1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Function.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/PHITransAddr.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/PredIteratorCache.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetData.h"
35 using namespace llvm;
36
37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
40
41 STATISTIC(NumCacheNonLocalPtr,
42 "Number of fully cached non-local ptr responses");
43 STATISTIC(NumCacheDirtyNonLocalPtr,
44 "Number of cached, but dirty, non-local ptr responses");
45 STATISTIC(NumUncacheNonLocalPtr,
46 "Number of uncached non-local ptr responses");
47 STATISTIC(NumCacheCompleteNonLocalPtr,
48 "Number of block queries that were completely cached");
49
50 // Limit for the number of instructions to scan in a block.
51 // FIXME: Figure out what a sane value is for this.
52 // (500 is relatively insane.)
53 static const int BlockScanLimit = 500;
54
55 char MemoryDependenceAnalysis::ID = 0;
56
57 // Register this pass...
58 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
59 "Memory Dependence Analysis", false, true)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)60 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
61 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
62 "Memory Dependence Analysis", false, true)
63
64 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
65 : FunctionPass(ID), PredCache(0) {
66 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
67 }
~MemoryDependenceAnalysis()68 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
69 }
70
71 /// Clean up memory in between runs
releaseMemory()72 void MemoryDependenceAnalysis::releaseMemory() {
73 LocalDeps.clear();
74 NonLocalDeps.clear();
75 NonLocalPointerDeps.clear();
76 ReverseLocalDeps.clear();
77 ReverseNonLocalDeps.clear();
78 ReverseNonLocalPtrDeps.clear();
79 PredCache->clear();
80 }
81
82
83
84 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
85 ///
getAnalysisUsage(AnalysisUsage & AU) const86 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.setPreservesAll();
88 AU.addRequiredTransitive<AliasAnalysis>();
89 }
90
runOnFunction(Function &)91 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
92 AA = &getAnalysis<AliasAnalysis>();
93 TD = getAnalysisIfAvailable<TargetData>();
94 if (PredCache == 0)
95 PredCache.reset(new PredIteratorCache());
96 return false;
97 }
98
99 /// RemoveFromReverseMap - This is a helper function that removes Val from
100 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
101 template <typename KeyTy>
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)102 static void RemoveFromReverseMap(DenseMap<Instruction*,
103 SmallPtrSet<KeyTy, 4> > &ReverseMap,
104 Instruction *Inst, KeyTy Val) {
105 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
106 InstIt = ReverseMap.find(Inst);
107 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
108 bool Found = InstIt->second.erase(Val);
109 assert(Found && "Invalid reverse map!"); (void)Found;
110 if (InstIt->second.empty())
111 ReverseMap.erase(InstIt);
112 }
113
114 /// GetLocation - If the given instruction references a specific memory
115 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116 /// Return a ModRefInfo value describing the general behavior of the
117 /// instruction.
118 static
GetLocation(const Instruction * Inst,AliasAnalysis::Location & Loc,AliasAnalysis * AA)119 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
120 AliasAnalysis::Location &Loc,
121 AliasAnalysis *AA) {
122 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
123 if (LI->isUnordered()) {
124 Loc = AA->getLocation(LI);
125 return AliasAnalysis::Ref;
126 } else if (LI->getOrdering() == Monotonic) {
127 Loc = AA->getLocation(LI);
128 return AliasAnalysis::ModRef;
129 }
130 Loc = AliasAnalysis::Location();
131 return AliasAnalysis::ModRef;
132 }
133
134 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
135 if (SI->isUnordered()) {
136 Loc = AA->getLocation(SI);
137 return AliasAnalysis::Mod;
138 } else if (SI->getOrdering() == Monotonic) {
139 Loc = AA->getLocation(SI);
140 return AliasAnalysis::ModRef;
141 }
142 Loc = AliasAnalysis::Location();
143 return AliasAnalysis::ModRef;
144 }
145
146 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147 Loc = AA->getLocation(V);
148 return AliasAnalysis::ModRef;
149 }
150
151 if (const CallInst *CI = isFreeCall(Inst)) {
152 // calls to free() deallocate the entire structure
153 Loc = AliasAnalysis::Location(CI->getArgOperand(0));
154 return AliasAnalysis::Mod;
155 }
156
157 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
158 switch (II->getIntrinsicID()) {
159 case Intrinsic::lifetime_start:
160 case Intrinsic::lifetime_end:
161 case Intrinsic::invariant_start:
162 Loc = AliasAnalysis::Location(II->getArgOperand(1),
163 cast<ConstantInt>(II->getArgOperand(0))
164 ->getZExtValue(),
165 II->getMetadata(LLVMContext::MD_tbaa));
166 // These intrinsics don't really modify the memory, but returning Mod
167 // will allow them to be handled conservatively.
168 return AliasAnalysis::Mod;
169 case Intrinsic::invariant_end:
170 Loc = AliasAnalysis::Location(II->getArgOperand(2),
171 cast<ConstantInt>(II->getArgOperand(1))
172 ->getZExtValue(),
173 II->getMetadata(LLVMContext::MD_tbaa));
174 // These intrinsics don't really modify the memory, but returning Mod
175 // will allow them to be handled conservatively.
176 return AliasAnalysis::Mod;
177 default:
178 break;
179 }
180
181 // Otherwise, just do the coarse-grained thing that always works.
182 if (Inst->mayWriteToMemory())
183 return AliasAnalysis::ModRef;
184 if (Inst->mayReadFromMemory())
185 return AliasAnalysis::Ref;
186 return AliasAnalysis::NoModRef;
187 }
188
189 /// getCallSiteDependencyFrom - Private helper for finding the local
190 /// dependencies of a call site.
191 MemDepResult MemoryDependenceAnalysis::
getCallSiteDependencyFrom(CallSite CS,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)192 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
193 BasicBlock::iterator ScanIt, BasicBlock *BB) {
194 unsigned Limit = BlockScanLimit;
195
196 // Walk backwards through the block, looking for dependencies
197 while (ScanIt != BB->begin()) {
198 // Limit the amount of scanning we do so we don't end up with quadratic
199 // running time on extreme testcases.
200 --Limit;
201 if (!Limit)
202 return MemDepResult::getUnknown();
203
204 Instruction *Inst = --ScanIt;
205
206 // If this inst is a memory op, get the pointer it accessed
207 AliasAnalysis::Location Loc;
208 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
209 if (Loc.Ptr) {
210 // A simple instruction.
