1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Function.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/PHITransAddr.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/PredIteratorCache.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetData.h"
35 using namespace llvm;
36 
37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
40 
41 STATISTIC(NumCacheNonLocalPtr,
42           "Number of fully cached non-local ptr responses");
43 STATISTIC(NumCacheDirtyNonLocalPtr,
44           "Number of cached, but dirty, non-local ptr responses");
45 STATISTIC(NumUncacheNonLocalPtr,
46           "Number of uncached non-local ptr responses");
47 STATISTIC(NumCacheCompleteNonLocalPtr,
48           "Number of block queries that were completely cached");
49 
50 // Limit for the number of instructions to scan in a block.
51 // FIXME: Figure out what a sane value is for this.
52 //        (500 is relatively insane.)
53 static const int BlockScanLimit = 500;
54 
55 char MemoryDependenceAnalysis::ID = 0;
56 
57 // Register this pass...
58 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
59                 "Memory Dependence Analysis", false, true)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)60 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
61 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
62                       "Memory Dependence Analysis", false, true)
63 
64 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
65 : FunctionPass(ID), PredCache(0) {
66   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
67 }
~MemoryDependenceAnalysis()68 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
69 }
70 
71 /// Clean up memory in between runs
releaseMemory()72 void MemoryDependenceAnalysis::releaseMemory() {
73   LocalDeps.clear();
74   NonLocalDeps.clear();
75   NonLocalPointerDeps.clear();
76   ReverseLocalDeps.clear();
77   ReverseNonLocalDeps.clear();
78   ReverseNonLocalPtrDeps.clear();
79   PredCache->clear();
80 }
81 
82 
83 
84 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
85 ///
getAnalysisUsage(AnalysisUsage & AU) const86 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
87   AU.setPreservesAll();
88   AU.addRequiredTransitive<AliasAnalysis>();
89 }
90 
runOnFunction(Function &)91 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
92   AA = &getAnalysis<AliasAnalysis>();
93   TD = getAnalysisIfAvailable<TargetData>();
94   if (PredCache == 0)
95     PredCache.reset(new PredIteratorCache());
96   return false;
97 }
98 
99 /// RemoveFromReverseMap - This is a helper function that removes Val from
100 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
101 template <typename KeyTy>
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)102 static void RemoveFromReverseMap(DenseMap<Instruction*,
103                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
104                                  Instruction *Inst, KeyTy Val) {
105   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
106   InstIt = ReverseMap.find(Inst);
107   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
108   bool Found = InstIt->second.erase(Val);
109   assert(Found && "Invalid reverse map!"); (void)Found;
110   if (InstIt->second.empty())
111     ReverseMap.erase(InstIt);
112 }
113 
114 /// GetLocation - If the given instruction references a specific memory
115 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116 /// Return a ModRefInfo value describing the general behavior of the
117 /// instruction.
118 static
GetLocation(const Instruction * Inst,AliasAnalysis::Location & Loc,AliasAnalysis * AA)119 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
120                                         AliasAnalysis::Location &Loc,
121                                         AliasAnalysis *AA) {
122   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
123     if (LI->isUnordered()) {
124       Loc = AA->getLocation(LI);
125       return AliasAnalysis::Ref;
126     } else if (LI->getOrdering() == Monotonic) {
127       Loc = AA->getLocation(LI);
128       return AliasAnalysis::ModRef;
129     }
130     Loc = AliasAnalysis::Location();
131     return AliasAnalysis::ModRef;
132   }
133 
134   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
135     if (SI->isUnordered()) {
136       Loc = AA->getLocation(SI);
137       return AliasAnalysis::Mod;
138     } else if (SI->getOrdering() == Monotonic) {
139       Loc = AA->getLocation(SI);
140       return AliasAnalysis::ModRef;
141     }
142     Loc = AliasAnalysis::Location();
143     return AliasAnalysis::ModRef;
144   }
145 
146   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147     Loc = AA->getLocation(V);
148     return AliasAnalysis::ModRef;
149   }
150 
151   if (const CallInst *CI = isFreeCall(Inst)) {
152     // calls to free() deallocate the entire structure
153     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
154     return AliasAnalysis::Mod;
155   }
156 
157   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
158     switch (II->getIntrinsicID()) {
159     case Intrinsic::lifetime_start:
160     case Intrinsic::lifetime_end:
161     case Intrinsic::invariant_start:
162       Loc = AliasAnalysis::Location(II->getArgOperand(1),
163                                     cast<ConstantInt>(II->getArgOperand(0))
164                                       ->getZExtValue(),
165                                     II->getMetadata(LLVMContext::MD_tbaa));
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return AliasAnalysis::Mod;
169     case Intrinsic::invariant_end:
170       Loc = AliasAnalysis::Location(II->getArgOperand(2),
171                                     cast<ConstantInt>(II->getArgOperand(1))
172                                       ->getZExtValue(),
173                                     II->getMetadata(LLVMContext::MD_tbaa));
174       // These intrinsics don't really modify the memory, but returning Mod
175       // will allow them to be handled conservatively.
176       return AliasAnalysis::Mod;
177     default:
178       break;
179     }
180 
181   // Otherwise, just do the coarse-grained thing that always works.
182   if (Inst->mayWriteToMemory())
183     return AliasAnalysis::ModRef;
184   if (Inst->mayReadFromMemory())
185     return AliasAnalysis::Ref;
186   return AliasAnalysis::NoModRef;
187 }
188 
189 /// getCallSiteDependencyFrom - Private helper for finding the local
190 /// dependencies of a call site.
191 MemDepResult MemoryDependenceAnalysis::
getCallSiteDependencyFrom(CallSite CS,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)192 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
193                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
194   unsigned Limit = BlockScanLimit;
195 
196   // Walk backwards through the block, looking for dependencies
197   while (ScanIt != BB->begin()) {
198     // Limit the amount of scanning we do so we don't end up with quadratic
199     // running time on extreme testcases.
200     --Limit;
201     if (!Limit)
202       return MemDepResult::getUnknown();
203 
204     Instruction *Inst = --ScanIt;
205 
206     // If this inst is a memory op, get the pointer it accessed
207     AliasAnalysis::Location Loc;
208     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
209     if (Loc.Ptr) {
210       // A simple instruction.
211       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
212         return MemDepResult::getClobber(Inst);
213       continue;
214     }
215 
216     if (CallSite InstCS = cast<Value>(Inst)) {
217       // Debug intrinsics don't cause dependences.
