1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "sparseprop"
16 #include "llvm/Analysis/SparsePropagation.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 using namespace llvm;
23 
24 //===----------------------------------------------------------------------===//
25 //                  AbstractLatticeFunction Implementation
26 //===----------------------------------------------------------------------===//
27 
~AbstractLatticeFunction()28 AbstractLatticeFunction::~AbstractLatticeFunction() {}
29 
30 /// PrintValue - Render the specified lattice value to the specified stream.
PrintValue(LatticeVal V,raw_ostream & OS)31 void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) {
32   if (V == UndefVal)
33     OS << "undefined";
34   else if (V == OverdefinedVal)
35     OS << "overdefined";
36   else if (V == UntrackedVal)
37     OS << "untracked";
38   else
39     OS << "unknown lattice value";
40 }
41 
42 //===----------------------------------------------------------------------===//
43 //                          SparseSolver Implementation
44 //===----------------------------------------------------------------------===//
45 
46 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
47 /// value, initializing the value's state if it hasn't been entered into the
48 /// map yet.   This function is necessary because not all values should start
49 /// out in the underdefined state... Arguments should be overdefined, and
50 /// constants should be marked as constants.
51 ///
getOrInitValueState(Value * V)52 SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
53   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
54   if (I != ValueState.end()) return I->second;  // Common case, in the map
55 
56   LatticeVal LV;
57   if (LatticeFunc->IsUntrackedValue(V))
58     return LatticeFunc->getUntrackedVal();
59   else if (Constant *C = dyn_cast<Constant>(V))
60     LV = LatticeFunc->ComputeConstant(C);
61   else if (Argument *A = dyn_cast<Argument>(V))
62     LV = LatticeFunc->ComputeArgument(A);
63   else if (!isa<Instruction>(V))
64     // All other non-instructions are overdefined.
65     LV = LatticeFunc->getOverdefinedVal();
66   else
67     // All instructions are underdefined by default.
68     LV = LatticeFunc->getUndefVal();
69 
70   // If this value is untracked, don't add it to the map.
71   if (LV == LatticeFunc->getUntrackedVal())
72     return LV;
73   return ValueState[V] = LV;
74 }
75 
76 /// UpdateState - When the state for some instruction is potentially updated,
77 /// this function notices and adds I to the worklist if needed.
UpdateState(Instruction & Inst,LatticeVal V)78 void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
79   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
80   if (I != ValueState.end() && I->second == V)
81     return;  // No change.
82 
83   // An update.  Visit uses of I.
84   ValueState[&Inst] = V;
85   InstWorkList.push_back(&Inst);
86 }
87 
88 /// MarkBlockExecutable - This method can be used by clients to mark all of
89 /// the blocks that are known to be intrinsically live in the processed unit.
MarkBlockExecutable(BasicBlock * BB)90 void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
91   DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
92   BBExecutable.insert(BB);   // Basic block is executable!
93   BBWorkList.push_back(BB);  // Add the block to the work list!
94 }
95 
96 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
97 /// work list if it is not already executable...
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)98 void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
99   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
100     return;  // This edge is already known to be executable!
101 
102   DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
103         << " -> " << Dest->getName() << "\n");
104 
105   if (BBExecutable.count(Dest)) {
106     // The destination is already executable, but we just made an edge
107     // feasible that wasn't before.  Revisit the PHI nodes in the block
108     // because they have potentially new operands.
109     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
110       visitPHINode(*cast<PHINode>(I));
111 
112   } else {
113     MarkBlockExecutable(Dest);
114   }
115 }
116 
117 
118 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
119 /// successors are reachable from a given terminator instruction.
getFeasibleSuccessors(TerminatorInst & TI,SmallVectorImpl<bool> & Succs,bool AggressiveUndef)120 void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
121                                          SmallVectorImpl<bool> &Succs,
122                                          bool AggressiveUndef) {
123   Succs.resize(TI.getNumSuccessors());
124   if (TI.getNumSuccessors() == 0) return;
125 
126   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
127     if (BI->isUnconditional()) {
128       Succs[0] = true;
129       return;
130     }
131 
132     LatticeVal BCValue;
133     if (AggressiveUndef)
134       BCValue = getOrInitValueState(BI->getCondition());
135     else
136       BCValue = getLatticeState(BI->getCondition());
137 
138     if (BCValue == LatticeFunc->getOverdefinedVal() ||
139         BCValue == LatticeFunc->getUntrackedVal()) {
140       // Overdefined condition variables can branch either way.
141       Succs[0] = Succs[1] = true;
142       return;
143     }
144 
145     // If undefined, neither is feasible yet.
146     if (BCValue == LatticeFunc->getUndefVal())
147       return;
148 
149     Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
150     if (C == 0 || !isa<ConstantInt>(C)) {
151       // Non-constant values can go either way.
152       Succs[0] = Succs[1] = true;
153       return;
154     }
155 
156     // Constant condition variables mean the branch can only go a single way
157     Succs[C->isNullValue()] = true;
158     return;
159   }
160 
161   if (isa<InvokeInst>(TI)) {
162     // Invoke instructions successors are always executable.
163     // TODO: Could ask the lattice function if the value can throw.
