1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/OwningPtr.h"
13 #include <bitset>
14 
15 using namespace llvm;
16 
17 // MSVC emits references to this into the translation units which reference it.
18 #ifndef _MSC_VER
19 const size_t StringRef::npos;
20 #endif
21 
ascii_tolower(char x)22 static char ascii_tolower(char x) {
23   if (x >= 'A' && x <= 'Z')
24     return x - 'A' + 'a';
25   return x;
26 }
27 
ascii_isdigit(char x)28 static bool ascii_isdigit(char x) {
29   return x >= '0' && x <= '9';
30 }
31 
32 /// compare_lower - Compare strings, ignoring case.
compare_lower(StringRef RHS) const33 int StringRef::compare_lower(StringRef RHS) const {
34   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
35     unsigned char LHC = ascii_tolower(Data[I]);
36     unsigned char RHC = ascii_tolower(RHS.Data[I]);
37     if (LHC != RHC)
38       return LHC < RHC ? -1 : 1;
39   }
40 
41   if (Length == RHS.Length)
42     return 0;
43   return Length < RHS.Length ? -1 : 1;
44 }
45 
46 /// compare_numeric - Compare strings, handle embedded numbers.
compare_numeric(StringRef RHS) const47 int StringRef::compare_numeric(StringRef RHS) const {
48   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
49     // Check for sequences of digits.
50     if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
51       // The longer sequence of numbers is considered larger.
52       // This doesn't really handle prefixed zeros well.
53       size_t J;
54       for (J = I + 1; J != E + 1; ++J) {
55         bool ld = J < Length && ascii_isdigit(Data[J]);
56         bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
57         if (ld != rd)
58           return rd ? -1 : 1;
59         if (!rd)
60           break;
61       }
62       // The two number sequences have the same length (J-I), just memcmp them.
63       if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
64         return Res < 0 ? -1 : 1;
65       // Identical number sequences, continue search after the numbers.
66       I = J - 1;
67       continue;
68     }
69     if (Data[I] != RHS.Data[I])
70       return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
71   }
72   if (Length == RHS.Length)
73     return 0;
74   return Length < RHS.Length ? -1 : 1;
75 }
76 
77 // Compute the edit distance between the two given strings.
edit_distance(llvm::StringRef Other,bool AllowReplacements,unsigned MaxEditDistance)78 unsigned StringRef::edit_distance(llvm::StringRef Other,
79                                   bool AllowReplacements,
80                                   unsigned MaxEditDistance) {
81   // The algorithm implemented below is the "classic"
82   // dynamic-programming algorithm for computing the Levenshtein
83   // distance, which is described here:
84   //
85   //   http://en.wikipedia.org/wiki/Levenshtein_distance
86   //
87   // Although the algorithm is typically described using an m x n
88   // array, only two rows are used at a time, so this implemenation
89   // just keeps two separate vectors for those two rows.
90   size_type m = size();
91   size_type n = Other.size();
92 
93   const unsigned SmallBufferSize = 64;
94   unsigned SmallBuffer[SmallBufferSize];
95   llvm::OwningArrayPtr<unsigned> Allocated;
96   unsigned *previous = SmallBuffer;
97   if (2*(n + 1) > SmallBufferSize) {
98     previous = new unsigned [2*(n+1)];
99     Allocated.reset(previous);
100   }
101   unsigned *current = previous + (n + 1);
102 
103   for (unsigned i = 0; i <= n; ++i)
104     previous[i] = i;
105 
106   for (size_type y = 1; y <= m; ++y) {
107     current[0] = y;
108     unsigned BestThisRow = current[0];
109 
110     for (size_type x = 1; x <= n; ++x) {
111       if (AllowReplacements) {
112         current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u),
113                          min(current[x-1], previous[x])+1);
114       }
115       else {
116         if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1];
117         else current[x] = min(current[x-1], previous[x]) + 1;
118       }
119       BestThisRow = min(BestThisRow, current[x]);
120     }
121 
122     if (MaxEditDistance && BestThisRow > MaxEditDistance)
123       return MaxEditDistance + 1;
124 
125     unsigned *tmp = current;
126     current = previous;
127     previous = tmp;
128   }
129 
130   unsigned Result = previous[n];
131   return Result;
132 }
133 
134 //===----------------------------------------------------------------------===//
135 // String Searching
136 //===----------------------------------------------------------------------===//
137 
138 
139 /// find - Search for the first string \arg Str in the string.
140 ///
141 /// \return - The index of the first occurrence of \arg Str, or npos if not
142 /// found.
find(StringRef Str,size_t From) const143 size_t StringRef::find(StringRef Str, size_t From) const {
144   size_t N = Str.size();
145   if (N > Length)
146     return npos;
147   for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
148     if (substr(i, N).equals(Str))
149       return i;
150   return npos;
151 }
152 
153 /// rfind - Search for the last string \arg Str in the string.