218       if (isa<DbgInfoIntrinsic>(Inst)) continue;
219       // If these two calls do not interfere, look past it.
220       switch (AA->getModRefInfo(CS, InstCS)) {
221       case AliasAnalysis::NoModRef:
222         // If the two calls are the same, return InstCS as a Def, so that
223         // CS can be found redundant and eliminated.
224         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
225             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
226           return MemDepResult::getDef(Inst);
227 
228         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
229         // keep scanning.
230         break;
231       default:
232         return MemDepResult::getClobber(Inst);
233       }
234     }
235   }
236 
237   // No dependence found.  If this is the entry block of the function, it is
238   // unknown, otherwise it is non-local.
239   if (BB != &BB->getParent()->getEntryBlock())
240     return MemDepResult::getNonLocal();
241   return MemDepResult::getNonFuncLocal();
242 }
243 
244 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
245 /// would fully overlap MemLoc if done as a wider legal integer load.
246 ///
247 /// MemLocBase, MemLocOffset are lazily computed here the first time the
248 /// base/offs of memloc is needed.
249 static bool
isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location & MemLoc,const Value * & MemLocBase,int64_t & MemLocOffs,const LoadInst * LI,const TargetData * TD)250 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
251                                        const Value *&MemLocBase,
252                                        int64_t &MemLocOffs,
253                                        const LoadInst *LI,
254                                        const TargetData *TD) {
255   // If we have no target data, we can't do this.
256   if (TD == 0) return false;
257 
258   // If we haven't already computed the base/offset of MemLoc, do so now.
259   if (MemLocBase == 0)
260     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
261 
262   unsigned Size = MemoryDependenceAnalysis::
263     getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
264                                     LI, *TD);
265   return Size != 0;
266 }
267 
268 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
269 /// looks at a memory location for a load (specified by MemLocBase, Offs,
270 /// and Size) and compares it against a load.  If the specified load could
271 /// be safely widened to a larger integer load that is 1) still efficient,
272 /// 2) safe for the target, and 3) would provide the specified memory
273 /// location value, then this function returns the size in bytes of the
274 /// load width to use.  If not, this returns zero.
275 unsigned MemoryDependenceAnalysis::
getLoadLoadClobberFullWidthSize(const Value * MemLocBase,int64_t MemLocOffs,unsigned MemLocSize,const LoadInst * LI,const TargetData & TD)276 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
277                                 unsigned MemLocSize, const LoadInst *LI,
278                                 const TargetData &TD) {
279   // We can only extend simple integer loads.
280   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
281 
282   // Get the base of this load.
283   int64_t LIOffs = 0;
284   const Value *LIBase =
285     GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
286 
287   // If the two pointers are not based on the same pointer, we can't tell that
288   // they are related.
289   if (LIBase != MemLocBase) return 0;
290 
291   // Okay, the two values are based on the same pointer, but returned as
292   // no-alias.  This happens when we have things like two byte loads at "P+1"
293   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
294   // alignment (or the largest native integer type) will allow us to load all
295   // the bits required by MemLoc.
296 
297   // If MemLoc is before LI, then no widening of LI will help us out.
298   if (MemLocOffs < LIOffs) return 0;
299 
300   // Get the alignment of the load in bytes.  We assume that it is safe to load
301   // any legal integer up to this size without a problem.  For example, if we're
302   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
303   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
304   // to i16.
305   unsigned LoadAlign = LI->getAlignment();
306 
307   int64_t MemLocEnd = MemLocOffs+MemLocSize;
308 
309   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
310   if (LIOffs+LoadAlign < MemLocEnd) return 0;
311 
312   // This is the size of the load to try.  Start with the next larger power of
313   // two.
314   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
315   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
316 
317   while (1) {
318     // If this load size is bigger than our known alignment or would not fit
319     // into a native integer register, then we fail.
320     if (NewLoadByteSize > LoadAlign ||
321         !TD.fitsInLegalInteger(NewLoadByteSize*8))
322       return 0;
323 
324     // If a load of this width would include all of MemLoc, then we succeed.
325     if (LIOffs+NewLoadByteSize >= MemLocEnd)
326       return NewLoadByteSize;
327 
328     NewLoadByteSize <<= 1;
329   }
330 
331   return 0;
332 }
333 
334 /// getPointerDependencyFrom - Return the instruction on which a memory
335 /// location depends.  If isLoad is true, this routine ignores may-aliases with
336 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
337 /// with reads from read-only locations.
338 MemDepResult MemoryDependenceAnalysis::
getPointerDependencyFrom(const AliasAnalysis::Location & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB)339 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
340                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
341 
342   const Value *MemLocBase = 0;
343   int64_t MemLocOffset = 0;
344 
345   unsigned Limit = BlockScanLimit;
346 
347   // Walk backwards through the basic block, looking for dependencies.
348   while (ScanIt != BB->begin()) {
349     // Limit the amount of scanning we do so we don't end up with quadratic
350     // running time on extreme testcases.
351     --Limit;
352     if (!Limit)
353       return MemDepResult::getUnknown();
354 
355     Instruction *Inst = --ScanIt;
356 
357     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
358       // Debug intrinsics don't (and can't) cause dependences.
359       if (isa<DbgInfoIntrinsic>(II)) continue;
360 
361       // If we reach a lifetime begin or end marker, then the query ends here
362       // because the value is undefined.
363       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
364         // FIXME: This only considers queries directly on the invariant-tagged
365         // pointer, not on query pointers that are indexed off of them.  It'd
366         // be nice to handle that at some point (the right approach is to use
367         // GetPointerBaseWithConstantOffset).
368         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
369                             MemLoc))
370           return MemDepResult::getDef(II);
371         continue;
372       }
373     }
374 
375     // Values depend on loads if the pointers are must aliased.  This means that
376     // a load depends on another must aliased load from the same value.
377     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
378       // Atomic loads have complications involved.
379       // FIXME: This is overly conservative.
380       if (!LI->isUnordered())
381         return MemDepResult::getClobber(LI);
382 
383       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
384 
385       // If we found a pointer, check if it could be the same as our pointer.
386       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
387 
388       if (isLoad) {
389         if (R == AliasAnalysis::NoAlias) {
390           // If this is an over-aligned integer load (for example,
391           // "load i8* %P, align 4") see if it would obviously overlap with the
392           // queried location if widened to a larger load (e.g. if the queried
393           // location is 1 byte at P+1).  If so, return it as a load/load
394           // clobber result, allowing the client to decide to widen the load if
395           // it wants to.