211 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
212 return MemDepResult::getClobber(Inst);
213 continue;
214 }
215
216 if (CallSite InstCS = cast<Value>(Inst)) {
217 // Debug intrinsics don't cause dependences.
218 if (isa<DbgInfoIntrinsic>(Inst)) continue;
219 // If these two calls do not interfere, look past it.
220 switch (AA->getModRefInfo(CS, InstCS)) {
221 case AliasAnalysis::NoModRef:
222 // If the two calls are the same, return InstCS as a Def, so that
223 // CS can be found redundant and eliminated.
224 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
225 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
226 return MemDepResult::getDef(Inst);
227
228 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
229 // keep scanning.
230 break;
231 default:
232 return MemDepResult::getClobber(Inst);
233 }
234 }
235 }
236
237 // No dependence found. If this is the entry block of the function, it is
238 // unknown, otherwise it is non-local.
239 if (BB != &BB->getParent()->getEntryBlock())
240 return MemDepResult::getNonLocal();
241 return MemDepResult::getNonFuncLocal();
242 }
243
244 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
245 /// would fully overlap MemLoc if done as a wider legal integer load.
246 ///
247 /// MemLocBase, MemLocOffset are lazily computed here the first time the
248 /// base/offs of memloc is needed.
249 static bool
isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location & MemLoc,const Value * & MemLocBase,int64_t & MemLocOffs,const LoadInst * LI,const TargetData * TD)250 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
251 const Value *&MemLocBase,
252 int64_t &MemLocOffs,
253 const LoadInst *LI,
254 const TargetData *TD) {
255 // If we have no target data, we can't do this.
256 if (TD == 0) return false;
257
258 // If we haven't already computed the base/offset of MemLoc, do so now.
259 if (MemLocBase == 0)
260 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
261
262 unsigned Size = MemoryDependenceAnalysis::
263 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
264 LI, *TD);
265 return Size != 0;
266 }
267
268 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
269 /// looks at a memory location for a load (specified by MemLocBase, Offs,
270 /// and Size) and compares it against a load. If the specified load could
271 /// be safely widened to a larger integer load that is 1) still efficient,
272 /// 2) safe for the target, and 3) would provide the specified memory
273 /// location value, then this function returns the size in bytes of the
274 /// load width to use. If not, this returns zero.
275 unsigned MemoryDependenceAnalysis::
getLoadLoadClobberFullWidthSize(const Value * MemLocBase,int64_t MemLocOffs,unsigned MemLocSize,const LoadInst * LI,const TargetData & TD)276 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
277 unsigned MemLocSize, const LoadInst *LI,
278 const TargetData &TD) {
279 // We can only extend simple integer loads.
280 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
281
282 // Get the base of this load.
283 int64_t LIOffs = 0;
284 const Value *LIBase =
285 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
286
287 // If the two pointers are not based on the same pointer, we can't tell that
288 // they are related.
289 if (LIBase != MemLocBase) return 0;
290
291 // Okay, the two values are based on the same pointer, but returned as
292 // no-alias. This happens when we have things like two byte loads at "P+1"
293 // and "P+3". Check to see if increasing the size of the "LI" load up to its
294 // alignment (or the largest native integer type) will allow us to load all
295 // the bits required by MemLoc.
296
297 // If MemLoc is before LI, then no widening of LI will help us out.
298 if (MemLocOffs < LIOffs) return 0;
299
300 // Get the alignment of the load in bytes. We assume that it is safe to load
301 // any legal integer up to this size without a problem. For example, if we're
302 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
303 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
304 // to i16.
305 unsigned LoadAlign = LI->getAlignment();
306
307 int64_t MemLocEnd = MemLocOffs+MemLocSize;
308
309 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
310 if (LIOffs+LoadAlign < MemLocEnd) return 0;
311
312 // This is the size of the load to try. Start with the next larger power of
313 // two.
314 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
315 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
316
317 while (1) {
318 // If this load size is bigger than our known alignment or would not fit
319 // into a native integer register, then we fail.
320 if (NewLoadByteSize > LoadAlign ||
321 !TD.fitsInLegalInteger(NewLoadByteSize*8))
322 return 0;
323
324 // If a load of this width would include all of MemLoc, then we succeed.
325 if (LIOffs+NewLoadByteSize >= MemLocEnd)
326 return NewLoadByteSize;
327
328 NewLoadByteSize <<= 1;
329 }
330
331 return 0;
332 }
333
334 /// getPointerDependencyFrom - Return the instruction on which a memory
335 /// location depends. If isLoad is true, this routine ignores may-aliases with
336 /// read-only operations. If isLoad is false, this routine ignores may-aliases
337 /// with reads from read-only locations.
338 MemDepResult MemoryDependenceAnalysis::
getPointerDependencyFrom(const AliasAnalysis::Location & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB)339 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
340 BasicBlock::iterator ScanIt, BasicBlock *BB) {
341
342 const Value *MemLocBase = 0;
343 int64_t MemLocOffset = 0;
344
345 unsigned Limit = BlockScanLimit;
346
347 // Walk backwards through the basic block, looking for dependencies.
348 while (ScanIt != BB->begin()) {
349 // Limit the amount of scanning we do so we don't end up with quadratic
350 // running time on extreme testcases.
351 --Limit;
352 if (!Limit)
353 return MemDepResult::getUnknown();
354
355 Instruction *Inst = --ScanIt;
356
357 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
358 // Debug intrinsics don't (and can't) cause dependences.
359 if (isa<DbgInfoIntrinsic>(II)) continue;
360
361 // If we reach a lifetime begin or end marker, then the query ends here
362 // because the value is undefined.
363 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
364 // FIXME: This only considers queries directly on the invariant-tagged
365 // pointer, not on query pointers that are indexed off of them. It'd
366 // be nice to handle that at some point (the right approach is to use
367 // GetPointerBaseWithConstantOffset).
368 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
369 MemLoc))
370 return MemDepResult::getDef(II);
371 continue;
372 }
373 }
374
375 // Values depend on loads if the pointers are must aliased. This means that
376 // a load depends on another must aliased load from the same value.
377 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
378 // Atomic loads have complications involved.
379 // FIXME: This is overly conservative.
