1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/OwningPtr.h"
13 #include <bitset>
14
15 using namespace llvm;
16
17 // MSVC emits references to this into the translation units which reference it.
18 #ifndef _MSC_VER
19 const size_t StringRef::npos;
20 #endif
21
ascii_tolower(char x)22 static char ascii_tolower(char x) {
23 if (x >= 'A' && x <= 'Z')
24 return x - 'A' + 'a';
25 return x;
26 }
27
ascii_isdigit(char x)28 static bool ascii_isdigit(char x) {
29 return x >= '0' && x <= '9';
30 }
31
32 /// compare_lower - Compare strings, ignoring case.
compare_lower(StringRef RHS) const33 int StringRef::compare_lower(StringRef RHS) const {
34 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
35 unsigned char LHC = ascii_tolower(Data[I]);
36 unsigned char RHC = ascii_tolower(RHS.Data[I]);
37 if (LHC != RHC)
38 return LHC < RHC ? -1 : 1;
39 }
40
41 if (Length == RHS.Length)
42 return 0;
43 return Length < RHS.Length ? -1 : 1;
44 }
45
46 /// compare_numeric - Compare strings, handle embedded numbers.
compare_numeric(StringRef RHS) const47 int StringRef::compare_numeric(StringRef RHS) const {
48 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
49 // Check for sequences of digits.
50 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
51 // The longer sequence of numbers is considered larger.
52 // This doesn't really handle prefixed zeros well.
53 size_t J;
54 for (J = I + 1; J != E + 1; ++J) {
55 bool ld = J < Length && ascii_isdigit(Data[J]);
56 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
57 if (ld != rd)
58 return rd ? -1 : 1;
59 if (!rd)
60 break;
61 }
62 // The two number sequences have the same length (J-I), just memcmp them.
63 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
64 return Res < 0 ? -1 : 1;
65 // Identical number sequences, continue search after the numbers.
66 I = J - 1;
67 continue;
68 }
69 if (Data[I] != RHS.Data[I])
70 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
71 }
72 if (Length == RHS.Length)
73 return 0;
74 return Length < RHS.Length ? -1 : 1;
75 }
76
77 // Compute the edit distance between the two given strings.
edit_distance(llvm::StringRef Other,bool AllowReplacements,unsigned MaxEditDistance)78 unsigned StringRef::edit_distance(llvm::StringRef Other,
79 bool AllowReplacements,
80 unsigned MaxEditDistance) {
81 // The algorithm implemented below is the "classic"
82 // dynamic-programming algorithm for computing the Levenshtein
83 // distance, which is described here:
84 //
85 // http://en.wikipedia.org/wiki/Levenshtein_distance
86 //
87 // Although the algorithm is typically described using an m x n
88 // array, only two rows are used at a time, so this implemenation
89 // just keeps two separate vectors for those two rows.
90 size_type m = size();
91 size_type n = Other.size();
92
93 const unsigned SmallBufferSize = 64;
94 unsigned SmallBuffer[SmallBufferSize];
95 llvm::OwningArrayPtr<unsigned> Allocated;
96 unsigned *previous = SmallBuffer;
97 if (2*(n + 1) > SmallBufferSize) {
98 previous = new unsigned [2*(n+1)];
99 Allocated.reset(previous);
100 }
101 unsigned *current = previous + (n + 1);
102
103 for (unsigned i = 0; i <= n; ++i)
104 previous[i] = i;
105
106 for (size_type y = 1; y <= m; ++y) {
107 current[0] = y;
108 unsigned BestThisRow = current[0];
109
110 for (size_type x = 1; x <= n; ++x) {
111 if (AllowReplacements) {
112 current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u),
113 min(current[x-1], previous[x])+1);
114 }
115 else {
116 if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1];
117 else current[x] = min(current[x-1], previous[x]) + 1;
118 }
119 BestThisRow = min(BestThisRow, current[x]);
120 }
121
122 if (MaxEditDistance && BestThisRow > MaxEditDistance)
123 return MaxEditDistance + 1;
124
125 unsigned *tmp = current;
126 current = previous;
127 previous = tmp;
128 }
129
130 unsigned Result = previous[n];
131 return Result;
132 }
133
134 //===----------------------------------------------------------------------===//
135 // String Searching
136 //===----------------------------------------------------------------------===//
137
138
139 /// find - Search for the first string \arg Str in the string.
140 ///
141 /// \return - The index of the first occurrence of \arg Str, or npos if not
142 /// found.
find(StringRef Str,size_t From) const143 size_t StringRef::find(StringRef Str, size_t From) const {
144 size_t N = Str.size();
145 if (N > Length)
146 return npos;
147 for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
148 if (substr(i, N).equals(Str))
149 return i;
150 return npos;
151 }
152
153 /// rfind - Search for the last string \arg Str in the string.