396           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
397             if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
398                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
399                                                        MemLocOffset, LI, TD))
400               return MemDepResult::getClobber(Inst);
401 
402           continue;
403         }
404 
405         // Must aliased loads are defs of each other.
406         if (R == AliasAnalysis::MustAlias)
407           return MemDepResult::getDef(Inst);
408 
409 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
410       // in terms of clobbering loads, but since it does this by looking
411       // at the clobbering load directly, it doesn't know about any
412       // phi translation that may have happened along the way.
413 
414         // If we have a partial alias, then return this as a clobber for the
415         // client to handle.
416         if (R == AliasAnalysis::PartialAlias)
417           return MemDepResult::getClobber(Inst);
418 #endif
419 
420         // Random may-alias loads don't depend on each other without a
421         // dependence.
422         continue;
423       }
424 
425       // Stores don't depend on other no-aliased accesses.
426       if (R == AliasAnalysis::NoAlias)
427         continue;
428 
429       // Stores don't alias loads from read-only memory.
430       if (AA->pointsToConstantMemory(LoadLoc))
431         continue;
432 
433       // Stores depend on may/must aliased loads.
434       return MemDepResult::getDef(Inst);
435     }
436 
437     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
438       // Atomic stores have complications involved.
439       // FIXME: This is overly conservative.
440       if (!SI->isUnordered())
441         return MemDepResult::getClobber(SI);
442 
443       // If alias analysis can tell that this store is guaranteed to not modify
444       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
445       // the query pointer points to constant memory etc.
446       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
447         continue;
448 
449       // Ok, this store might clobber the query pointer.  Check to see if it is
450       // a must alias: in this case, we want to return this as a def.
451       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
452 
453       // If we found a pointer, check if it could be the same as our pointer.
454       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
455 
456       if (R == AliasAnalysis::NoAlias)
457         continue;
458       if (R == AliasAnalysis::MustAlias)
459         return MemDepResult::getDef(Inst);
460       return MemDepResult::getClobber(Inst);
461     }
462 
463     // If this is an allocation, and if we know that the accessed pointer is to
464     // the allocation, return Def.  This means that there is no dependence and
465     // the access can be optimized based on that.  For example, a load could
466     // turn into undef.
467     // Note: Only determine this to be a malloc if Inst is the malloc call, not
468     // a subsequent bitcast of the malloc call result.  There can be stores to
469     // the malloced memory between the malloc call and its bitcast uses, and we
470     // need to continue scanning until the malloc call.
471     if (isa<AllocaInst>(Inst) ||
472         (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
473       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
474 
475       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
476         return MemDepResult::getDef(Inst);
477       continue;
478     }
479 
480     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
481     switch (AA->getModRefInfo(Inst, MemLoc)) {
482     case AliasAnalysis::NoModRef:
483       // If the call has no effect on the queried pointer, just ignore it.
484       continue;
485     case AliasAnalysis::Mod:
486       return MemDepResult::getClobber(Inst);
487     case AliasAnalysis::Ref:
488       // If the call is known to never store to the pointer, and if this is a
489       // load query, we can safely ignore it (scan past it).
490       if (isLoad)
491         continue;
492     default:
493       // Otherwise, there is a potential dependence.  Return a clobber.
494       return MemDepResult::getClobber(Inst);
495     }
496   }
497 
498   // No dependence found.  If this is the entry block of the function, it is
499   // unknown, otherwise it is non-local.
500   if (BB != &BB->getParent()->getEntryBlock())
501     return MemDepResult::getNonLocal();
502   return MemDepResult::getNonFuncLocal();
503 }
504 
505 /// getDependency - Return the instruction on which a memory operation
506 /// depends.
getDependency(Instruction * QueryInst)507 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
508   Instruction *ScanPos = QueryInst;
509 
510   // Check for a cached result
511   MemDepResult &LocalCache = LocalDeps[QueryInst];
512 
513   // If the cached entry is non-dirty, just return it.  Note that this depends
514   // on MemDepResult's default constructing to 'dirty'.
515   if (!LocalCache.isDirty())
516     return LocalCache;
517 
518   // Otherwise, if we have a dirty entry, we know we can start the scan at that
519   // instruction, which may save us some work.
520   if (Instruction *Inst = LocalCache.getInst()) {
521     ScanPos = Inst;
522 
523     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
524   }
525 
526   BasicBlock *QueryParent = QueryInst->getParent();
527 
528   // Do the scan.
529   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
530     // No dependence found.  If this is the entry block of the function, it is
531     // unknown, otherwise it is non-local.
532     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
533       LocalCache = MemDepResult::getNonLocal();
534     else
535       LocalCache = MemDepResult::getNonFuncLocal();
536   } else {
537     AliasAnalysis::Location MemLoc;
538     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
539     if (MemLoc.Ptr) {
540       // If we can do a pointer scan, make it happen.
541       bool isLoad = !(MR & AliasAnalysis::Mod);
542       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
543         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
544 
545       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
546                                             QueryParent);
547     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
548       CallSite QueryCS(QueryInst);
549       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
550       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
551                                              QueryParent);
552     } else
553       // Non-memory instruction.
554       LocalCache = MemDepResult::getUnknown();
555   }
556 
557   // Remember the result!
558   if (Instruction *I = LocalCache.getInst())
559     ReverseLocalDeps[I].insert(QueryInst);
560 
561   return LocalCache;
562 }
563 
564 #ifndef NDEBUG
565 /// AssertSorted - This method is used when -debug is specified to verify that
566 /// cache arrays are properly kept sorted.
AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,int Count=-1)567 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
568                          int Count = -1) {
569   if (Count == -1) Count = Cache.size();
570   if (Count == 0) return;
571 
572   for (unsigned i = 1; i != unsigned(Count); ++i)
573     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
574 }
575 #endif
576 
577 /// getNonLocalCallDependency - Perform a full dependency query for the
578 /// specified call, returning the set of blocks that the value is
579 /// potentially live across.  The returned set of results will include a
580 /// "NonLocal" result for all blocks where the value is live across.
581 ///
582 /// This method assumes the instruction returns a "NonLocal" dependency
583 /// within its own block.