380 if (!LI->isUnordered())
381 return MemDepResult::getClobber(LI);
382
383 AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
384
385 // If we found a pointer, check if it could be the same as our pointer.
386 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
387
388 if (isLoad) {
389 if (R == AliasAnalysis::NoAlias) {
390 // If this is an over-aligned integer load (for example,
391 // "load i8* %P, align 4") see if it would obviously overlap with the
392 // queried location if widened to a larger load (e.g. if the queried
393 // location is 1 byte at P+1). If so, return it as a load/load
394 // clobber result, allowing the client to decide to widen the load if
395 // it wants to.
396 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
397 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
398 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
399 MemLocOffset, LI, TD))
400 return MemDepResult::getClobber(Inst);
401
402 continue;
403 }
404
405 // Must aliased loads are defs of each other.
406 if (R == AliasAnalysis::MustAlias)
407 return MemDepResult::getDef(Inst);
408
409 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
410 // in terms of clobbering loads, but since it does this by looking
411 // at the clobbering load directly, it doesn't know about any
412 // phi translation that may have happened along the way.
413
414 // If we have a partial alias, then return this as a clobber for the
415 // client to handle.
416 if (R == AliasAnalysis::PartialAlias)
417 return MemDepResult::getClobber(Inst);
418 #endif
419
420 // Random may-alias loads don't depend on each other without a
421 // dependence.
422 continue;
423 }
424
425 // Stores don't depend on other no-aliased accesses.
426 if (R == AliasAnalysis::NoAlias)
427 continue;
428
429 // Stores don't alias loads from read-only memory.
430 if (AA->pointsToConstantMemory(LoadLoc))
431 continue;
432
433 // Stores depend on may/must aliased loads.
434 return MemDepResult::getDef(Inst);
435 }
436
437 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
438 // Atomic stores have complications involved.
439 // FIXME: This is overly conservative.
440 if (!SI->isUnordered())
441 return MemDepResult::getClobber(SI);
442
443 // If alias analysis can tell that this store is guaranteed to not modify
444 // the query pointer, ignore it. Use getModRefInfo to handle cases where
445 // the query pointer points to constant memory etc.
446 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
447 continue;
448
449 // Ok, this store might clobber the query pointer. Check to see if it is
450 // a must alias: in this case, we want to return this as a def.
451 AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
452
453 // If we found a pointer, check if it could be the same as our pointer.
454 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
455
456 if (R == AliasAnalysis::NoAlias)
457 continue;
458 if (R == AliasAnalysis::MustAlias)
459 return MemDepResult::getDef(Inst);
460 return MemDepResult::getClobber(Inst);
461 }
462
463 // If this is an allocation, and if we know that the accessed pointer is to
464 // the allocation, return Def. This means that there is no dependence and
465 // the access can be optimized based on that. For example, a load could
466 // turn into undef.
467 // Note: Only determine this to be a malloc if Inst is the malloc call, not
468 // a subsequent bitcast of the malloc call result. There can be stores to
469 // the malloced memory between the malloc call and its bitcast uses, and we
470 // need to continue scanning until the malloc call.
471 if (isa<AllocaInst>(Inst) ||
472 (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
473 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
474
475 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
476 return MemDepResult::getDef(Inst);
477 continue;
478 }
479
480 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
481 switch (AA->getModRefInfo(Inst, MemLoc)) {
482 case AliasAnalysis::NoModRef:
483 // If the call has no effect on the queried pointer, just ignore it.
484 continue;
485 case AliasAnalysis::Mod:
486 return MemDepResult::getClobber(Inst);
487 case AliasAnalysis::Ref:
488 // If the call is known to never store to the pointer, and if this is a
489 // load query, we can safely ignore it (scan past it).
490 if (isLoad)
491 continue;
492 default:
493 // Otherwise, there is a potential dependence. Return a clobber.
494 return MemDepResult::getClobber(Inst);
495 }
496 }
497
498 // No dependence found. If this is the entry block of the function, it is
499 // unknown, otherwise it is non-local.
500 if (BB != &BB->getParent()->getEntryBlock())
501 return MemDepResult::getNonLocal();
502 return MemDepResult::getNonFuncLocal();
503 }
504
505 /// getDependency - Return the instruction on which a memory operation
506 /// depends.
getDependency(Instruction * QueryInst)507 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
508 Instruction *ScanPos = QueryInst;
509
510 // Check for a cached result
511 MemDepResult &LocalCache = LocalDeps[QueryInst];
512
513 // If the cached entry is non-dirty, just return it. Note that this depends
514 // on MemDepResult's default constructing to 'dirty'.
515 if (!LocalCache.isDirty())
516 return LocalCache;
517
518 // Otherwise, if we have a dirty entry, we know we can start the scan at that
519 // instruction, which may save us some work.
520 if (Instruction *Inst = LocalCache.getInst()) {
521 ScanPos = Inst;
522
523 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
524 }
525
526 BasicBlock *QueryParent = QueryInst->getParent();
527
528 // Do the scan.
529 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
530 // No dependence found. If this is the entry block of the function, it is
531 // unknown, otherwise it is non-local.
532 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
533 LocalCache = MemDepResult::getNonLocal();
534 else
535 LocalCache = MemDepResult::getNonFuncLocal();
536 } else {
537 AliasAnalysis::Location MemLoc;
538 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
539 if (MemLoc.Ptr) {
540 // If we can do a pointer scan, make it happen.
541 bool isLoad = !(MR & AliasAnalysis::Mod);
542 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
543 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
544
545 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
546 QueryParent);
547 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
548 CallSite QueryCS(QueryInst);
549 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
550 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
551 QueryParent);
552 } else
553 // Non-memory instruction.
554 LocalCache = MemDepResult::getUnknown();
555 }
556
557 // Remember the result!
558 if (Instruction *I = LocalCache.getInst())
559 ReverseLocalDeps[I].insert(QueryInst);
560
561 return LocalCache;
562 }
563
564 #ifndef NDEBUG
565 /// AssertSorted - This method is used when -debug is specified to verify that
566 /// cache arrays are properly kept sorted.
AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,int Count=-1)567 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
568 int Count = -1) {
569 if (Count == -1) Count = Cache.size();
570 if (Count == 0) return;
571
572 for (unsigned i = 1; i != unsigned(Count); ++i)
573 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
574 }
575 #endif
576
577 /// getNonLocalCallDependency - Perform a full dependency query for the
578 /// specified call, returning the set of blocks that the value is
579 /// potentially live across. The returned set of results will include a
580 /// "NonLocal" result for all blocks where the value is live across.
