1 //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LatencyPriorityQueue class, which is a
11 // SchedulingPriorityQueue that schedules using latency information to
12 // reduce the length of the critical path through the basic block.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "scheduler"
17 #include "llvm/CodeGen/LatencyPriorityQueue.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/raw_ostream.h"
20 using namespace llvm;
21 
operator ()(const SUnit * LHS,const SUnit * RHS) const22 bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
23   // The isScheduleHigh flag allows nodes with wraparound dependencies that
24   // cannot easily be modeled as edges with latencies to be scheduled as
25   // soon as possible in a top-down schedule.
26   if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
27     return false;
28   if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
29     return true;
30 
31   unsigned LHSNum = LHS->NodeNum;
32   unsigned RHSNum = RHS->NodeNum;
33 
34   // The most important heuristic is scheduling the critical path.
35   unsigned LHSLatency = PQ->getLatency(LHSNum);
36   unsigned RHSLatency = PQ->getLatency(RHSNum);
37   if (LHSLatency < RHSLatency) return true;
38   if (LHSLatency > RHSLatency) return false;
39 
40   // After that, if two nodes have identical latencies, look to see if one will
41   // unblock more other nodes than the other.
42   unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
43   unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
44   if (LHSBlocked < RHSBlocked) return true;
45   if (LHSBlocked > RHSBlocked) return false;
46 
47   // Finally, just to provide a stable ordering, use the node number as a
48   // deciding factor.
49   return LHSNum < RHSNum;
50 }
51 
52 
53 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
54 /// of SU, return it, otherwise return null.
getSingleUnscheduledPred(SUnit * SU)55 SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
56   SUnit *OnlyAvailablePred = 0;
57   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
58        I != E; ++I) {
59     SUnit &Pred = *I->getSUnit();
60     if (!Pred.isScheduled) {
61       // We found an available, but not scheduled, predecessor.  If it's the
62       // only one we have found, keep track of it... otherwise give up.
63       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
64         return 0;
65       OnlyAvailablePred = &Pred;
66     }
67   }
68 
69   return OnlyAvailablePred;
70 }
71 
push(SUnit * SU)72 void LatencyPriorityQueue::push(SUnit *SU) {
73   // Look at all of the successors of this node.  Count the number of nodes that
74   // this node is the sole unscheduled node for.
75   unsigned NumNodesBlocking = 0;
76   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
77        I != E; ++I) {
78     if (getSingleUnscheduledPred(I->getSUnit()) == SU)
79       ++NumNodesBlocking;
80   }
81   NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
82 
83   Queue.push_back(SU);
84 }
85 
86 
87 // ScheduledNode - As nodes are scheduled, we look to see if there are any
88 // successor nodes that have a single unscheduled predecessor.  If so, that
89 // single predecessor has a higher priority, since scheduling it will make
90 // the node available.
ScheduledNode(SUnit * SU)91 void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
92   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
93        I != E; ++I) {
94     AdjustPriorityOfUnscheduledPreds(I->getSUnit());
95   }
96 }
97 
98 /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
99 /// scheduled.  If SU is not itself available, then there is at least one
100 /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
101 /// unscheduled predecessor, we want to increase its priority: it getting
102 /// scheduled will make this node available, so it is better than some other
103 /// node of the same priority that will not make a node available.
AdjustPriorityOfUnscheduledPreds(SUnit * SU)104 void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
105   if (SU->isAvailable) return;  // All preds scheduled.
106 
107   SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
108   if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
109 
110   // Okay, we found a single predecessor that is available, but not scheduled.
111   // Since it is available, it must be in the priority queue.  First remove it.
112   remove(OnlyAvailablePred);
113 
114   // Reinsert the node into the priority queue, which recomputes its
115   // NumNodesSolelyBlocking value.
116   push(OnlyAvailablePred);
117 }
118 
pop()119 SUnit *LatencyPriorityQueue::pop() {
120   if (empty()) return NULL;
121   std::vector<SUnit *>::iterator Best = Queue.begin();
122   for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
123        E = Queue.end(); I != E; ++I)
124     if (Picker(*Best, *I))
125       Best = I;
126   SUnit *V = *Best;
127   if (Best != prior(Queue.end()))
128     std::swap(*Best, Queue.back());
129   Queue.pop_back();
130   return V;
131 }
132 
remove(SUnit * SU)133 void LatencyPriorityQueue::remove(SUnit *SU) {
134   assert(!Queue.empty() && "Queue is empty!");
135   std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
136   if (I != prior(Queue.end()))
137     std::swap(*I, Queue.back());
138   Queue.pop_back();
139 }
140 
141 #ifdef NDEBUG
dump(ScheduleDAG * DAG) const142 void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {}
143 #else
dump(ScheduleDAG * DAG) const144 void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
145   LatencyPriorityQueue q = *this;
146   while (!q.empty()) {
147     SUnit *su = q.pop();
148     dbgs() << "Height " << su->getHeight() << ": ";
149     su->dump(DAG);
150   }
151 }
152 #endif
153