584 ///
585 /// This returns a reference to an internal data structure that may be
586 /// invalidated on the next non-local query or when an instruction is
587 /// removed.  Clients must copy this data if they want it around longer than
588 /// that.
589 const MemoryDependenceAnalysis::NonLocalDepInfo &
getNonLocalCallDependency(CallSite QueryCS)590 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
591   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
592  "getNonLocalCallDependency should only be used on calls with non-local deps!");
593   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
594   NonLocalDepInfo &Cache = CacheP.first;
595 
596   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
597   /// the cached case, this can happen due to instructions being deleted etc. In
598   /// the uncached case, this starts out as the set of predecessors we care
599   /// about.
600   SmallVector<BasicBlock*, 32> DirtyBlocks;
601 
602   if (!Cache.empty()) {
603     // Okay, we have a cache entry.  If we know it is not dirty, just return it
604     // with no computation.
605     if (!CacheP.second) {
606       ++NumCacheNonLocal;
607       return Cache;
608     }
609 
610     // If we already have a partially computed set of results, scan them to
611     // determine what is dirty, seeding our initial DirtyBlocks worklist.
612     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
613        I != E; ++I)
614       if (I->getResult().isDirty())
615         DirtyBlocks.push_back(I->getBB());
616 
617     // Sort the cache so that we can do fast binary search lookups below.
618     std::sort(Cache.begin(), Cache.end());
619 
620     ++NumCacheDirtyNonLocal;
621     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
622     //     << Cache.size() << " cached: " << *QueryInst;
623   } else {
624     // Seed DirtyBlocks with each of the preds of QueryInst's block.
625     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
626     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
627       DirtyBlocks.push_back(*PI);
628     ++NumUncacheNonLocal;
629   }
630 
631   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
632   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
633 
634   SmallPtrSet<BasicBlock*, 64> Visited;
635 
636   unsigned NumSortedEntries = Cache.size();
637   DEBUG(AssertSorted(Cache));
638 
639   // Iterate while we still have blocks to update.
640   while (!DirtyBlocks.empty()) {
641     BasicBlock *DirtyBB = DirtyBlocks.back();
642     DirtyBlocks.pop_back();
643 
644     // Already processed this block?
645     if (!Visited.insert(DirtyBB))
646       continue;
647 
648     // Do a binary search to see if we already have an entry for this block in
649     // the cache set.  If so, find it.
650     DEBUG(AssertSorted(Cache, NumSortedEntries));
651     NonLocalDepInfo::iterator Entry =
652       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
653                        NonLocalDepEntry(DirtyBB));
654     if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
655       --Entry;
656 
657     NonLocalDepEntry *ExistingResult = 0;
658     if (Entry != Cache.begin()+NumSortedEntries &&
659         Entry->getBB() == DirtyBB) {
660       // If we already have an entry, and if it isn't already dirty, the block
661       // is done.
662       if (!Entry->getResult().isDirty())
663         continue;
664 
665       // Otherwise, remember this slot so we can update the value.
666       ExistingResult = &*Entry;
667     }
668 
669     // If the dirty entry has a pointer, start scanning from it so we don't have
670     // to rescan the entire block.
671     BasicBlock::iterator ScanPos = DirtyBB->end();
672     if (ExistingResult) {
673       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
674         ScanPos = Inst;
675         // We're removing QueryInst's use of Inst.
676         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
677                              QueryCS.getInstruction());
678       }
679     }
680 
681     // Find out if this block has a local dependency for QueryInst.
682     MemDepResult Dep;
683 
684     if (ScanPos != DirtyBB->begin()) {
685       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
686     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
687       // No dependence found.  If this is the entry block of the function, it is
688       // a clobber, otherwise it is unknown.
689       Dep = MemDepResult::getNonLocal();
690     } else {
691       Dep = MemDepResult::getNonFuncLocal();
692     }
693 
694     // If we had a dirty entry for the block, update it.  Otherwise, just add
695     // a new entry.
696     if (ExistingResult)
697       ExistingResult->setResult(Dep);
698     else
699       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
700 
701     // If the block has a dependency (i.e. it isn't completely transparent to
702     // the value), remember the association!
703     if (!Dep.isNonLocal()) {
704       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
705       // update this when we remove instructions.
706       if (Instruction *Inst = Dep.getInst())
707         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
708     } else {
709 
710       // If the block *is* completely transparent to the load, we need to check
711       // the predecessors of this block.  Add them to our worklist.
712       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
713         DirtyBlocks.push_back(*PI);
714     }
715   }
716 
717   return Cache;
718 }
719 
720 /// getNonLocalPointerDependency - Perform a full dependency query for an
721 /// access to the specified (non-volatile) memory location, returning the
722 /// set of instructions that either define or clobber the value.
723 ///
724 /// This method assumes the pointer has a "NonLocal" dependency within its
725 /// own block.
726 ///
727 void MemoryDependenceAnalysis::
getNonLocalPointerDependency(const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * FromBB,SmallVectorImpl<NonLocalDepResult> & Result)728 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
729                              BasicBlock *FromBB,
730                              SmallVectorImpl<NonLocalDepResult> &Result) {
731   assert(Loc.Ptr->getType()->isPointerTy() &&
732          "Can't get pointer deps of a non-pointer!");
733   Result.clear();
734 
735   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
736 
737   // This is the set of blocks we've inspected, and the pointer we consider in
738   // each block.  Because of critical edges, we currently bail out if querying
739   // a block with multiple different pointers.  This can happen during PHI
740   // translation.
741   DenseMap<BasicBlock*, Value*> Visited;
742   if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
743                                    Result, Visited, true))
744     return;
745   Result.clear();
746   Result.push_back(NonLocalDepResult(FromBB,
747                                      MemDepResult::getUnknown(),
748                                      const_cast<Value *>(Loc.Ptr)));
749 }
750 
751 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
752 /// Pointer/PointeeSize using either cached information in Cache or by doing a
753 /// lookup (which may use dirty cache info if available).  If we do a lookup,
754 /// add the result to the cache.
755 MemDepResult MemoryDependenceAnalysis::
GetNonLocalInfoForBlock(const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries)756 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
757                         bool isLoad, BasicBlock *BB,
758                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
759 
760   // Do a binary search to see if we already have an entry for this block in
761   // the cache set.  If so, find it.