581 ///
582 /// This method assumes the instruction returns a "NonLocal" dependency
583 /// within its own block.
584 ///
585 /// This returns a reference to an internal data structure that may be
586 /// invalidated on the next non-local query or when an instruction is
587 /// removed. Clients must copy this data if they want it around longer than
588 /// that.
589 const MemoryDependenceAnalysis::NonLocalDepInfo &
getNonLocalCallDependency(CallSite QueryCS)590 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
591 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
592 "getNonLocalCallDependency should only be used on calls with non-local deps!");
593 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
594 NonLocalDepInfo &Cache = CacheP.first;
595
596 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
597 /// the cached case, this can happen due to instructions being deleted etc. In
598 /// the uncached case, this starts out as the set of predecessors we care
599 /// about.
600 SmallVector<BasicBlock*, 32> DirtyBlocks;
601
602 if (!Cache.empty()) {
603 // Okay, we have a cache entry. If we know it is not dirty, just return it
604 // with no computation.
605 if (!CacheP.second) {
606 ++NumCacheNonLocal;
607 return Cache;
608 }
609
610 // If we already have a partially computed set of results, scan them to
611 // determine what is dirty, seeding our initial DirtyBlocks worklist.
612 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
613 I != E; ++I)
614 if (I->getResult().isDirty())
615 DirtyBlocks.push_back(I->getBB());
616
617 // Sort the cache so that we can do fast binary search lookups below.
618 std::sort(Cache.begin(), Cache.end());
619
620 ++NumCacheDirtyNonLocal;
621 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
622 // << Cache.size() << " cached: " << *QueryInst;
623 } else {
624 // Seed DirtyBlocks with each of the preds of QueryInst's block.
625 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
626 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
627 DirtyBlocks.push_back(*PI);
628 ++NumUncacheNonLocal;
629 }
630
631 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
632 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
633
634 SmallPtrSet<BasicBlock*, 64> Visited;
635
636 unsigned NumSortedEntries = Cache.size();
637 DEBUG(AssertSorted(Cache));
638
639 // Iterate while we still have blocks to update.
640 while (!DirtyBlocks.empty()) {
641 BasicBlock *DirtyBB = DirtyBlocks.back();
642 DirtyBlocks.pop_back();
643
644 // Already processed this block?
645 if (!Visited.insert(DirtyBB))
646 continue;
647
648 // Do a binary search to see if we already have an entry for this block in
649 // the cache set. If so, find it.
650 DEBUG(AssertSorted(Cache, NumSortedEntries));
651 NonLocalDepInfo::iterator Entry =
652 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
653 NonLocalDepEntry(DirtyBB));
654 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
655 --Entry;
656
657 NonLocalDepEntry *ExistingResult = 0;
658 if (Entry != Cache.begin()+NumSortedEntries &&
659 Entry->getBB() == DirtyBB) {
660 // If we already have an entry, and if it isn't already dirty, the block
661 // is done.
662 if (!Entry->getResult().isDirty())
663 continue;
664
665 // Otherwise, remember this slot so we can update the value.
666 ExistingResult = &*Entry;
667 }
668
669 // If the dirty entry has a pointer, start scanning from it so we don't have
670 // to rescan the entire block.
671 BasicBlock::iterator ScanPos = DirtyBB->end();
672 if (ExistingResult) {
673 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
674 ScanPos = Inst;
675 // We're removing QueryInst's use of Inst.
676 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
677 QueryCS.getInstruction());
678 }
679 }
680
681 // Find out if this block has a local dependency for QueryInst.
682 MemDepResult Dep;
683
684 if (ScanPos != DirtyBB->begin()) {
685 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
686 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
687 // No dependence found. If this is the entry block of the function, it is
688 // a clobber, otherwise it is unknown.
689 Dep = MemDepResult::getNonLocal();
690 } else {
691 Dep = MemDepResult::getNonFuncLocal();
692 }
693
694 // If we had a dirty entry for the block, update it. Otherwise, just add
695 // a new entry.
696 if (ExistingResult)
697 ExistingResult->setResult(Dep);
698 else
699 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
700
701 // If the block has a dependency (i.e. it isn't completely transparent to
702 // the value), remember the association!
703 if (!Dep.isNonLocal()) {
704 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
705 // update this when we remove instructions.
706 if (Instruction *Inst = Dep.getInst())
707 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
708 } else {
709
710 // If the block *is* completely transparent to the load, we need to check
711 // the predecessors of this block. Add them to our worklist.
712 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
713 DirtyBlocks.push_back(*PI);
714 }
715 }
716
717 return Cache;
718 }
719
720 /// getNonLocalPointerDependency - Perform a full dependency query for an
721 /// access to the specified (non-volatile) memory location, returning the
722 /// set of instructions that either define or clobber the value.
723 ///
724 /// This method assumes the pointer has a "NonLocal" dependency within its
725 /// own block.
726 ///
727 void MemoryDependenceAnalysis::
getNonLocalPointerDependency(const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * FromBB,SmallVectorImpl<NonLocalDepResult> & Result)728 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
729 BasicBlock *FromBB,
730 SmallVectorImpl<NonLocalDepResult> &Result) {
731 assert(Loc.Ptr->getType()->isPointerTy() &&
732 "Can't get pointer deps of a non-pointer!");
733 Result.clear();
734
735 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
736
737 // This is the set of blocks we've inspected, and the pointer we consider in
738 // each block. Because of critical edges, we currently bail out if querying
739 // a block with multiple different pointers. This can happen during PHI
740 // translation.
741 DenseMap<BasicBlock*, Value*> Visited;
742 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
743 Result, Visited, true))
744 return;
745 Result.clear();
746 Result.push_back(NonLocalDepResult(FromBB,
747 MemDepResult::getUnknown(),
748 const_cast<Value *>(Loc.Ptr)));
749 }
750
751 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
752 /// Pointer/PointeeSize using either cached information in Cache or by doing a
753 /// lookup (which may use dirty cache info if available). If we do a lookup,
754 /// add the result to the cache.
755 MemDepResult MemoryDependenceAnalysis::
GetNonLocalInfoForBlock(const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries)756 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
757 bool isLoad, BasicBlock *BB,
758 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
759
760 // Do a binary search to see if we already have an entry for this block in
761 // the cache set. If so, find it.
