1660 void IntervalMap<KeyT, ValT, N, Traits>::
setStart(KeyT a)1661 iterator::setStart(KeyT a) {
1662 assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1663 KeyT &CurStart = this->unsafeStart();
1664 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1665 CurStart = a;
1666 return;
1667 }
1668 // Coalesce with the interval to the left.
1669 --*this;
1670 a = this->start();
1671 erase();
1672 setStartUnchecked(a);
1673 }
1674
1675 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1676 void IntervalMap<KeyT, ValT, N, Traits>::
setStop(KeyT b)1677 iterator::setStop(KeyT b) {
1678 assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1679 if (Traits::startLess(b, this->stop()) ||
1680 !canCoalesceRight(b, this->value())) {
1681 setStopUnchecked(b);
1682 return;
1683 }
1684 // Coalesce with interval to the right.
1685 KeyT a = this->start();
1686 erase();
1687 setStartUnchecked(a);
1688 }
1689
1690 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1691 void IntervalMap<KeyT, ValT, N, Traits>::
setValue(ValT x)1692 iterator::setValue(ValT x) {
1693 setValueUnchecked(x);
1694 if (canCoalesceRight(this->stop(), x)) {
1695 KeyT a = this->start();
1696 erase();
1697 setStartUnchecked(a);
1698 }
1699 if (canCoalesceLeft(this->start(), x)) {
1700 --*this;
1701 KeyT a = this->start();
1702 erase();
1703 setStartUnchecked(a);
1704 }
1705 }
1706
1707 /// insertNode - insert a node before the current path at level.
1708 /// Leave the current path pointing at the new node.
1709 /// @param Level path index of the node to be inserted.
1710 /// @param Node The node to be inserted.
1711 /// @param Stop The last index in the new node.
1712 /// @return True if the tree height was increased.
1713 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1714 bool IntervalMap<KeyT, ValT, N, Traits>::
insertNode(unsigned Level,IntervalMapImpl::NodeRef Node,KeyT Stop)1715 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1716 assert(Level && "Cannot insert next to the root");
1717 bool SplitRoot = false;
1718 IntervalMap &IM = *this->map;
1719 IntervalMapImpl::Path &P = this->path;
1720
1721 if (Level == 1) {
1722 // Insert into the root branch node.
1723 if (IM.rootSize < RootBranch::Capacity) {
1724 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1725 P.setSize(0, ++IM.rootSize);
1726 P.reset(Level);
1727 return SplitRoot;
1728 }
1729
1730 // We need to split the root while keeping our position.
1731 SplitRoot = true;
1732 IdxPair Offset = IM.splitRoot(P.offset(0));
1733 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1734
1735 // Fall through to insert at the new higher level.
1736 ++Level;
1737 }
1738
1739 // When inserting before end(), make sure we have a valid path.
1740 P.legalizeForInsert(--Level);
1741
1742 // Insert into the branch node at Level-1.
1743 if (P.size(Level) == Branch::Capacity) {
1744 // Branch node is full, handle handle the overflow.
1745 assert(!SplitRoot && "Cannot overflow after splitting the root");
1746 SplitRoot = overflow<Branch>(Level);
1747 Level += SplitRoot;
1748 }
1749 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1750 P.setSize(Level, P.size(Level) + 1);
1751 if (P.atLastEntry(Level))
1752 setNodeStop(Level, Stop);
1753 P.reset(Level + 1);
1754 return SplitRoot;
1755 }
1756
1757 // insert
1758 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1759 void IntervalMap<KeyT, ValT, N, Traits>::
insert(KeyT a,KeyT b,ValT y)1760 iterator::insert(KeyT a, KeyT b, ValT y) {
1761 if (this->branched())
1762 return treeInsert(a, b, y);
1763 IntervalMap &IM = *this->map;
1764 IntervalMapImpl::Path &P = this->path;
1765
1766 // Try simple root leaf insert.
1767 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1768
1769 // Was the root node insert successful?
1770 if (Size <= RootLeaf::Capacity) {
1771 P.setSize(0, IM.rootSize = Size);
1772 return;
1773 }
1774
1775 // Root leaf node is full, we must branch.
1776 IdxPair Offset = IM.branchRoot(P.leafOffset());
1777 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1778
1779 // Now it fits in the new leaf.