762   NonLocalDepInfo::iterator Entry =
763     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
764                      NonLocalDepEntry(BB));
765   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
766     --Entry;
767 
768   NonLocalDepEntry *ExistingResult = 0;
769   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
770     ExistingResult = &*Entry;
771 
772   // If we have a cached entry, and it is non-dirty, use it as the value for
773   // this dependency.
774   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
775     ++NumCacheNonLocalPtr;
776     return ExistingResult->getResult();
777   }
778 
779   // Otherwise, we have to scan for the value.  If we have a dirty cache
780   // entry, start scanning from its position, otherwise we scan from the end
781   // of the block.
782   BasicBlock::iterator ScanPos = BB->end();
783   if (ExistingResult && ExistingResult->getResult().getInst()) {
784     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
785            "Instruction invalidated?");
786     ++NumCacheDirtyNonLocalPtr;
787     ScanPos = ExistingResult->getResult().getInst();
788 
789     // Eliminating the dirty entry from 'Cache', so update the reverse info.
790     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
791     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
792   } else {
793     ++NumUncacheNonLocalPtr;
794   }
795 
796   // Scan the block for the dependency.
797   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
798 
799   // If we had a dirty entry for the block, update it.  Otherwise, just add
800   // a new entry.
801   if (ExistingResult)
802     ExistingResult->setResult(Dep);
803   else
804     Cache->push_back(NonLocalDepEntry(BB, Dep));
805 
806   // If the block has a dependency (i.e. it isn't completely transparent to
807   // the value), remember the reverse association because we just added it
808   // to Cache!
809   if (!Dep.isDef() && !Dep.isClobber())
810     return Dep;
811 
812   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
813   // update MemDep when we remove instructions.
814   Instruction *Inst = Dep.getInst();
815   assert(Inst && "Didn't depend on anything?");
816   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
817   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
818   return Dep;
819 }
820 
821 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
822 /// number of elements in the array that are already properly ordered.  This is
823 /// optimized for the case when only a few entries are added.
824 static void
SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,unsigned NumSortedEntries)825 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
826                          unsigned NumSortedEntries) {
827   switch (Cache.size() - NumSortedEntries) {
828   case 0:
829     // done, no new entries.
830     break;
831   case 2: {
832     // Two new entries, insert the last one into place.
833     NonLocalDepEntry Val = Cache.back();
834     Cache.pop_back();
835     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
836       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
837     Cache.insert(Entry, Val);
838     // FALL THROUGH.
839   }
840   case 1:
841     // One new entry, Just insert the new value at the appropriate position.
842     if (Cache.size() != 1) {
843       NonLocalDepEntry Val = Cache.back();
844       Cache.pop_back();
845       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
846         std::upper_bound(Cache.begin(), Cache.end(), Val);
847       Cache.insert(Entry, Val);
848     }
849     break;
850   default:
851     // Added many values, do a full scale sort.
852     std::sort(Cache.begin(), Cache.end());
853     break;
854   }
855 }
856 
857 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
858 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
859 /// results to the results vector and keep track of which blocks are visited in
860 /// 'Visited'.
861 ///
862 /// This has special behavior for the first block queries (when SkipFirstBlock
863 /// is true).  In this special case, it ignores the contents of the specified
864 /// block and starts returning dependence info for its predecessors.
865 ///
866 /// This function returns false on success, or true to indicate that it could
867 /// not compute dependence information for some reason.  This should be treated
868 /// as a clobber dependence on the first instruction in the predecessor block.
869 bool MemoryDependenceAnalysis::
getNonLocalPointerDepFromBB(const PHITransAddr & Pointer,const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock)870 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
871                             const AliasAnalysis::Location &Loc,
872                             bool isLoad, BasicBlock *StartBB,
873                             SmallVectorImpl<NonLocalDepResult> &Result,
874                             DenseMap<BasicBlock*, Value*> &Visited,
875                             bool SkipFirstBlock) {
876 
877   // Look up the cached info for Pointer.
878   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
879 
880   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
881   // CacheKey, this value will be inserted as the associated value. Otherwise,
882   // it'll be ignored, and we'll have to check to see if the cached size and
883   // tbaa tag are consistent with the current query.
884   NonLocalPointerInfo InitialNLPI;
885   InitialNLPI.Size = Loc.Size;
886   InitialNLPI.TBAATag = Loc.TBAATag;
887 
888   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
889   // already have one.
890   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
891     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
892   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
893 
894   // If we already have a cache entry for this CacheKey, we may need to do some
895   // work to reconcile the cache entry and the current query.
896   if (!Pair.second) {
897     if (CacheInfo->Size < Loc.Size) {
898       // The query's Size is greater than the cached one. Throw out the
899       // cached data and procede with the query at the greater size.
900       CacheInfo->Pair = BBSkipFirstBlockPair();
901       CacheInfo->Size = Loc.Size;
902       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
903            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
904         if (Instruction *Inst = DI->getResult().getInst())
905           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
906       CacheInfo->NonLocalDeps.clear();
907     } else if (CacheInfo->Size > Loc.Size) {
908       // This query's Size is less than the cached one. Conservatively restart
909       // the query using the greater size.
910       return getNonLocalPointerDepFromBB(Pointer,
911                                          Loc.getWithNewSize(CacheInfo->Size),
912                                          isLoad, StartBB, Result, Visited,
913                                          SkipFirstBlock);
914     }
915 
916     // If the query's TBAATag is inconsistent with the cached one,
917     // conservatively throw out the cached data and restart the query with
918     // no tag if needed.
919     if (CacheInfo->TBAATag != Loc.TBAATag) {
920       if (CacheInfo->TBAATag) {
921         CacheInfo->Pair = BBSkipFirstBlockPair();
922         CacheInfo->TBAATag = 0;
923         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
924              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
925           if (Instruction *Inst = DI->getResult().getInst())
926             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
927         CacheInfo->NonLocalDeps.clear();
928       }
929       if (Loc.TBAATag)
930         return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
931                                            isLoad, StartBB, Result, Visited,
932                                            SkipFirstBlock);
933     }
934   }
935 
936   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
937 
938   // If we have valid cached information for exactly the block we are
939   // investigating, just return it with no recomputation.
940   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
941     // We have a fully cached result for this query then we can just return the
942     // cached results and populate the visited set.  However, we have to verify
943     // that we don't already have conflicting results for these blocks.  Check
944     // to ensure that if a block in the results set is in the visited set that
945     // it was for the same pointer query.