762 NonLocalDepInfo::iterator Entry =
763 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
764 NonLocalDepEntry(BB));
765 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
766 --Entry;
767
768 NonLocalDepEntry *ExistingResult = 0;
769 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
770 ExistingResult = &*Entry;
771
772 // If we have a cached entry, and it is non-dirty, use it as the value for
773 // this dependency.
774 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
775 ++NumCacheNonLocalPtr;
776 return ExistingResult->getResult();
777 }
778
779 // Otherwise, we have to scan for the value. If we have a dirty cache
780 // entry, start scanning from its position, otherwise we scan from the end
781 // of the block.
782 BasicBlock::iterator ScanPos = BB->end();
783 if (ExistingResult && ExistingResult->getResult().getInst()) {
784 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
785 "Instruction invalidated?");
786 ++NumCacheDirtyNonLocalPtr;
787 ScanPos = ExistingResult->getResult().getInst();
788
789 // Eliminating the dirty entry from 'Cache', so update the reverse info.
790 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
791 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
792 } else {
793 ++NumUncacheNonLocalPtr;
794 }
795
796 // Scan the block for the dependency.
797 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
798
799 // If we had a dirty entry for the block, update it. Otherwise, just add
800 // a new entry.
801 if (ExistingResult)
802 ExistingResult->setResult(Dep);
803 else
804 Cache->push_back(NonLocalDepEntry(BB, Dep));
805
806 // If the block has a dependency (i.e. it isn't completely transparent to
807 // the value), remember the reverse association because we just added it
808 // to Cache!
809 if (!Dep.isDef() && !Dep.isClobber())
810 return Dep;
811
812 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
813 // update MemDep when we remove instructions.
814 Instruction *Inst = Dep.getInst();
815 assert(Inst && "Didn't depend on anything?");
816 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
817 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
818 return Dep;
819 }
820
821 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
822 /// number of elements in the array that are already properly ordered. This is
823 /// optimized for the case when only a few entries are added.
824 static void
SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,unsigned NumSortedEntries)825 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
826 unsigned NumSortedEntries) {
827 switch (Cache.size() - NumSortedEntries) {
828 case 0:
829 // done, no new entries.
830 break;
831 case 2: {
832 // Two new entries, insert the last one into place.
833 NonLocalDepEntry Val = Cache.back();
834 Cache.pop_back();
835 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
836 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
837 Cache.insert(Entry, Val);
838 // FALL THROUGH.
839 }
840 case 1:
841 // One new entry, Just insert the new value at the appropriate position.
842 if (Cache.size() != 1) {
843 NonLocalDepEntry Val = Cache.back();
844 Cache.pop_back();
845 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
846 std::upper_bound(Cache.begin(), Cache.end(), Val);
847 Cache.insert(Entry, Val);
848 }
849 break;
850 default:
851 // Added many values, do a full scale sort.
852 std::sort(Cache.begin(), Cache.end());
853 break;
854 }
855 }
856
857 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
858 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
859 /// results to the results vector and keep track of which blocks are visited in
860 /// 'Visited'.
861 ///
862 /// This has special behavior for the first block queries (when SkipFirstBlock
863 /// is true). In this special case, it ignores the contents of the specified
864 /// block and starts returning dependence info for its predecessors.
865 ///
866 /// This function returns false on success, or true to indicate that it could
867 /// not compute dependence information for some reason. This should be treated
868 /// as a clobber dependence on the first instruction in the predecessor block.
869 bool MemoryDependenceAnalysis::
getNonLocalPointerDepFromBB(const PHITransAddr & Pointer,const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock)870 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
871 const AliasAnalysis::Location &Loc,
872 bool isLoad, BasicBlock *StartBB,
873 SmallVectorImpl<NonLocalDepResult> &Result,
874 DenseMap<BasicBlock*, Value*> &Visited,
875 bool SkipFirstBlock) {
876
877 // Look up the cached info for Pointer.
878 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
879
880 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
881 // CacheKey, this value will be inserted as the associated value. Otherwise,
882 // it'll be ignored, and we'll have to check to see if the cached size and
883 // tbaa tag are consistent with the current query.
884 NonLocalPointerInfo InitialNLPI;
885 InitialNLPI.Size = Loc.Size;
886 InitialNLPI.TBAATag = Loc.TBAATag;
887
888 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
889 // already have one.
890 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
891 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
892 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
893
894 // If we already have a cache entry for this CacheKey, we may need to do some
895 // work to reconcile the cache entry and the current query.
896 if (!Pair.second) {
897 if (CacheInfo->Size < Loc.Size) {
898 // The query's Size is greater than the cached one. Throw out the
899 // cached data and procede with the query at the greater size.
900 CacheInfo->Pair = BBSkipFirstBlockPair();
901 CacheInfo->Size = Loc.Size;
902 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
903 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
904 if (Instruction *Inst = DI->getResult().getInst())
905 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
906 CacheInfo->NonLocalDeps.clear();
907 } else if (CacheInfo->Size > Loc.Size) {
908 // This query's Size is less than the cached one. Conservatively restart
909 // the query using the greater size.
910 return getNonLocalPointerDepFromBB(Pointer,
911 Loc.getWithNewSize(CacheInfo->Size),
912 isLoad, StartBB, Result, Visited,
913 SkipFirstBlock);
914 }
915
916 // If the query's TBAATag is inconsistent with the cached one,
917 // conservatively throw out the cached data and restart the query with
918 // no tag if needed.
919 if (CacheInfo->TBAATag != Loc.TBAATag) {
920 if (CacheInfo->TBAATag) {
921 CacheInfo->Pair = BBSkipFirstBlockPair();
922 CacheInfo->TBAATag = 0;
923 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
924 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
925 if (Instruction *Inst = DI->getResult().getInst())
926 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
927 CacheInfo->NonLocalDeps.clear();
928 }
929 if (Loc.TBAATag)
930 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
931 isLoad, StartBB, Result, Visited,
932 SkipFirstBlock);
933 }
934 }
935
936 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
937
938 // If we have valid cached information for exactly the block we are
939 // investigating, just return it with no recomputation.
940 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
941 // We have a fully cached result for this query then we can just return the
942 // cached results and populate the visited set. However, we have to verify
943 // that we don't already have conflicting results for these blocks. Check
944 // to ensure that if a block in the results set is in the visited set that
945 // it was for the same pointer query.