1780 treeInsert(a, b, y);
1781 }
1782
1783
1784 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1785 void IntervalMap<KeyT, ValT, N, Traits>::
treeInsert(KeyT a,KeyT b,ValT y)1786 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1787 using namespace IntervalMapImpl;
1788 Path &P = this->path;
1789
1790 if (!P.valid())
1791 P.legalizeForInsert(this->map->height);
1792
1793 // Check if this insertion will extend the node to the left.
1794 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1795 // Node is growing to the left, will it affect a left sibling node?
1796 if (NodeRef Sib = P.getLeftSibling(P.height())) {
1797 Leaf &SibLeaf = Sib.get<Leaf>();
1798 unsigned SibOfs = Sib.size() - 1;
1799 if (SibLeaf.value(SibOfs) == y &&
1800 Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1801 // This insertion will coalesce with the last entry in SibLeaf. We can
1802 // handle it in two ways:
1803 // 1. Extend SibLeaf.stop to b and be done, or
1804 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1805 // We prefer 1., but need 2 when coalescing to the right as well.
1806 Leaf &CurLeaf = P.leaf<Leaf>();
1807 P.moveLeft(P.height());
1808 if (Traits::stopLess(b, CurLeaf.start(0)) &&
1809 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1810 // Easy, just extend SibLeaf and we're done.
1811 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1812 return;
1813 } else {
1814 // We have both left and right coalescing. Erase the old SibLeaf entry
1815 // and continue inserting the larger interval.
1816 a = SibLeaf.start(SibOfs);
1817 treeErase(/* UpdateRoot= */false);
1818 }
1819 }
1820 } else {
1821 // No left sibling means we are at begin(). Update cached bound.
1822 this->map->rootBranchStart() = a;
1823 }
1824 }
1825
1826 // When we are inserting at the end of a leaf node, we must update stops.
1827 unsigned Size = P.leafSize();
1828 bool Grow = P.leafOffset() == Size;
1829 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1830
1831 // Leaf insertion unsuccessful? Overflow and try again.
1832 if (Size > Leaf::Capacity) {
1833 overflow<Leaf>(P.height());
1834 Grow = P.leafOffset() == P.leafSize();
1835 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1836 assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1837 }
1838
1839 // Inserted, update offset and leaf size.
1840 P.setSize(P.height(), Size);
1841
1842 // Insert was the last node entry, update stops.
1843 if (Grow)
1844 setNodeStop(P.height(), b);
1845 }
1846
1847 /// erase - erase the current interval and move to the next position.
1848 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1849 void IntervalMap<KeyT, ValT, N, Traits>::
erase()1850 iterator::erase() {
1851 IntervalMap &IM = *this->map;
1852 IntervalMapImpl::Path &P = this->path;
1853 assert(P.valid() && "Cannot erase end()");
1854 if (this->branched())
1855 return treeErase();
1856 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1857 P.setSize(0, --IM.rootSize);
1858 }
1859
1860 /// treeErase - erase() for a branched tree.
1861 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1862 void IntervalMap<KeyT, ValT, N, Traits>::
treeErase(bool UpdateRoot)1863 iterator::treeErase(bool UpdateRoot) {
1864 IntervalMap &IM = *this->map;
1865 IntervalMapImpl::Path &P = this->path;
1866 Leaf &Node = P.leaf<Leaf>();
1867
1868 // Nodes are not allowed to become empty.
1869 if (P.leafSize() == 1) {
1870 IM.deleteNode(&Node);
1871 eraseNode(IM.height);
1872 // Update rootBranchStart if we erased begin().
1873 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1874 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1875 return;
1876 }
1877
1878 // Erase current entry.
1879 Node.erase(P.leafOffset(), P.leafSize());
1880 unsigned NewSize = P.leafSize() - 1;
1881 P.setSize(IM.height, NewSize);
1882 // When we erase the last entry, update stop and move to a legal position.
1883 if (P.leafOffset() == NewSize) {
1884 setNodeStop(IM.height, Node.stop(NewSize - 1));
1885 P.moveRight(IM.height);
1886 } else if (UpdateRoot && P.atBegin())
1887 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1888 }
1889
1890 /// eraseNode - Erase the current node at Level from its parent and move path to
1891 /// the first entry of the next sibling node.
1892 /// The node must be deallocated by the caller.
1893 /// @param Level 1..height, the root node cannot be erased.