946     if (!Visited.empty()) {
947       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
948            I != E; ++I) {
949         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
950         if (VI == Visited.end() || VI->second == Pointer.getAddr())
951           continue;
952 
953         // We have a pointer mismatch in a block.  Just return clobber, saying
954         // that something was clobbered in this result.  We could also do a
955         // non-fully cached query, but there is little point in doing this.
956         return true;
957       }
958     }
959 
960     Value *Addr = Pointer.getAddr();
961     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
962          I != E; ++I) {
963       Visited.insert(std::make_pair(I->getBB(), Addr));
964       if (!I->getResult().isNonLocal())
965         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
966     }
967     ++NumCacheCompleteNonLocalPtr;
968     return false;
969   }
970 
971   // Otherwise, either this is a new block, a block with an invalid cache
972   // pointer or one that we're about to invalidate by putting more info into it
973   // than its valid cache info.  If empty, the result will be valid cache info,
974   // otherwise it isn't.
975   if (Cache->empty())
976     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
977   else
978     CacheInfo->Pair = BBSkipFirstBlockPair();
979 
980   SmallVector<BasicBlock*, 32> Worklist;
981   Worklist.push_back(StartBB);
982 
983   // PredList used inside loop.
984   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
985 
986   // Keep track of the entries that we know are sorted.  Previously cached
987   // entries will all be sorted.  The entries we add we only sort on demand (we
988   // don't insert every element into its sorted position).  We know that we
989   // won't get any reuse from currently inserted values, because we don't
990   // revisit blocks after we insert info for them.
991   unsigned NumSortedEntries = Cache->size();
992   DEBUG(AssertSorted(*Cache));
993 
994   while (!Worklist.empty()) {
995     BasicBlock *BB = Worklist.pop_back_val();
996 
997     // Skip the first block if we have it.
998     if (!SkipFirstBlock) {
999       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1000       // been here.
1001       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1002 
1003       // Get the dependency info for Pointer in BB.  If we have cached
1004       // information, we will use it, otherwise we compute it.
1005       DEBUG(AssertSorted(*Cache, NumSortedEntries));
1006       MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1007                                                  NumSortedEntries);
1008 
1009       // If we got a Def or Clobber, add this to the list of results.
1010       if (!Dep.isNonLocal()) {
1011         Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1012         continue;
1013       }
1014     }
1015 
1016     // If 'Pointer' is an instruction defined in this block, then we need to do
1017     // phi translation to change it into a value live in the predecessor block.
1018     // If not, we just add the predecessors to the worklist and scan them with
1019     // the same Pointer.
1020     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1021       SkipFirstBlock = false;
1022       SmallVector<BasicBlock*, 16> NewBlocks;
1023       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1024         // Verify that we haven't looked at this block yet.
1025         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1026           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1027         if (InsertRes.second) {
1028           // First time we've looked at *PI.
1029           NewBlocks.push_back(*PI);
1030           continue;
1031         }
1032 
1033         // If we have seen this block before, but it was with a different
1034         // pointer then we have a phi translation failure and we have to treat
1035         // this as a clobber.
1036         if (InsertRes.first->second != Pointer.getAddr()) {
1037           // Make sure to clean up the Visited map before continuing on to
1038           // PredTranslationFailure.
1039           for (unsigned i = 0; i < NewBlocks.size(); i++)
1040             Visited.erase(NewBlocks[i]);
1041           goto PredTranslationFailure;
1042         }
1043       }
1044       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1045       continue;
1046     }
1047 
1048     // We do need to do phi translation, if we know ahead of time we can't phi
1049     // translate this value, don't even try.
1050     if (!Pointer.IsPotentiallyPHITranslatable())
1051       goto PredTranslationFailure;
1052 
1053     // We may have added values to the cache list before this PHI translation.
1054     // If so, we haven't done anything to ensure that the cache remains sorted.
1055     // Sort it now (if needed) so that recursive invocations of
1056     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1057     // value will only see properly sorted cache arrays.
1058     if (Cache && NumSortedEntries != Cache->size()) {
1059       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1060       NumSortedEntries = Cache->size();
1061     }
1062     Cache = 0;
1063 
1064     PredList.clear();
1065     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1066       BasicBlock *Pred = *PI;
1067       PredList.push_back(std::make_pair(Pred, Pointer));
1068 
1069       // Get the PHI translated pointer in this predecessor.  This can fail if
1070       // not translatable, in which case the getAddr() returns null.
1071       PHITransAddr &PredPointer = PredList.back().second;
1072       PredPointer.PHITranslateValue(BB, Pred, 0);
1073 
1074       Value *PredPtrVal = PredPointer.getAddr();
1075 
1076       // Check to see if we have already visited this pred block with another
1077       // pointer.  If so, we can't do this lookup.  This failure can occur
1078       // with PHI translation when a critical edge exists and the PHI node in
1079       // the successor translates to a pointer value different than the
1080       // pointer the block was first analyzed with.
1081       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1082         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1083 
1084       if (!InsertRes.second) {
1085         // We found the pred; take it off the list of preds to visit.
1086         PredList.pop_back();
1087 
1088         // If the predecessor was visited with PredPtr, then we already did
1089         // the analysis and can ignore it.
1090         if (InsertRes.first->second == PredPtrVal)
1091           continue;
1092 
1093         // Otherwise, the block was previously analyzed with a different
1094         // pointer.  We can't represent the result of this case, so we just
1095         // treat this as a phi translation failure.
1096 
1097         // Make sure to clean up the Visited map before continuing on to
1098         // PredTranslationFailure.
1099         for (unsigned i = 0; i < PredList.size(); i++)
1100           Visited.erase(PredList[i].first);
1101 
1102         goto PredTranslationFailure;
1103       }
1104     }
1105 
1106     // Actually process results here; this need to be a separate loop to avoid
1107     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1108     // any results for.  (getNonLocalPointerDepFromBB will modify our
1109     // datastructures in ways the code after the PredTranslationFailure label
1110     // doesn't expect.)
1111     for (unsigned i = 0; i < PredList.size(); i++) {
1112       BasicBlock *Pred = PredList[i].first;
1113       PHITransAddr &PredPointer = PredList[i].second;
1114       Value *PredPtrVal = PredPointer.getAddr();
1115 
1116       bool CanTranslate = true;
1117       // If PHI translation was unable to find an available pointer in this
1118       // predecessor, then we have to assume that the pointer is clobbered in
1119       // that predecessor.  We can still do PRE of the load, which would insert
1120       // a computation of the pointer in this predecessor.
