1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "arm-cp-islands"
17 #include "ARM.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMInstrInfo.h"
20 #include "Thumb2InstrInfo.h"
21 #include "MCTargetDesc/ARMAddressingModes.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/CommandLine.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 STATISTIC(NumCPEs, "Number of constpool entries");
39 STATISTIC(NumSplit, "Number of uncond branches inserted");
40 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
41 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
42 STATISTIC(NumTBs, "Number of table branches generated");
43 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
44 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
46 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
47 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
48
49
50 static cl::opt<bool>
51 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
52 cl::desc("Adjust basic block layout to better use TB[BH]"));
53
54 namespace {
55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56 /// requires constant pool entries to be scattered among the instructions
57 /// inside a function. To do this, it completely ignores the normal LLVM
58 /// constant pool; instead, it places constants wherever it feels like with
59 /// special instructions.
60 ///
61 /// The terminology used in this pass includes:
62 /// Islands - Clumps of constants placed in the function.
63 /// Water - Potential places where an island could be formed.
64 /// CPE - A constant pool entry that has been placed somewhere, which
65 /// tracks a list of users.
66 class ARMConstantIslands : public MachineFunctionPass {
67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
68 /// by MBB Number. The two-byte pads required for Thumb alignment are
69 /// counted as part of the following block (i.e., the offset and size for
70 /// a padded block will both be ==2 mod 4).
71 std::vector<unsigned> BBSizes;
72
73 /// BBOffsets - the offset of each MBB in bytes, starting from 0.
74 /// The two-byte pads required for Thumb alignment are counted as part of
75 /// the following block.
76 std::vector<unsigned> BBOffsets;
77
78 /// WaterList - A sorted list of basic blocks where islands could be placed
79 /// (i.e. blocks that don't fall through to the following block, due
80 /// to a return, unreachable, or unconditional branch).
81 std::vector<MachineBasicBlock*> WaterList;
82
83 /// NewWaterList - The subset of WaterList that was created since the
84 /// previous iteration by inserting unconditional branches.
85 SmallSet<MachineBasicBlock*, 4> NewWaterList;
86
87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
88
89 /// CPUser - One user of a constant pool, keeping the machine instruction
90 /// pointer, the constant pool being referenced, and the max displacement
91 /// allowed from the instruction to the CP. The HighWaterMark records the
92 /// highest basic block where a new CPEntry can be placed. To ensure this
93 /// pass terminates, the CP entries are initially placed at the end of the
94 /// function and then move monotonically to lower addresses. The
95 /// exception to this rule is when the current CP entry for a particular
96 /// CPUser is out of range, but there is another CP entry for the same
97 /// constant value in range. We want to use the existing in-range CP
98 /// entry, but if it later moves out of range, the search for new water
99 /// should resume where it left off. The HighWaterMark is used to record
100 /// that point.
101 struct CPUser {
102 MachineInstr *MI;
103 MachineInstr *CPEMI;
104 MachineBasicBlock *HighWaterMark;
105 unsigned MaxDisp;
106 bool NegOk;
107 bool IsSoImm;
CPUser__anona28af83f0111::ARMConstantIslands::CPUser108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
109 bool neg, bool soimm)
110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
111 HighWaterMark = CPEMI->getParent();
112 }
113 };
114
115 /// CPUsers - Keep track of all of the machine instructions that use various
116 /// constant pools and their max displacement.
117 std::vector<CPUser> CPUsers;
118
119 /// CPEntry - One per constant pool entry, keeping the machine instruction
120 /// pointer, the constpool index, and the number of CPUser's which
121 /// reference this entry.
122 struct CPEntry {
123 MachineInstr *CPEMI;
124 unsigned CPI;
125 unsigned RefCount;
CPEntry__anona28af83f0111::ARMConstantIslands::CPEntry126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
128 };
129
130 /// CPEntries - Keep track of all of the constant pool entry machine
131 /// instructions. For each original constpool index (i.e. those that
132 /// existed upon entry to this pass), it keeps a vector of entries.
133 /// Original elements are cloned as we go along; the clones are
134 /// put in the vector of the original element, but have distinct CPIs.
135 std::vector<std::vector<CPEntry> > CPEntries;
136
137 /// ImmBranch - One per immediate branch, keeping the machine instruction
138 /// pointer, conditional or unconditional, the max displacement,
139 /// and (if isCond is true) the corresponding unconditional branch
140 /// opcode.