1894 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1895 void IntervalMap<KeyT, ValT, N, Traits>::
eraseNode(unsigned Level)1896 iterator::eraseNode(unsigned Level) {
1897 assert(Level && "Cannot erase root node");
1898 IntervalMap &IM = *this->map;
1899 IntervalMapImpl::Path &P = this->path;
1900
1901 if (--Level == 0) {
1902 IM.rootBranch().erase(P.offset(0), IM.rootSize);
1903 P.setSize(0, --IM.rootSize);
1904 // If this cleared the root, switch to height=0.
1905 if (IM.empty()) {
1906 IM.switchRootToLeaf();
1907 this->setRoot(0);
1908 return;
1909 }
1910 } else {
1911 // Remove node ref from branch node at Level.
1912 Branch &Parent = P.node<Branch>(Level);
1913 if (P.size(Level) == 1) {
1914 // Branch node became empty, remove it recursively.
1915 IM.deleteNode(&Parent);
1916 eraseNode(Level);
1917 } else {
1918 // Branch node won't become empty.
1919 Parent.erase(P.offset(Level), P.size(Level));
1920 unsigned NewSize = P.size(Level) - 1;
1921 P.setSize(Level, NewSize);
1922 // If we removed the last branch, update stop and move to a legal pos.
1923 if (P.offset(Level) == NewSize) {
1924 setNodeStop(Level, Parent.stop(NewSize - 1));
1925 P.moveRight(Level);
1926 }
1927 }
1928 }
1929 // Update path cache for the new right sibling position.
1930 if (P.valid()) {
1931 P.reset(Level + 1);
1932 P.offset(Level + 1) = 0;
1933 }
1934 }
1935
1936 /// overflow - Distribute entries of the current node evenly among
1937 /// its siblings and ensure that the current node is not full.
1938 /// This may require allocating a new node.
1939 /// @param NodeT The type of node at Level (Leaf or Branch).
1940 /// @param Level path index of the overflowing node.
1941 /// @return True when the tree height was changed.
1942 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1943 template <typename NodeT>
1944 bool IntervalMap<KeyT, ValT, N, Traits>::
overflow(unsigned Level)1945 iterator::overflow(unsigned Level) {
1946 using namespace IntervalMapImpl;
1947 Path &P = this->path;
1948 unsigned CurSize[4];
1949 NodeT *Node[4];
1950 unsigned Nodes = 0;
1951 unsigned Elements = 0;
1952 unsigned Offset = P.offset(Level);
1953
1954 // Do we have a left sibling?
1955 NodeRef LeftSib = P.getLeftSibling(Level);
1956 if (LeftSib) {
1957 Offset += Elements = CurSize[Nodes] = LeftSib.size();
1958 Node[Nodes++] = &LeftSib.get<NodeT>();
1959 }
1960
1961 // Current node.
1962 Elements += CurSize[Nodes] = P.size(Level);
1963 Node[Nodes++] = &P.node<NodeT>(Level);
1964
1965 // Do we have a right sibling?
1966 NodeRef RightSib = P.getRightSibling(Level);
1967 if (RightSib) {
1968 Elements += CurSize[Nodes] = RightSib.size();
1969 Node[Nodes++] = &RightSib.get<NodeT>();
1970 }
1971
1972 // Do we need to allocate a new node?
1973 unsigned NewNode = 0;
1974 if (Elements + 1 > Nodes * NodeT::Capacity) {
1975 // Insert NewNode at the penultimate position, or after a single node.
1976 NewNode = Nodes == 1 ? 1 : Nodes - 1;
1977 CurSize[Nodes] = CurSize[NewNode];
1978 Node[Nodes] = Node[NewNode];
1979 CurSize[NewNode] = 0;
1980 Node[NewNode] = this->map->template newNode<NodeT>();
1981 ++Nodes;
1982 }
1983
1984 // Compute the new element distribution.
1985 unsigned NewSize[4];
1986 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1987 CurSize, NewSize, Offset, true);
1988 adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1989
1990 // Move current location to the leftmost node.
1991 if (LeftSib)
1992 P.moveLeft(Level);
1993
1994 // Elements have been rearranged, now update node sizes and stops.
1995 bool SplitRoot = false;
1996 unsigned Pos = 0;
1997 for (;;) {
1998 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
1999 if (NewNode && Pos == NewNode) {
2000 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2001 Level += SplitRoot;
2002 } else {
2003 P.setSize(Level, NewSize[Pos]);
2004 setNodeStop(Level, Stop);
2005 }
2006 if (Pos + 1 == Nodes)
2007 break;
2008 P.moveRight(Level);
2009 ++Pos;
2010 }
2011
2012 // Where was I? Find NewOffset.