164     Succs[0] = Succs[1] = true;
165     return;
166   }
167 
168   if (isa<IndirectBrInst>(TI)) {
169     Succs.assign(Succs.size(), true);
170     return;
171   }
172 
173   SwitchInst &SI = cast<SwitchInst>(TI);
174   LatticeVal SCValue;
175   if (AggressiveUndef)
176     SCValue = getOrInitValueState(SI.getCondition());
177   else
178     SCValue = getLatticeState(SI.getCondition());
179 
180   if (SCValue == LatticeFunc->getOverdefinedVal() ||
181       SCValue == LatticeFunc->getUntrackedVal()) {
182     // All destinations are executable!
183     Succs.assign(TI.getNumSuccessors(), true);
184     return;
185   }
186 
187   // If undefined, neither is feasible yet.
188   if (SCValue == LatticeFunc->getUndefVal())
189     return;
190 
191   Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
192   if (C == 0 || !isa<ConstantInt>(C)) {
193     // All destinations are executable!
194     Succs.assign(TI.getNumSuccessors(), true);
195     return;
196   }
197 
198   Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true;
199 }
200 
201 
202 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
203 /// basic block to the 'To' basic block is currently feasible...
isEdgeFeasible(BasicBlock * From,BasicBlock * To,bool AggressiveUndef)204 bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
205                                   bool AggressiveUndef) {
206   SmallVector<bool, 16> SuccFeasible;
207   TerminatorInst *TI = From->getTerminator();
208   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
209 
210   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
211     if (TI->getSuccessor(i) == To && SuccFeasible[i])
212       return true;
213 
214   return false;
215 }
216 
visitTerminatorInst(TerminatorInst & TI)217 void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
218   SmallVector<bool, 16> SuccFeasible;
219   getFeasibleSuccessors(TI, SuccFeasible, true);
220 
221   BasicBlock *BB = TI.getParent();
222 
223   // Mark all feasible successors executable...
224   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
225     if (SuccFeasible[i])
226       markEdgeExecutable(BB, TI.getSuccessor(i));
227 }
228 
visitPHINode(PHINode & PN)229 void SparseSolver::visitPHINode(PHINode &PN) {
230   // The lattice function may store more information on a PHINode than could be
231   // computed from its incoming values.  For example, SSI form stores its sigma
232   // functions as PHINodes with a single incoming value.
233   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
234     LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
235     if (IV != LatticeFunc->getUntrackedVal())
236       UpdateState(PN, IV);
237     return;
238   }
239 
240   LatticeVal PNIV = getOrInitValueState(&PN);
241   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
242 
243   // If this value is already overdefined (common) just return.
244   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
245     return;  // Quick exit
246 
247   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
248   // and slow us down a lot.  Just mark them overdefined.
249   if (PN.getNumIncomingValues() > 64) {
250     UpdateState(PN, Overdefined);
251     return;
252   }
253 
254   // Look at all of the executable operands of the PHI node.  If any of them
255   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
256   // transfer function to give us the merge of the incoming values.
257   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
258     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
259     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
260       continue;
261 
262     // Merge in this value.
263     LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
264     if (OpVal != PNIV)
265       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
266 
267     if (PNIV == Overdefined)
268       break;  // Rest of input values don't matter.
269   }
270 
271   // Update the PHI with the compute value, which is the merge of the inputs.
272   UpdateState(PN, PNIV);
273 }
274 
275 
visitInst(Instruction & I)276 void SparseSolver::visitInst(Instruction &I) {
277   // PHIs are handled by the propagation logic, they are never passed into the
278   // transfer functions.
279   if (PHINode *PN = dyn_cast<PHINode>(&I))
280     return visitPHINode(*PN);
281 
282   // Otherwise, ask the transfer function what the result is.  If this is
283   // something that we care about, remember it.
284   LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
285   if (IV != LatticeFunc->getUntrackedVal())
286     UpdateState(I, IV);
287 
288   if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
289     visitTerminatorInst(*TI);
290 }
291 
Solve(Function & F)292 void SparseSolver::Solve(Function &F) {
293   MarkBlockExecutable(&F.getEntryBlock());
294 
295   // Process the work lists until they are empty!
296   while (!BBWorkList.empty() || !InstWorkList.empty()) {
297     // Process the instruction work list.
298     while (!InstWorkList.empty()) {
299       Instruction *I = InstWorkList.back();
300       InstWorkList.pop_back();
301 
302       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n");
303 
304       // "I" got into the work list because it made a transition.  See if any
305       // users are both live and in need of updating.
306       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
307            UI != E; ++UI) {
308         Instruction *U = cast<Instruction>(*UI);
309         if (BBExecutable.count(U->getParent()))   // Inst is executable?
310           visitInst(*U);
311       }
312     }
313 
314     // Process the basic block work list.
315     while (!BBWorkList.empty()) {
316       BasicBlock *BB = BBWorkList.back();
317       BBWorkList.pop_back();
318 
319       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
320 
321       // Notify all instructions in this basic block that they are newly
322       // executable.
323       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
324         visitInst(*I);
325     }
326   }
327 }
328 
Print(Function & F,raw_ostream & OS) const329 void SparseSolver::Print(Function &F, raw_ostream &OS) const {
330   OS << "\nFUNCTION: " << F.getNameStr() << "\n";
331   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
332     if (!BBExecutable.count(BB))
333       OS << "INFEASIBLE: ";
334     OS << "\t";
335     if (BB->hasName())
336       OS << BB->getNameStr() << ":\n";
337     else
338       OS << "; anon bb\n";
339     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
340       LatticeFunc->PrintValue(getLatticeState(I), OS);
341       OS << *I << "\n";
342     }
343 
344     OS << "\n";
345   }
346 }
347 
348