141 struct ImmBranch {
142 MachineInstr *MI;
143 unsigned MaxDisp : 31;
144 bool isCond : 1;
145 int UncondBr;
ImmBranch__anona28af83f0111::ARMConstantIslands::ImmBranch146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
148 };
149
150 /// ImmBranches - Keep track of all the immediate branch instructions.
151 ///
152 std::vector<ImmBranch> ImmBranches;
153
154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
155 ///
156 SmallVector<MachineInstr*, 4> PushPopMIs;
157
158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
159 SmallVector<MachineInstr*, 4> T2JumpTables;
160
161 /// HasFarJump - True if any far jump instruction has been emitted during
162 /// the branch fix up pass.
163 bool HasFarJump;
164
165 /// HasInlineAsm - True if the function contains inline assembly.
166 bool HasInlineAsm;
167
168 const ARMInstrInfo *TII;
169 const ARMSubtarget *STI;
170 ARMFunctionInfo *AFI;
171 bool isThumb;
172 bool isThumb1;
173 bool isThumb2;
174 public:
175 static char ID;
ARMConstantIslands()176 ARMConstantIslands() : MachineFunctionPass(ID) {}
177
178 virtual bool runOnMachineFunction(MachineFunction &MF);
179
getPassName() const180 virtual const char *getPassName() const {
181 return "ARM constant island placement and branch shortening pass";
182 }
183
184 private:
185 void DoInitialPlacement(MachineFunction &MF,
186 std::vector<MachineInstr*> &CPEMIs);
187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
188 void JumpTableFunctionScan(MachineFunction &MF);
189 void InitialFunctionScan(MachineFunction &MF,
190 const std::vector<MachineInstr*> &CPEMIs);
191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
198 MachineBasicBlock *&NewMBB);
199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
200 void RemoveDeadCPEMI(MachineInstr *CPEMI);
201 bool RemoveUnusedCPEntries();
202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
203 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
204 bool DoDump = false);
205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
206 CPUser &U);
207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
208 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
213 bool UndoLRSpillRestore();
214 bool OptimizeThumb2Instructions(MachineFunction &MF);
215 bool OptimizeThumb2Branches(MachineFunction &MF);
216 bool ReorderThumb2JumpTables(MachineFunction &MF);
217 bool OptimizeThumb2JumpTables(MachineFunction &MF);
218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
219 MachineBasicBlock *JTBB);
220
221 unsigned GetOffsetOf(MachineInstr *MI) const;
222 void dumpBBs();
223 void verify(MachineFunction &MF);
224 };
225 char ARMConstantIslands::ID = 0;
226 }
227
228 /// verify - check BBOffsets, BBSizes, alignment of islands
verify(MachineFunction & MF)229 void ARMConstantIslands::verify(MachineFunction &MF) {
230 assert(BBOffsets.size() == BBSizes.size());
231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
233 if (!isThumb)
234 return;
235 #ifndef NDEBUG
236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
237 MBBI != E; ++MBBI) {
238 MachineBasicBlock *MBB = MBBI;
239 if (!MBB->empty() &&
240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
241 unsigned MBBId = MBB->getNumber();
242 assert(HasInlineAsm ||
243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
245 }
246 }
247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
248 CPUser &U = CPUsers[i];
249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
250 unsigned CPEOffset = GetOffsetOf(U.CPEMI);
251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
252 UserOffset - CPEOffset;
253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
254 }
255 #endif
256 }
257
258 /// print block size and offset information - debugging
dumpBBs()259 void ARMConstantIslands::dumpBBs() {
260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
262 << " size " << BBSizes[J] << "\n");
263 }
264 }
265
266 /// createARMConstantIslandPass - returns an instance of the constpool
267 /// island pass.
createARMConstantIslandPass()268 FunctionPass *llvm::createARMConstantIslandPass() {
269 return new ARMConstantIslands();
270 }
271
runOnMachineFunction(MachineFunction & MF)272 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
273 MachineConstantPool &MCP = *MF.getConstantPool();
274
275 TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo();
276 AFI = MF.getInfo<ARMFunctionInfo>();
277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
278
279 isThumb = AFI->isThumbFunction();
280 isThumb1 = AFI->isThumb1OnlyFunction();
281 isThumb2 = AFI->isThumb2Function();
282
283 HasFarJump = false;
284 HasInlineAsm = false;
285
286 // Renumber all of the machine basic blocks in the function, guaranteeing that
287 // the numbers agree with the position of the block in the function.