1121       if (PredPtrVal == 0)
1122         CanTranslate = false;
1123 
1124       // FIXME: it is entirely possible that PHI translating will end up with
1125       // the same value.  Consider PHI translating something like:
1126       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1127       // to recurse here, pedantically speaking.
1128 
1129       // If getNonLocalPointerDepFromBB fails here, that means the cached
1130       // result conflicted with the Visited list; we have to conservatively
1131       // assume it is unknown, but this also does not block PRE of the load.
1132       if (!CanTranslate ||
1133           getNonLocalPointerDepFromBB(PredPointer,
1134                                       Loc.getWithNewPtr(PredPtrVal),
1135                                       isLoad, Pred,
1136                                       Result, Visited)) {
1137         // Add the entry to the Result list.
1138         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1139         Result.push_back(Entry);
1140 
1141         // Since we had a phi translation failure, the cache for CacheKey won't
1142         // include all of the entries that we need to immediately satisfy future
1143         // queries.  Mark this in NonLocalPointerDeps by setting the
1144         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1145         // cached value to do more work but not miss the phi trans failure.
1146         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1147         NLPI.Pair = BBSkipFirstBlockPair();
1148         continue;
1149       }
1150     }
1151 
1152     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1153     CacheInfo = &NonLocalPointerDeps[CacheKey];
1154     Cache = &CacheInfo->NonLocalDeps;
1155     NumSortedEntries = Cache->size();
1156 
1157     // Since we did phi translation, the "Cache" set won't contain all of the
1158     // results for the query.  This is ok (we can still use it to accelerate
1159     // specific block queries) but we can't do the fastpath "return all
1160     // results from the set"  Clear out the indicator for this.
1161     CacheInfo->Pair = BBSkipFirstBlockPair();
1162     SkipFirstBlock = false;
1163     continue;
1164 
1165   PredTranslationFailure:
1166     // The following code is "failure"; we can't produce a sane translation
1167     // for the given block.  It assumes that we haven't modified any of
1168     // our datastructures while processing the current block.
1169 
1170     if (Cache == 0) {
1171       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1172       CacheInfo = &NonLocalPointerDeps[CacheKey];
1173       Cache = &CacheInfo->NonLocalDeps;
1174       NumSortedEntries = Cache->size();
1175     }
1176 
1177     // Since we failed phi translation, the "Cache" set won't contain all of the
1178     // results for the query.  This is ok (we can still use it to accelerate
1179     // specific block queries) but we can't do the fastpath "return all
1180     // results from the set".  Clear out the indicator for this.
1181     CacheInfo->Pair = BBSkipFirstBlockPair();
1182 
1183     // If *nothing* works, mark the pointer as unknown.
1184     //
1185     // If this is the magic first block, return this as a clobber of the whole
1186     // incoming value.  Since we can't phi translate to one of the predecessors,
1187     // we have to bail out.
1188     if (SkipFirstBlock)
1189       return true;
1190 
1191     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1192       assert(I != Cache->rend() && "Didn't find current block??");
1193       if (I->getBB() != BB)
1194         continue;
1195 
1196       assert(I->getResult().isNonLocal() &&
1197              "Should only be here with transparent block");
1198       I->setResult(MemDepResult::getUnknown());
1199       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1200                                          Pointer.getAddr()));
1201       break;
1202     }
1203   }
1204 
1205   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1206   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1207   DEBUG(AssertSorted(*Cache));
1208   return false;
1209 }
1210 
1211 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1212 /// CachedNonLocalPointerInfo, remove it.
1213 void MemoryDependenceAnalysis::
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P)1214 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1215   CachedNonLocalPointerInfo::iterator It =
1216     NonLocalPointerDeps.find(P);
1217   if (It == NonLocalPointerDeps.end()) return;
1218 
1219   // Remove all of the entries in the BB->val map.  This involves removing
1220   // instructions from the reverse map.
1221   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1222 
1223   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1224     Instruction *Target = PInfo[i].getResult().getInst();
1225     if (Target == 0) continue;  // Ignore non-local dep results.
1226     assert(Target->getParent() == PInfo[i].getBB());
1227 
1228     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1229     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1230   }
1231 
1232   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1233   NonLocalPointerDeps.erase(It);
1234 }
1235 
1236 
1237 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1238 /// information about the specified pointer, because it may be too
1239 /// conservative in memdep.  This is an optional call that can be used when
1240 /// the client detects an equivalence between the pointer and some other
1241 /// value and replaces the other value with ptr. This can make Ptr available
1242 /// in more places that cached info does not necessarily keep.
invalidateCachedPointerInfo(Value * Ptr)1243 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1244   // If Ptr isn't really a pointer, just ignore it.
1245   if (!Ptr->getType()->isPointerTy()) return;
1246   // Flush store info for the pointer.
1247   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1248   // Flush load info for the pointer.
1249   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1250 }
1251 
1252 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1253 /// This needs to be done when the CFG changes, e.g., due to splitting
1254 /// critical edges.
invalidateCachedPredecessors()1255 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1256   PredCache->clear();
1257 }
1258 
1259 /// removeInstruction - Remove an instruction from the dependence analysis,
1260 /// updating the dependence of instructions that previously depended on it.
1261 /// This method attempts to keep the cache coherent using the reverse map.
removeInstruction(Instruction * RemInst)1262 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1263   // Walk through the Non-local dependencies, removing this one as the value
1264   // for any cached queries.
1265   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1266   if (NLDI != NonLocalDeps.end()) {
1267     NonLocalDepInfo &BlockMap = NLDI->second.first;
1268     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1269          DI != DE; ++DI)
1270       if (Instruction *Inst = DI->getResult().getInst())
1271         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1272     NonLocalDeps.erase(NLDI);
1273   }
1274 
1275   // If we have a cached local dependence query for this instruction, remove it.
1276   //
1277   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1278   if (LocalDepEntry != LocalDeps.end()) {
1279     // Remove us from DepInst's reverse set now that the local dep info is gone.
1280     if (Instruction *Inst = LocalDepEntry->second.getInst())
1281       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1282 
1283     // Remove this local dependency info.
1284     LocalDeps.erase(LocalDepEntry);
1285   }
1286 
1287   // If we have any cached pointer dependencies on this instruction, remove
1288   // them.  If the instruction has non-pointer type, then it can't be a pointer
1289   // base.