154 ///
155 /// \return - The index of the last occurrence of \arg Str, or npos if not
156 /// found.
rfind(StringRef Str) const157 size_t StringRef::rfind(StringRef Str) const {
158   size_t N = Str.size();
159   if (N > Length)
160     return npos;
161   for (size_t i = Length - N + 1, e = 0; i != e;) {
162     --i;
163     if (substr(i, N).equals(Str))
164       return i;
165   }
166   return npos;
167 }
168 
169 /// find_first_of - Find the first character in the string that is in \arg
170 /// Chars, or npos if not found.
171 ///
172 /// Note: O(size() + Chars.size())
find_first_of(StringRef Chars,size_t From) const173 StringRef::size_type StringRef::find_first_of(StringRef Chars,
174                                               size_t From) const {
175   std::bitset<1 << CHAR_BIT> CharBits;
176   for (size_type i = 0; i != Chars.size(); ++i)
177     CharBits.set((unsigned char)Chars[i]);
178 
179   for (size_type i = min(From, Length), e = Length; i != e; ++i)
180     if (CharBits.test((unsigned char)Data[i]))
181       return i;
182   return npos;
183 }
184 
185 /// find_first_not_of - Find the first character in the string that is not
186 /// \arg C or npos if not found.
find_first_not_of(char C,size_t From) const187 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
188   for (size_type i = min(From, Length), e = Length; i != e; ++i)
189     if (Data[i] != C)
190       return i;
191   return npos;
192 }
193 
194 /// find_first_not_of - Find the first character in the string that is not
195 /// in the string \arg Chars, or npos if not found.
196 ///
197 /// Note: O(size() + Chars.size())
find_first_not_of(StringRef Chars,size_t From) const198 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
199                                                   size_t From) const {
200   std::bitset<1 << CHAR_BIT> CharBits;
201   for (size_type i = 0; i != Chars.size(); ++i)
202     CharBits.set((unsigned char)Chars[i]);
203 
204   for (size_type i = min(From, Length), e = Length; i != e; ++i)
205     if (!CharBits.test((unsigned char)Data[i]))
206       return i;
207   return npos;
208 }
209 
210 /// find_last_of - Find the last character in the string that is in \arg C,
211 /// or npos if not found.
212 ///
213 /// Note: O(size() + Chars.size())
find_last_of(StringRef Chars,size_t From) const214 StringRef::size_type StringRef::find_last_of(StringRef Chars,
215                                              size_t From) const {
216   std::bitset<1 << CHAR_BIT> CharBits;
217   for (size_type i = 0; i != Chars.size(); ++i)
218     CharBits.set((unsigned char)Chars[i]);
219 
220   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
221     if (CharBits.test((unsigned char)Data[i]))
222       return i;
223   return npos;
224 }
225 
226 //===----------------------------------------------------------------------===//
227 // Helpful Algorithms
228 //===----------------------------------------------------------------------===//
229 
230 /// count - Return the number of non-overlapped occurrences of \arg Str in
231 /// the string.
count(StringRef Str) const232 size_t StringRef::count(StringRef Str) const {
233   size_t Count = 0;
234   size_t N = Str.size();
235   if (N > Length)
236     return 0;
237   for (size_t i = 0, e = Length - N + 1; i != e; ++i)
238     if (substr(i, N).equals(Str))
239       ++Count;
240   return Count;
241 }
242 
GetAutoSenseRadix(StringRef & Str)243 static unsigned GetAutoSenseRadix(StringRef &Str) {
244   if (Str.startswith("0x")) {
245     Str = Str.substr(2);
246     return 16;
247   } else if (Str.startswith("0b")) {
248     Str = Str.substr(2);
249     return 2;
250   } else if (Str.startswith("0")) {
251     return 8;
252   } else {
253     return 10;
254   }
255 }
256 
257 
258 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
259 /// sequence of radix up to 36 to an unsigned long long value.
GetAsUnsignedInteger(StringRef Str,unsigned Radix,unsigned long long & Result)260 static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix,
261                                  unsigned long long &Result) {
262   // Autosense radix if not specified.
263   if (Radix == 0)
264     Radix = GetAutoSenseRadix(Str);
265 
266   // Empty strings (after the radix autosense) are invalid.
267   if (Str.empty()) return true;
268 
269   // Parse all the bytes of the string given this radix.  Watch for overflow.