288 MF.RenumberBlocks();
289
290 // Try to reorder and otherwise adjust the block layout to make good use
291 // of the TB[BH] instructions.
292 bool MadeChange = false;
293 if (isThumb2 && AdjustJumpTableBlocks) {
294 JumpTableFunctionScan(MF);
295 MadeChange |= ReorderThumb2JumpTables(MF);
296 // Data is out of date, so clear it. It'll be re-computed later.
297 T2JumpTables.clear();
298 // Blocks may have shifted around. Keep the numbering up to date.
299 MF.RenumberBlocks();
300 }
301
302 // Thumb1 functions containing constant pools get 4-byte alignment.
303 // This is so we can keep exact track of where the alignment padding goes.
304
305 // ARM and Thumb2 functions need to be 4-byte aligned.
306 if (!isThumb1)
307 MF.EnsureAlignment(2); // 2 = log2(4)
308
309 // Perform the initial placement of the constant pool entries. To start with,
310 // we put them all at the end of the function.
311 std::vector<MachineInstr*> CPEMIs;
312 if (!MCP.isEmpty()) {
313 DoInitialPlacement(MF, CPEMIs);
314 if (isThumb1)
315 MF.EnsureAlignment(2); // 2 = log2(4)
316 }
317
318 /// The next UID to take is the first unused one.
319 AFI->initPICLabelUId(CPEMIs.size());
320
321 // Do the initial scan of the function, building up information about the
322 // sizes of each block, the location of all the water, and finding all of the
323 // constant pool users.
324 InitialFunctionScan(MF, CPEMIs);
325 CPEMIs.clear();
326 DEBUG(dumpBBs());
327
328
329 /// Remove dead constant pool entries.
330 MadeChange |= RemoveUnusedCPEntries();
331
332 // Iteratively place constant pool entries and fix up branches until there
333 // is no change.
334 unsigned NoCPIters = 0, NoBRIters = 0;
335 while (true) {
336 bool CPChange = false;
337 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
338 CPChange |= HandleConstantPoolUser(MF, i);
339 if (CPChange && ++NoCPIters > 30)
340 llvm_unreachable("Constant Island pass failed to converge!");
341 DEBUG(dumpBBs());
342
343 // Clear NewWaterList now. If we split a block for branches, it should
344 // appear as "new water" for the next iteration of constant pool placement.
345 NewWaterList.clear();
346
347 bool BRChange = false;
348 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
349 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
350 if (BRChange && ++NoBRIters > 30)
351 llvm_unreachable("Branch Fix Up pass failed to converge!");
352 DEBUG(dumpBBs());
353
354 if (!CPChange && !BRChange)
355 break;
356 MadeChange = true;
357 }
358
359 // Shrink 32-bit Thumb2 branch, load, and store instructions.
360 if (isThumb2 && !STI->prefers32BitThumb())
361 MadeChange |= OptimizeThumb2Instructions(MF);
362
363 // After a while, this might be made debug-only, but it is not expensive.
364 verify(MF);
365
366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
367 // undo the spill / restore of LR if possible.
368 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
369 MadeChange |= UndoLRSpillRestore();
370
371 // Save the mapping between original and cloned constpool entries.
372 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
373 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
374 const CPEntry & CPE = CPEntries[i][j];
375 AFI->recordCPEClone(i, CPE.CPI);
376 }
377 }
378
379 DEBUG(errs() << '\n'; dumpBBs());
380
381 BBSizes.clear();
382 BBOffsets.clear();
383 WaterList.clear();
384 CPUsers.clear();
385 CPEntries.clear();
386 ImmBranches.clear();
387 PushPopMIs.clear();
388 T2JumpTables.clear();
389
390 return MadeChange;
391 }
392
393 /// DoInitialPlacement - Perform the initial placement of the constant pool
394 /// entries. To start with, we put them all at the end of the function.
DoInitialPlacement(MachineFunction & MF,std::vector<MachineInstr * > & CPEMIs)395 void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
396 std::vector<MachineInstr*> &CPEMIs) {
397 // Create the basic block to hold the CPE's.