2013 while(Pos != NewOffset.first) {
2014 P.moveLeft(Level);
2015 --Pos;
2016 }
2017 P.offset(Level) = NewOffset.second;
2018 return SplitRoot;
2019 }
2020
2021 //===----------------------------------------------------------------------===//
2022 //--- IntervalMapOverlaps ----//
2023 //===----------------------------------------------------------------------===//
2024
2025 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2026 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2027 /// should be the same.
2028 ///
2029 /// Typical uses:
2030 ///
2031 /// 1. Test for overlap:
2032 /// bool overlap = IntervalMapOverlaps(a, b).valid();
2033 ///
2034 /// 2. Enumerate overlaps:
2035 /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2036 ///
2037 template <typename MapA, typename MapB>
2038 class IntervalMapOverlaps {
2039 typedef typename MapA::KeyType KeyType;
2040 typedef typename MapA::KeyTraits Traits;
2041 typename MapA::const_iterator posA;
2042 typename MapB::const_iterator posB;
2043
2044 /// advance - Move posA and posB forward until reaching an overlap, or until
2045 /// either meets end.
2046 /// Don't move the iterators if they are already overlapping.
advance()2047 void advance() {
2048 if (!valid())
2049 return;
2050
2051 if (Traits::stopLess(posA.stop(), posB.start())) {
2052 // A ends before B begins. Catch up.
2053 posA.advanceTo(posB.start());
2054 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2055 return;
2056 } else if (Traits::stopLess(posB.stop(), posA.start())) {
2057 // B ends before A begins. Catch up.
2058 posB.advanceTo(posA.start());
2059 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2060 return;
2061 } else
2062 // Already overlapping.
2063 return;
2064
2065 for (;;) {
2066 // Make a.end > b.start.
2067 posA.advanceTo(posB.start());
2068 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2069 return;
2070 // Make b.end > a.start.
2071 posB.advanceTo(posA.start());
2072 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2073 return;
2074 }
2075 }
2076
2077 public:
2078 /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
IntervalMapOverlaps(const MapA & a,const MapB & b)2079 IntervalMapOverlaps(const MapA &a, const MapB &b)
2080 : posA(b.empty() ? a.end() : a.find(b.start())),
2081 posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2082
2083 /// valid - Return true if iterator is at an overlap.
valid()2084 bool valid() const {
2085 return posA.valid() && posB.valid();
2086 }
2087
2088 /// a - access the left hand side in the overlap.
a()2089 const typename MapA::const_iterator &a() const { return posA; }
2090
2091 /// b - access the right hand side in the overlap.
b()2092 const typename MapB::const_iterator &b() const { return posB; }
2093
2094 /// start - Beginning of the overlapping interval.
start()2095 KeyType start() const {
2096 KeyType ak = a().start();
2097 KeyType bk = b().start();
2098 return Traits::startLess(ak, bk) ? bk : ak;
2099 }
2100
2101 /// stop - End of the overlapping interval.
stop()2102 KeyType stop() const {
2103 KeyType ak = a().stop();
2104 KeyType bk = b().stop();
2105 return Traits::startLess(ak, bk) ? ak : bk;
2106 }
2107
2108 /// skipA - Move to the next overlap that doesn't involve a().
skipA()2109 void skipA() {
2110 ++posA;
2111 advance();
2112 }
2113
2114 /// skipB - Move to the next overlap that doesn't involve b().
skipB()2115 void skipB() {
2116 ++posB;
2117 advance();
2118 }
2119
2120 /// Preincrement - Move to the next overlap.
2121 IntervalMapOverlaps &operator++() {
2122 // Bump the iterator that ends first. The other one may have more overlaps.
2123 if (Traits::startLess(posB.stop(), posA.stop()))
2124 skipB();
2125 else
2126 skipA();
2127 return *this;
2128 }
2129
2130 /// advanceTo - Move to the first overlapping interval with
2131 /// stopLess(x, stop()).
advanceTo(KeyType x)2132 void advanceTo(KeyType x) {
2133 if (!valid())
2134 return;
2135 // Make sure advanceTo sees monotonic keys.
2136 if (Traits::stopLess(posA.stop(), x))
2137 posA.advanceTo(x);
2138 if (Traits::stopLess(posB.stop(), x))
2139 posB.advanceTo(x);
2140 advance();
2141 }
2142 };
2143
2144 } // namespace llvm
2145
2146 #endif
2147