946 if (!Visited.empty()) {
947 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
948 I != E; ++I) {
949 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
950 if (VI == Visited.end() || VI->second == Pointer.getAddr())
951 continue;
952
953 // We have a pointer mismatch in a block. Just return clobber, saying
954 // that something was clobbered in this result. We could also do a
955 // non-fully cached query, but there is little point in doing this.
956 return true;
957 }
958 }
959
960 Value *Addr = Pointer.getAddr();
961 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
962 I != E; ++I) {
963 Visited.insert(std::make_pair(I->getBB(), Addr));
964 if (!I->getResult().isNonLocal())
965 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
966 }
967 ++NumCacheCompleteNonLocalPtr;
968 return false;
969 }
970
971 // Otherwise, either this is a new block, a block with an invalid cache
972 // pointer or one that we're about to invalidate by putting more info into it
973 // than its valid cache info. If empty, the result will be valid cache info,
974 // otherwise it isn't.
975 if (Cache->empty())
976 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
977 else
978 CacheInfo->Pair = BBSkipFirstBlockPair();
979
980 SmallVector<BasicBlock*, 32> Worklist;
981 Worklist.push_back(StartBB);
982
983 // PredList used inside loop.
984 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
985
986 // Keep track of the entries that we know are sorted. Previously cached
987 // entries will all be sorted. The entries we add we only sort on demand (we
988 // don't insert every element into its sorted position). We know that we
989 // won't get any reuse from currently inserted values, because we don't
990 // revisit blocks after we insert info for them.
991 unsigned NumSortedEntries = Cache->size();
992 DEBUG(AssertSorted(*Cache));
993
994 while (!Worklist.empty()) {
995 BasicBlock *BB = Worklist.pop_back_val();
996
997 // Skip the first block if we have it.
998 if (!SkipFirstBlock) {
999 // Analyze the dependency of *Pointer in FromBB. See if we already have
1000 // been here.
1001 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1002
1003 // Get the dependency info for Pointer in BB. If we have cached
1004 // information, we will use it, otherwise we compute it.
1005 DEBUG(AssertSorted(*Cache, NumSortedEntries));
1006 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1007 NumSortedEntries);
1008
1009 // If we got a Def or Clobber, add this to the list of results.
1010 if (!Dep.isNonLocal()) {
1011 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1012 continue;
1013 }
1014 }
1015
1016 // If 'Pointer' is an instruction defined in this block, then we need to do
1017 // phi translation to change it into a value live in the predecessor block.
1018 // If not, we just add the predecessors to the worklist and scan them with
1019 // the same Pointer.
1020 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1021 SkipFirstBlock = false;
1022 SmallVector<BasicBlock*, 16> NewBlocks;
1023 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1024 // Verify that we haven't looked at this block yet.
1025 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1026 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1027 if (InsertRes.second) {
1028 // First time we've looked at *PI.
1029 NewBlocks.push_back(*PI);
1030 continue;
1031 }
1032
1033 // If we have seen this block before, but it was with a different
1034 // pointer then we have a phi translation failure and we have to treat
1035 // this as a clobber.
1036 if (InsertRes.first->second != Pointer.getAddr()) {
1037 // Make sure to clean up the Visited map before continuing on to
1038 // PredTranslationFailure.
1039 for (unsigned i = 0; i < NewBlocks.size(); i++)
1040 Visited.erase(NewBlocks[i]);
1041 goto PredTranslationFailure;
1042 }
1043 }
1044 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1045 continue;
1046 }
1047
1048 // We do need to do phi translation, if we know ahead of time we can't phi
1049 // translate this value, don't even try.
1050 if (!Pointer.IsPotentiallyPHITranslatable())
1051 goto PredTranslationFailure;
1052
1053 // We may have added values to the cache list before this PHI translation.
1054 // If so, we haven't done anything to ensure that the cache remains sorted.
1055 // Sort it now (if needed) so that recursive invocations of
1056 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1057 // value will only see properly sorted cache arrays.
1058 if (Cache && NumSortedEntries != Cache->size()) {
1059 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1060 NumSortedEntries = Cache->size();
1061 }
1062 Cache = 0;
1063
1064 PredList.clear();
1065 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1066 BasicBlock *Pred = *PI;
1067 PredList.push_back(std::make_pair(Pred, Pointer));
1068
1069 // Get the PHI translated pointer in this predecessor. This can fail if
1070 // not translatable, in which case the getAddr() returns null.
1071 PHITransAddr &PredPointer = PredList.back().second;
1072 PredPointer.PHITranslateValue(BB, Pred, 0);
1073
1074 Value *PredPtrVal = PredPointer.getAddr();
1075
1076 // Check to see if we have already visited this pred block with another
1077 // pointer. If so, we can't do this lookup. This failure can occur
1078 // with PHI translation when a critical edge exists and the PHI node in
1079 // the successor translates to a pointer value different than the
1080 // pointer the block was first analyzed with.
1081 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1082 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1083
1084 if (!InsertRes.second) {
1085 // We found the pred; take it off the list of preds to visit.
1086 PredList.pop_back();
1087
1088 // If the predecessor was visited with PredPtr, then we already did
1089 // the analysis and can ignore it.
1090 if (InsertRes.first->second == PredPtrVal)
1091 continue;
1092
1093 // Otherwise, the block was previously analyzed with a different
1094 // pointer. We can't represent the result of this case, so we just
1095 // treat this as a phi translation failure.
1096
1097 // Make sure to clean up the Visited map before continuing on to
1098 // PredTranslationFailure.
1099 for (unsigned i = 0; i < PredList.size(); i++)
1100 Visited.erase(PredList[i].first);
1101
1102 goto PredTranslationFailure;
1103 }
1104 }
1105
1106 // Actually process results here; this need to be a separate loop to avoid
1107 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1108 // any results for. (getNonLocalPointerDepFromBB will modify our
1109 // datastructures in ways the code after the PredTranslationFailure label
1110 // doesn't expect.)
1111 for (unsigned i = 0; i < PredList.size(); i++) {
1112 BasicBlock *Pred = PredList[i].first;
1113 PHITransAddr &PredPointer = PredList[i].second;
1114 Value *PredPtrVal = PredPointer.getAddr();
1115
1116 bool CanTranslate = true;
1117 // If PHI translation was unable to find an available pointer in this
1118 // predecessor, then we have to assume that the pointer is clobbered in
1119 // that predecessor. We can still do PRE of the load, which would insert
1120 // a computation of the pointer in this predecessor.