270   Result = 0;
271   while (!Str.empty()) {
272     unsigned CharVal;
273     if (Str[0] >= '0' && Str[0] <= '9')
274       CharVal = Str[0]-'0';
275     else if (Str[0] >= 'a' && Str[0] <= 'z')
276       CharVal = Str[0]-'a'+10;
277     else if (Str[0] >= 'A' && Str[0] <= 'Z')
278       CharVal = Str[0]-'A'+10;
279     else
280       return true;
281 
282     // If the parsed value is larger than the integer radix, the string is
283     // invalid.
284     if (CharVal >= Radix)
285       return true;
286 
287     // Add in this character.
288     unsigned long long PrevResult = Result;
289     Result = Result*Radix+CharVal;
290 
291     // Check for overflow.
292     if (Result < PrevResult)
293       return true;
294 
295     Str = Str.substr(1);
296   }
297 
298   return false;
299 }
300 
getAsInteger(unsigned Radix,unsigned long long & Result) const301 bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const {
302   return GetAsUnsignedInteger(*this, Radix, Result);
303 }
304 
305 
getAsInteger(unsigned Radix,long long & Result) const306 bool StringRef::getAsInteger(unsigned Radix, long long &Result) const {
307   unsigned long long ULLVal;
308 
309   // Handle positive strings first.
310   if (empty() || front() != '-') {
311     if (GetAsUnsignedInteger(*this, Radix, ULLVal) ||
312         // Check for value so large it overflows a signed value.
313         (long long)ULLVal < 0)
314       return true;
315     Result = ULLVal;
316     return false;
317   }
318 
319   // Get the positive part of the value.
320   if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) ||
321       // Reject values so large they'd overflow as negative signed, but allow
322       // "-0".  This negates the unsigned so that the negative isn't undefined
323       // on signed overflow.
324       (long long)-ULLVal > 0)
325     return true;
326 
327   Result = -ULLVal;
328   return false;
329 }
330 
getAsInteger(unsigned Radix,int & Result) const331 bool StringRef::getAsInteger(unsigned Radix, int &Result) const {
332   long long Val;
333   if (getAsInteger(Radix, Val) ||
334       (int)Val != Val)
335     return true;
336   Result = Val;
337   return false;
338 }
339 
getAsInteger(unsigned Radix,unsigned & Result) const340 bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const {
341   unsigned long long Val;
342   if (getAsInteger(Radix, Val) ||
343       (unsigned)Val != Val)
344     return true;
345   Result = Val;
346   return false;
347 }
348 
getAsInteger(unsigned Radix,APInt & Result) const349 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
350   StringRef Str = *this;
351 
352   // Autosense radix if not specified.
353   if (Radix == 0)
354     Radix = GetAutoSenseRadix(Str);
355 
356   assert(Radix > 1 && Radix <= 36);
357 
358   // Empty strings (after the radix autosense) are invalid.
359   if (Str.empty()) return true;
360 
361   // Skip leading zeroes.  This can be a significant improvement if
362   // it means we don't need > 64 bits.
363   while (!Str.empty() && Str.front() == '0')
364     Str = Str.substr(1);
365 
366   // If it was nothing but zeroes....
367   if (Str.empty()) {
368     Result = APInt(64, 0);
369     return false;
370   }
371 
372   // (Over-)estimate the required number of bits.
373   unsigned Log2Radix = 0;
374   while ((1U << Log2Radix) < Radix) Log2Radix++;
375   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
376 
377   unsigned BitWidth = Log2Radix * Str.size();
378   if (BitWidth < Result.getBitWidth())
379     BitWidth = Result.getBitWidth(); // don't shrink the result
380   else
381     Result = Result.zext(BitWidth);
382 
383   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
384   if (!IsPowerOf2Radix) {
385     // These must have the same bit-width as Result.
386     RadixAP = APInt(BitWidth, Radix);
387     CharAP = APInt(BitWidth, 0);
388   }
389 
390   // Parse all the bytes of the string given this radix.
391   Result = 0;
392   while (!Str.empty()) {
393     unsigned CharVal;
394     if (Str[0] >= '0' && Str[0] <= '9')
395       CharVal = Str[0]-'0';
396     else if (Str[0] >= 'a' && Str[0] <= 'z')
397       CharVal = Str[0]-'a'+10;
398     else if (Str[0] >= 'A' && Str[0] <= 'Z')
399       CharVal = Str[0]-'A'+10;
400     else
401       return true;
402 
403     // If the parsed value is larger than the integer radix, the string is
404     // invalid.
405     if (CharVal >= Radix)
406       return true;
407 
408     // Add in this character.
409     if (IsPowerOf2Radix) {
410       Result <<= Log2Radix;
411       Result |= CharVal;
412     } else {
413       Result *= RadixAP;
414       CharAP = CharVal;
415       Result += CharAP;
416     }
417 
418     Str = Str.substr(1);
419   }
420 
421   return false;
422 }
423