398 MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
399 MF.push_back(BB);
400
401 // Add all of the constants from the constant pool to the end block, use an
402 // identity mapping of CPI's to CPE's.
403 const std::vector<MachineConstantPoolEntry> &CPs =
404 MF.getConstantPool()->getConstants();
405
406 const TargetData &TD = *MF.getTarget().getTargetData();
407 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
408 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
409 // Verify that all constant pool entries are a multiple of 4 bytes. If not,
410 // we would have to pad them out or something so that instructions stay
411 // aligned.
412 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
413 MachineInstr *CPEMI =
414 BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
415 .addImm(i).addConstantPoolIndex(i).addImm(Size);
416 CPEMIs.push_back(CPEMI);
417
418 // Add a new CPEntry, but no corresponding CPUser yet.
419 std::vector<CPEntry> CPEs;
420 CPEs.push_back(CPEntry(CPEMI, i));
421 CPEntries.push_back(CPEs);
422 ++NumCPEs;
423 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
424 << "\n");
425 }
426 }
427
428 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
429 /// into the block immediately after it.
BBHasFallthrough(MachineBasicBlock * MBB)430 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
431 // Get the next machine basic block in the function.
432 MachineFunction::iterator MBBI = MBB;
433 // Can't fall off end of function.
434 if (llvm::next(MBBI) == MBB->getParent()->end())
435 return false;
436
437 MachineBasicBlock *NextBB = llvm::next(MBBI);
438 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
439 E = MBB->succ_end(); I != E; ++I)
440 if (*I == NextBB)
441 return true;
442
443 return false;
444 }
445
446 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
447 /// look up the corresponding CPEntry.
448 ARMConstantIslands::CPEntry
findConstPoolEntry(unsigned CPI,const MachineInstr * CPEMI)449 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
450 const MachineInstr *CPEMI) {
451 std::vector<CPEntry> &CPEs = CPEntries[CPI];
452 // Number of entries per constpool index should be small, just do a
453 // linear search.
454 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
455 if (CPEs[i].CPEMI == CPEMI)
456 return &CPEs[i];
457 }
458 return NULL;
459 }
460
461 /// JumpTableFunctionScan - Do a scan of the function, building up
462 /// information about the sizes of each block and the locations of all
463 /// the jump tables.
JumpTableFunctionScan(MachineFunction & MF)464 void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
465 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
466 MBBI != E; ++MBBI) {
467 MachineBasicBlock &MBB = *MBBI;
468
469 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
470 I != E; ++I)
471 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
472 T2JumpTables.push_back(I);
473 }
474 }
475
476 /// InitialFunctionScan - Do the initial scan of the function, building up
477 /// information about the sizes of each block, the location of all the water,
478 /// and finding all of the constant pool users.
InitialFunctionScan(MachineFunction & MF,const std::vector<MachineInstr * > & CPEMIs)479 void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
480 const std::vector<MachineInstr*> &CPEMIs) {
481 // First thing, see if the function has any inline assembly in it. If so,
482 // we have to be conservative about alignment assumptions, as we don't
483 // know for sure the size of any instructions in the inline assembly.
484 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
485 MBBI != E; ++MBBI) {
486 MachineBasicBlock &MBB = *MBBI;
487 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
488 I != E; ++I)
489 if (I->getOpcode() == ARM::INLINEASM)
490 HasInlineAsm = true;
491 }
492
493 // Now go back through the instructions and build up our data structures.
494 unsigned Offset = 0;
495 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
496 MBBI != E; ++MBBI) {
497 MachineBasicBlock &MBB = *MBBI;
498
499 // If this block doesn't fall through into the next MBB, then this is
500 // 'water' that a constant pool island could be placed.
501 if (!BBHasFallthrough(&MBB))
502 WaterList.push_back(&MBB);
503
504 unsigned MBBSize = 0;
505 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
506 I != E; ++I) {
507 if (I->isDebugValue())
508 continue;
509 // Add instruction size to MBBSize.