1121 if (PredPtrVal == 0)
1122 CanTranslate = false;
1123
1124 // FIXME: it is entirely possible that PHI translating will end up with
1125 // the same value. Consider PHI translating something like:
1126 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1127 // to recurse here, pedantically speaking.
1128
1129 // If getNonLocalPointerDepFromBB fails here, that means the cached
1130 // result conflicted with the Visited list; we have to conservatively
1131 // assume it is unknown, but this also does not block PRE of the load.
1132 if (!CanTranslate ||
1133 getNonLocalPointerDepFromBB(PredPointer,
1134 Loc.getWithNewPtr(PredPtrVal),
1135 isLoad, Pred,
1136 Result, Visited)) {
1137 // Add the entry to the Result list.
1138 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1139 Result.push_back(Entry);
1140
1141 // Since we had a phi translation failure, the cache for CacheKey won't
1142 // include all of the entries that we need to immediately satisfy future
1143 // queries. Mark this in NonLocalPointerDeps by setting the
1144 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1145 // cached value to do more work but not miss the phi trans failure.
1146 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1147 NLPI.Pair = BBSkipFirstBlockPair();
1148 continue;
1149 }
1150 }
1151
1152 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1153 CacheInfo = &NonLocalPointerDeps[CacheKey];
1154 Cache = &CacheInfo->NonLocalDeps;
1155 NumSortedEntries = Cache->size();
1156
1157 // Since we did phi translation, the "Cache" set won't contain all of the
1158 // results for the query. This is ok (we can still use it to accelerate
1159 // specific block queries) but we can't do the fastpath "return all
1160 // results from the set" Clear out the indicator for this.
1161 CacheInfo->Pair = BBSkipFirstBlockPair();
1162 SkipFirstBlock = false;
1163 continue;
1164
1165 PredTranslationFailure:
1166 // The following code is "failure"; we can't produce a sane translation
1167 // for the given block. It assumes that we haven't modified any of
1168 // our datastructures while processing the current block.
1169
1170 if (Cache == 0) {
1171 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1172 CacheInfo = &NonLocalPointerDeps[CacheKey];
1173 Cache = &CacheInfo->NonLocalDeps;
1174 NumSortedEntries = Cache->size();
1175 }
1176
1177 // Since we failed phi translation, the "Cache" set won't contain all of the
1178 // results for the query. This is ok (we can still use it to accelerate
1179 // specific block queries) but we can't do the fastpath "return all
1180 // results from the set". Clear out the indicator for this.
1181 CacheInfo->Pair = BBSkipFirstBlockPair();
1182
1183 // If *nothing* works, mark the pointer as unknown.
1184 //
1185 // If this is the magic first block, return this as a clobber of the whole
1186 // incoming value. Since we can't phi translate to one of the predecessors,
1187 // we have to bail out.
1188 if (SkipFirstBlock)
1189 return true;
1190
1191 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1192 assert(I != Cache->rend() && "Didn't find current block??");
1193 if (I->getBB() != BB)
1194 continue;
1195
1196 assert(I->getResult().isNonLocal() &&
1197 "Should only be here with transparent block");
1198 I->setResult(MemDepResult::getUnknown());
1199 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1200 Pointer.getAddr()));
1201 break;
1202 }
1203 }
1204
1205 // Okay, we're done now. If we added new values to the cache, re-sort it.
1206 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1207 DEBUG(AssertSorted(*Cache));
1208 return false;
1209 }
1210
1211 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1212 /// CachedNonLocalPointerInfo, remove it.
1213 void MemoryDependenceAnalysis::
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P)1214 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1215 CachedNonLocalPointerInfo::iterator It =
1216 NonLocalPointerDeps.find(P);
1217 if (It == NonLocalPointerDeps.end()) return;
1218
1219 // Remove all of the entries in the BB->val map. This involves removing
1220 // instructions from the reverse map.
1221 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1222
1223 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1224 Instruction *Target = PInfo[i].getResult().getInst();
1225 if (Target == 0) continue; // Ignore non-local dep results.
1226 assert(Target->getParent() == PInfo[i].getBB());
1227
1228 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1229 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1230 }
1231
1232 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1233 NonLocalPointerDeps.erase(It);
1234 }
1235
1236
1237 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1238 /// information about the specified pointer, because it may be too
1239 /// conservative in memdep. This is an optional call that can be used when
1240 /// the client detects an equivalence between the pointer and some other
1241 /// value and replaces the other value with ptr. This can make Ptr available
1242 /// in more places that cached info does not necessarily keep.
invalidateCachedPointerInfo(Value * Ptr)1243 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1244 // If Ptr isn't really a pointer, just ignore it.
1245 if (!Ptr->getType()->isPointerTy()) return;
1246 // Flush store info for the pointer.
1247 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1248 // Flush load info for the pointer.
1249 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1250 }
1251
1252 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1253 /// This needs to be done when the CFG changes, e.g., due to splitting
1254 /// critical edges.
invalidateCachedPredecessors()1255 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1256 PredCache->clear();
1257 }
1258
1259 /// removeInstruction - Remove an instruction from the dependence analysis,
1260 /// updating the dependence of instructions that previously depended on it.
1261 /// This method attempts to keep the cache coherent using the reverse map.
removeInstruction(Instruction * RemInst)1262 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1263 // Walk through the Non-local dependencies, removing this one as the value
1264 // for any cached queries.
1265 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1266 if (NLDI != NonLocalDeps.end()) {
1267 NonLocalDepInfo &BlockMap = NLDI->second.first;
1268 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1269 DI != DE; ++DI)
1270 if (Instruction *Inst = DI->getResult().getInst())
1271 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1272 NonLocalDeps.erase(NLDI);
1273 }
1274
1275 // If we have a cached local dependence query for this instruction, remove it.
1276 //
1277 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1278 if (LocalDepEntry != LocalDeps.end()) {
1279 // Remove us from DepInst's reverse set now that the local dep info is gone.
1280 if (Instruction *Inst = LocalDepEntry->second.getInst())
1281 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1282
1283 // Remove this local dependency info.