1290 
1291   // Remove it from both the load info and the store info.  The instruction
1292   // can't be in either of these maps if it is non-pointer.
1293   if (RemInst->getType()->isPointerTy()) {
1294     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1295     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1296   }
1297 
1298   // Loop over all of the things that depend on the instruction we're removing.
1299   //
1300   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1301 
1302   // If we find RemInst as a clobber or Def in any of the maps for other values,
1303   // we need to replace its entry with a dirty version of the instruction after
1304   // it.  If RemInst is a terminator, we use a null dirty value.
1305   //
1306   // Using a dirty version of the instruction after RemInst saves having to scan
1307   // the entire block to get to this point.
1308   MemDepResult NewDirtyVal;
1309   if (!RemInst->isTerminator())
1310     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1311 
1312   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1313   if (ReverseDepIt != ReverseLocalDeps.end()) {
1314     SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1315     // RemInst can't be the terminator if it has local stuff depending on it.
1316     assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1317            "Nothing can locally depend on a terminator");
1318 
1319     for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1320          E = ReverseDeps.end(); I != E; ++I) {
1321       Instruction *InstDependingOnRemInst = *I;
1322       assert(InstDependingOnRemInst != RemInst &&
1323              "Already removed our local dep info");
1324 
1325       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1326 
1327       // Make sure to remember that new things depend on NewDepInst.
1328       assert(NewDirtyVal.getInst() && "There is no way something else can have "
1329              "a local dep on this if it is a terminator!");
1330       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1331                                                 InstDependingOnRemInst));
1332     }
1333 
1334     ReverseLocalDeps.erase(ReverseDepIt);
1335 
1336     // Add new reverse deps after scanning the set, to avoid invalidating the
1337     // 'ReverseDeps' reference.
1338     while (!ReverseDepsToAdd.empty()) {
1339       ReverseLocalDeps[ReverseDepsToAdd.back().first]
1340         .insert(ReverseDepsToAdd.back().second);
1341       ReverseDepsToAdd.pop_back();
1342     }
1343   }
1344 
1345   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1346   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1347     SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1348     for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1349          I != E; ++I) {
1350       assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1351 
1352       PerInstNLInfo &INLD = NonLocalDeps[*I];
1353       // The information is now dirty!
1354       INLD.second = true;
1355 
1356       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1357            DE = INLD.first.end(); DI != DE; ++DI) {
1358         if (DI->getResult().getInst() != RemInst) continue;
1359 
1360         // Convert to a dirty entry for the subsequent instruction.
1361         DI->setResult(NewDirtyVal);
1362 
1363         if (Instruction *NextI = NewDirtyVal.getInst())
1364           ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1365       }
1366     }
1367 
1368     ReverseNonLocalDeps.erase(ReverseDepIt);
1369 
1370     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1371     while (!ReverseDepsToAdd.empty()) {
1372       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1373         .insert(ReverseDepsToAdd.back().second);
1374       ReverseDepsToAdd.pop_back();
1375     }
1376   }
1377 
1378   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1379   // value in the NonLocalPointerDeps info.
1380   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1381     ReverseNonLocalPtrDeps.find(RemInst);
1382   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1383     SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1384     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1385 
1386     for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1387          E = Set.end(); I != E; ++I) {
1388       ValueIsLoadPair P = *I;
1389       assert(P.getPointer() != RemInst &&
1390              "Already removed NonLocalPointerDeps info for RemInst");
1391 
1392       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1393 
1394       // The cache is not valid for any specific block anymore.
1395       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1396 
1397       // Update any entries for RemInst to use the instruction after it.
1398       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1399            DI != DE; ++DI) {
1400         if (DI->getResult().getInst() != RemInst) continue;
1401 
1402         // Convert to a dirty entry for the subsequent instruction.
1403         DI->setResult(NewDirtyVal);
1404 
1405         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1406           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1407       }
1408 
1409       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1410       // subsequent value may invalidate the sortedness.
1411       std::sort(NLPDI.begin(), NLPDI.end());
1412     }
1413 
1414     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1415 
1416     while (!ReversePtrDepsToAdd.empty()) {
1417       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1418         .insert(ReversePtrDepsToAdd.back().second);
1419       ReversePtrDepsToAdd.pop_back();
1420     }
1421   }
1422 
1423 
1424   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1425   AA->deleteValue(RemInst);
1426   DEBUG(verifyRemoved(RemInst));
1427 }
1428 /// verifyRemoved - Verify that the specified instruction does not occur
1429 /// in our internal data structures.
verifyRemoved(Instruction * D) const1430 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1431   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1432        E = LocalDeps.end(); I != E; ++I) {
1433     assert(I->first != D && "Inst occurs in data structures");
1434     assert(I->second.getInst() != D &&
1435            "Inst occurs in data structures");
1436   }
1437 
1438   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1439        E = NonLocalPointerDeps.end(); I != E; ++I) {
1440     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1441     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1442     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1443          II != E; ++II)
1444       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1445   }
1446 
1447   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1448        E = NonLocalDeps.end(); I != E; ++I) {
1449     assert(I->first != D && "Inst occurs in data structures");
1450     const PerInstNLInfo &INLD = I->second;
1451     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1452          EE = INLD.first.end(); II  != EE; ++II)
1453       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1454   }
1455 
1456   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1457        E = ReverseLocalDeps.end(); I != E; ++I) {
1458     assert(I->first != D && "Inst occurs in data structures");
1459     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1460          EE = I->second.end(); II != EE; ++II)
1461       assert(*II != D && "Inst occurs in data structures");
1462   }
1463 
1464   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1465        E = ReverseNonLocalDeps.end();
1466        I != E; ++I) {
1467     assert(I->first != D && "Inst occurs in data structures");
1468     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1469          EE = I->second.end(); II != EE; ++II)
1470       assert(*II != D && "Inst occurs in data structures");
1471   }
1472 
1473   for (ReverseNonLocalPtrDepTy::const_iterator
1474        I = ReverseNonLocalPtrDeps.begin(),
1475        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1476     assert(I->first != D && "Inst occurs in rev NLPD map");
1477 
1478     for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1479          E = I->second.end(); II != E; ++II)
1480       assert(*II != ValueIsLoadPair(D, false) &&
1481              *II != ValueIsLoadPair(D, true) &&
1482              "Inst occurs in ReverseNonLocalPtrDeps map");
1483   }
1484 
1485 }
1486