154 ///
155 /// \return - The index of the last occurrence of \arg Str, or npos if not
156 /// found.
rfind(StringRef Str) const157 size_t StringRef::rfind(StringRef Str) const {
158 size_t N = Str.size();
159 if (N > Length)
160 return npos;
161 for (size_t i = Length - N + 1, e = 0; i != e;) {
162 --i;
163 if (substr(i, N).equals(Str))
164 return i;
165 }
166 return npos;
167 }
168
169 /// find_first_of - Find the first character in the string that is in \arg
170 /// Chars, or npos if not found.
171 ///
172 /// Note: O(size() + Chars.size())
find_first_of(StringRef Chars,size_t From) const173 StringRef::size_type StringRef::find_first_of(StringRef Chars,
174 size_t From) const {
175 std::bitset<1 << CHAR_BIT> CharBits;
176 for (size_type i = 0; i != Chars.size(); ++i)
177 CharBits.set((unsigned char)Chars[i]);
178
179 for (size_type i = min(From, Length), e = Length; i != e; ++i)
180 if (CharBits.test((unsigned char)Data[i]))
181 return i;
182 return npos;
183 }
184
185 /// find_first_not_of - Find the first character in the string that is not
186 /// \arg C or npos if not found.
find_first_not_of(char C,size_t From) const187 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
188 for (size_type i = min(From, Length), e = Length; i != e; ++i)
189 if (Data[i] != C)
190 return i;
191 return npos;
192 }
193
194 /// find_first_not_of - Find the first character in the string that is not
195 /// in the string \arg Chars, or npos if not found.
196 ///
197 /// Note: O(size() + Chars.size())
find_first_not_of(StringRef Chars,size_t From) const198 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
199 size_t From) const {
200 std::bitset<1 << CHAR_BIT> CharBits;
201 for (size_type i = 0; i != Chars.size(); ++i)
202 CharBits.set((unsigned char)Chars[i]);
203
204 for (size_type i = min(From, Length), e = Length; i != e; ++i)
205 if (!CharBits.test((unsigned char)Data[i]))
206 return i;
207 return npos;
208 }
209
210 /// find_last_of - Find the last character in the string that is in \arg C,
211 /// or npos if not found.
212 ///
213 /// Note: O(size() + Chars.size())
find_last_of(StringRef Chars,size_t From) const214 StringRef::size_type StringRef::find_last_of(StringRef Chars,
215 size_t From) const {
216 std::bitset<1 << CHAR_BIT> CharBits;
217 for (size_type i = 0; i != Chars.size(); ++i)
218 CharBits.set((unsigned char)Chars[i]);
219
220 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
221 if (CharBits.test((unsigned char)Data[i]))
222 return i;
223 return npos;
224 }
225
226 //===----------------------------------------------------------------------===//
227 // Helpful Algorithms
228 //===----------------------------------------------------------------------===//
229
230 /// count - Return the number of non-overlapped occurrences of \arg Str in
231 /// the string.
count(StringRef Str) const232 size_t StringRef::count(StringRef Str) const {
233 size_t Count = 0;
234 size_t N = Str.size();
235 if (N > Length)
236 return 0;
237 for (size_t i = 0, e = Length - N + 1; i != e; ++i)
238 if (substr(i, N).equals(Str))
239 ++Count;
240 return Count;
241 }
242
GetAutoSenseRadix(StringRef & Str)243 static unsigned GetAutoSenseRadix(StringRef &Str) {
244 if (Str.startswith("0x")) {
245 Str = Str.substr(2);
246 return 16;
247 } else if (Str.startswith("0b")) {
248 Str = Str.substr(2);
249 return 2;
250 } else if (Str.startswith("0")) {
251 return 8;
252 } else {
253 return 10;
254 }
255 }
256
257
258 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
259 /// sequence of radix up to 36 to an unsigned long long value.
GetAsUnsignedInteger(StringRef Str,unsigned Radix,unsigned long long & Result)260 static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix,
261 unsigned long long &Result) {
262 // Autosense radix if not specified.
263 if (Radix == 0)
264 Radix = GetAutoSenseRadix(Str);
265
266 // Empty strings (after the radix autosense) are invalid.
267 if (Str.empty()) return true;
268
269 // Parse all the bytes of the string given this radix. Watch for overflow.