1284 LocalDeps.erase(LocalDepEntry);
1285 }
1286
1287 // If we have any cached pointer dependencies on this instruction, remove
1288 // them. If the instruction has non-pointer type, then it can't be a pointer
1289 // base.
1290
1291 // Remove it from both the load info and the store info. The instruction
1292 // can't be in either of these maps if it is non-pointer.
1293 if (RemInst->getType()->isPointerTy()) {
1294 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1295 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1296 }
1297
1298 // Loop over all of the things that depend on the instruction we're removing.
1299 //
1300 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1301
1302 // If we find RemInst as a clobber or Def in any of the maps for other values,
1303 // we need to replace its entry with a dirty version of the instruction after
1304 // it. If RemInst is a terminator, we use a null dirty value.
1305 //
1306 // Using a dirty version of the instruction after RemInst saves having to scan
1307 // the entire block to get to this point.
1308 MemDepResult NewDirtyVal;
1309 if (!RemInst->isTerminator())
1310 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1311
1312 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1313 if (ReverseDepIt != ReverseLocalDeps.end()) {
1314 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1315 // RemInst can't be the terminator if it has local stuff depending on it.
1316 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1317 "Nothing can locally depend on a terminator");
1318
1319 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1320 E = ReverseDeps.end(); I != E; ++I) {
1321 Instruction *InstDependingOnRemInst = *I;
1322 assert(InstDependingOnRemInst != RemInst &&
1323 "Already removed our local dep info");
1324
1325 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1326
1327 // Make sure to remember that new things depend on NewDepInst.
1328 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1329 "a local dep on this if it is a terminator!");
1330 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1331 InstDependingOnRemInst));
1332 }
1333
1334 ReverseLocalDeps.erase(ReverseDepIt);
1335
1336 // Add new reverse deps after scanning the set, to avoid invalidating the
1337 // 'ReverseDeps' reference.
1338 while (!ReverseDepsToAdd.empty()) {
1339 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1340 .insert(ReverseDepsToAdd.back().second);
1341 ReverseDepsToAdd.pop_back();
1342 }
1343 }
1344
1345 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1346 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1347 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1348 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1349 I != E; ++I) {
1350 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1351
1352 PerInstNLInfo &INLD = NonLocalDeps[*I];
1353 // The information is now dirty!
1354 INLD.second = true;
1355
1356 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1357 DE = INLD.first.end(); DI != DE; ++DI) {
1358 if (DI->getResult().getInst() != RemInst) continue;
1359
1360 // Convert to a dirty entry for the subsequent instruction.
1361 DI->setResult(NewDirtyVal);
1362
1363 if (Instruction *NextI = NewDirtyVal.getInst())
1364 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1365 }
1366 }
1367
1368 ReverseNonLocalDeps.erase(ReverseDepIt);
1369
1370 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1371 while (!ReverseDepsToAdd.empty()) {
1372 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1373 .insert(ReverseDepsToAdd.back().second);
1374 ReverseDepsToAdd.pop_back();
1375 }
1376 }
1377
1378 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1379 // value in the NonLocalPointerDeps info.
1380 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1381 ReverseNonLocalPtrDeps.find(RemInst);
1382 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1383 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1384 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1385
1386 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1387 E = Set.end(); I != E; ++I) {
1388 ValueIsLoadPair P = *I;
1389 assert(P.getPointer() != RemInst &&
1390 "Already removed NonLocalPointerDeps info for RemInst");
1391
1392 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1393
1394 // The cache is not valid for any specific block anymore.
1395 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1396
1397 // Update any entries for RemInst to use the instruction after it.
1398 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1399 DI != DE; ++DI) {
1400 if (DI->getResult().getInst() != RemInst) continue;
1401
1402 // Convert to a dirty entry for the subsequent instruction.
1403 DI->setResult(NewDirtyVal);
1404
1405 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1406 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1407 }
1408
1409 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1410 // subsequent value may invalidate the sortedness.
1411 std::sort(NLPDI.begin(), NLPDI.end());
1412 }
1413
1414 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1415
1416 while (!ReversePtrDepsToAdd.empty()) {
1417 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1418 .insert(ReversePtrDepsToAdd.back().second);
1419 ReversePtrDepsToAdd.pop_back();
1420 }
1421 }
1422
1423
1424 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1425 AA->deleteValue(RemInst);
1426 DEBUG(verifyRemoved(RemInst));
1427 }
1428 /// verifyRemoved - Verify that the specified instruction does not occur
1429 /// in our internal data structures.
verifyRemoved(Instruction * D) const1430 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1431 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1432 E = LocalDeps.end(); I != E; ++I) {
1433 assert(I->first != D && "Inst occurs in data structures");
1434 assert(I->second.getInst() != D &&
1435 "Inst occurs in data structures");
1436 }
1437
1438 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1439 E = NonLocalPointerDeps.end(); I != E; ++I) {
1440 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1441 const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1442 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1443 II != E; ++II)
1444 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1445 }
1446
1447 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1448 E = NonLocalDeps.end(); I != E; ++I) {
1449 assert(I->first != D && "Inst occurs in data structures");
1450 const PerInstNLInfo &INLD = I->second;
1451 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1452 EE = INLD.first.end(); II != EE; ++II)
1453 assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1454 }
1455
1456 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1457 E = ReverseLocalDeps.end(); I != E; ++I) {
1458 assert(I->first != D && "Inst occurs in data structures");
1459 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1460 EE = I->second.end(); II != EE; ++II)
1461 assert(*II != D && "Inst occurs in data structures");
1462 }
1463
1464 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1465 E = ReverseNonLocalDeps.end();
1466 I != E; ++I) {
1467 assert(I->first != D && "Inst occurs in data structures");
1468 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1469 EE = I->second.end(); II != EE; ++II)
1470 assert(*II != D && "Inst occurs in data structures");
1471 }
1472
1473 for (ReverseNonLocalPtrDepTy::const_iterator
1474 I = ReverseNonLocalPtrDeps.begin(),
1475 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1476 assert(I->first != D && "Inst occurs in rev NLPD map");
1477
1478 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1479 E = I->second.end(); II != E; ++II)
1480 assert(*II != ValueIsLoadPair(D, false) &&
1481 *II != ValueIsLoadPair(D, true) &&
1482 "Inst occurs in ReverseNonLocalPtrDeps map");
1483 }
1484
1485 }
1486