270 Result = 0;
271 while (!Str.empty()) {
272 unsigned CharVal;
273 if (Str[0] >= '0' && Str[0] <= '9')
274 CharVal = Str[0]-'0';
275 else if (Str[0] >= 'a' && Str[0] <= 'z')
276 CharVal = Str[0]-'a'+10;
277 else if (Str[0] >= 'A' && Str[0] <= 'Z')
278 CharVal = Str[0]-'A'+10;
279 else
280 return true;
281
282 // If the parsed value is larger than the integer radix, the string is
283 // invalid.
284 if (CharVal >= Radix)
285 return true;
286
287 // Add in this character.
288 unsigned long long PrevResult = Result;
289 Result = Result*Radix+CharVal;
290
291 // Check for overflow.
292 if (Result < PrevResult)
293 return true;
294
295 Str = Str.substr(1);
296 }
297
298 return false;
299 }
300
getAsInteger(unsigned Radix,unsigned long long & Result) const301 bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const {
302 return GetAsUnsignedInteger(*this, Radix, Result);
303 }
304
305
getAsInteger(unsigned Radix,long long & Result) const306 bool StringRef::getAsInteger(unsigned Radix, long long &Result) const {
307 unsigned long long ULLVal;
308
309 // Handle positive strings first.
310 if (empty() || front() != '-') {
311 if (GetAsUnsignedInteger(*this, Radix, ULLVal) ||
312 // Check for value so large it overflows a signed value.
313 (long long)ULLVal < 0)
314 return true;
315 Result = ULLVal;
316 return false;
317 }
318
319 // Get the positive part of the value.
320 if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) ||
321 // Reject values so large they'd overflow as negative signed, but allow
322 // "-0". This negates the unsigned so that the negative isn't undefined
323 // on signed overflow.
324 (long long)-ULLVal > 0)
325 return true;
326
327 Result = -ULLVal;
328 return false;
329 }
330
getAsInteger(unsigned Radix,int & Result) const331 bool StringRef::getAsInteger(unsigned Radix, int &Result) const {
332 long long Val;
333 if (getAsInteger(Radix, Val) ||
334 (int)Val != Val)
335 return true;
336 Result = Val;
337 return false;
338 }
339
getAsInteger(unsigned Radix,unsigned & Result) const340 bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const {
341 unsigned long long Val;
342 if (getAsInteger(Radix, Val) ||
343 (unsigned)Val != Val)
344 return true;
345 Result = Val;
346 return false;
347 }
348
getAsInteger(unsigned Radix,APInt & Result) const349 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
350 StringRef Str = *this;
351
352 // Autosense radix if not specified.
353 if (Radix == 0)
354 Radix = GetAutoSenseRadix(Str);
355
356 assert(Radix > 1 && Radix <= 36);
357
358 // Empty strings (after the radix autosense) are invalid.
359 if (Str.empty()) return true;
360
361 // Skip leading zeroes. This can be a significant improvement if
362 // it means we don't need > 64 bits.
363 while (!Str.empty() && Str.front() == '0')
364 Str = Str.substr(1);
365
366 // If it was nothing but zeroes....
367 if (Str.empty()) {
368 Result = APInt(64, 0);
369 return false;
370 }
371
372 // (Over-)estimate the required number of bits.
373 unsigned Log2Radix = 0;
374 while ((1U << Log2Radix) < Radix) Log2Radix++;
375 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
376
377 unsigned BitWidth = Log2Radix * Str.size();
378 if (BitWidth < Result.getBitWidth())
379 BitWidth = Result.getBitWidth(); // don't shrink the result
380 else
381 Result = Result.zext(BitWidth);
382
383 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
384 if (!IsPowerOf2Radix) {
385 // These must have the same bit-width as Result.
386 RadixAP = APInt(BitWidth, Radix);
387 CharAP = APInt(BitWidth, 0);
388 }
389
390 // Parse all the bytes of the string given this radix.
391 Result = 0;
392 while (!Str.empty()) {
393 unsigned CharVal;
394 if (Str[0] >= '0' && Str[0] <= '9')
395 CharVal = Str[0]-'0';
396 else if (Str[0] >= 'a' && Str[0] <= 'z')
397 CharVal = Str[0]-'a'+10;
398 else if (Str[0] >= 'A' && Str[0] <= 'Z')
399 CharVal = Str[0]-'A'+10;
400 else
401 return true;
402
403 // If the parsed value is larger than the integer radix, the string is
404 // invalid.
405 if (CharVal >= Radix)
406 return true;
407
408 // Add in this character.
409 if (IsPowerOf2Radix) {
410 Result <<= Log2Radix;
411 Result |= CharVal;
412 } else {
413 Result *= RadixAP;
414 CharAP = CharVal;
415 Result += CharAP;
416 }
417
418 Str = Str.substr(1);
419 }
420
421 return false;
422 }
423