510 MBBSize += TII->GetInstSizeInBytes(I);
511
512 int Opc = I->getOpcode();
513 if (I->getDesc().isBranch()) {
514 bool isCond = false;
515 unsigned Bits = 0;
516 unsigned Scale = 1;
517 int UOpc = Opc;
518 switch (Opc) {
519 default:
520 continue; // Ignore other JT branches
521 case ARM::tBR_JTr:
522 // A Thumb1 table jump may involve padding; for the offsets to
523 // be right, functions containing these must be 4-byte aligned.
524 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
525 // table entries. So this code checks whether offset of tBR_JTr + 2
526 // is aligned. That is held in Offset+MBBSize, which already has
527 // 2 added in for the size of the mov pc instruction.
528 MF.EnsureAlignment(2U);
529 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
530 // FIXME: Add a pseudo ALIGN instruction instead.
531 MBBSize += 2; // padding
532 continue; // Does not get an entry in ImmBranches
533 case ARM::t2BR_JT:
534 T2JumpTables.push_back(I);
535 continue; // Does not get an entry in ImmBranches
536 case ARM::Bcc:
537 isCond = true;
538 UOpc = ARM::B;
539 // Fallthrough
540 case ARM::B:
541 Bits = 24;
542 Scale = 4;
543 break;
544 case ARM::tBcc:
545 isCond = true;
546 UOpc = ARM::tB;
547 Bits = 8;
548 Scale = 2;
549 break;
550 case ARM::tB:
551 Bits = 11;
552 Scale = 2;
553 break;
554 case ARM::t2Bcc:
555 isCond = true;
556 UOpc = ARM::t2B;
557 Bits = 20;
558 Scale = 2;
559 break;
560 case ARM::t2B:
561 Bits = 24;
562 Scale = 2;
563 break;
564 }
565
566 // Record this immediate branch.
567 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
568 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
569 }
570
571 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
572 PushPopMIs.push_back(I);
573
574 if (Opc == ARM::CONSTPOOL_ENTRY)
575 continue;
576
577 // Scan the instructions for constant pool operands.
578 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
579 if (I->getOperand(op).isCPI()) {
580 // We found one. The addressing mode tells us the max displacement
581 // from the PC that this instruction permits.
582
583 // Basic size info comes from the TSFlags field.
584 unsigned Bits = 0;
585 unsigned Scale = 1;
586 bool NegOk = false;
587 bool IsSoImm = false;
588
589 switch (Opc) {
590 default:
591 llvm_unreachable("Unknown addressing mode for CP reference!");
592 break;
593
594 // Taking the address of a CP entry.
595 case ARM::LEApcrel:
596 // This takes a SoImm, which is 8 bit immediate rotated. We'll
597 // pretend the maximum offset is 255 * 4. Since each instruction
598 // 4 byte wide, this is always correct. We'll check for other
599 // displacements that fits in a SoImm as well.
600 Bits = 8;
601 Scale = 4;
602 NegOk = true;
603 IsSoImm = true;
604 break;
605 case ARM::t2LEApcrel:
606 Bits = 12;
607 NegOk = true;
608 break;
609 case ARM::tLEApcrel:
610 Bits = 8;
611 Scale = 4;
612 break;
613
614 case ARM::LDRi12:
615 case ARM::LDRcp:
616 case ARM::t2LDRpci:
617 Bits = 12; // +-offset_12
618 NegOk = true;
619 break;
620
621 case ARM::tLDRpci:
622 Bits = 8;
623 Scale = 4; // +(offset_8*4)
624 break;
625
626 case ARM::VLDRD:
627 case ARM::VLDRS:
628 Bits = 8;
629 Scale = 4; // +-(offset_8*4)
630 NegOk = true;
631 break;
632 }
633
634 // Remember that this is a user of a CP entry.
635 unsigned CPI = I->getOperand(op).getIndex();
636 MachineInstr *CPEMI = CPEMIs[CPI];
637 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
638 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
639
640 // Increment corresponding CPEntry reference count.
641 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
642 assert(CPE && "Cannot find a corresponding CPEntry!");
643 CPE->RefCount++;
644
645 // Instructions can only use one CP entry, don't bother scanning the
646 // rest of the operands.
647 break;
648 }
649 }
650
651 // In thumb mode, if this block is a constpool island, we may need padding
652 // so it's aligned on 4 byte boundary.
653 if (isThumb &&
654 !MBB.empty() &&
655 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
656 ((Offset%4) != 0 || HasInlineAsm))
657 MBBSize += 2;
658
659 BBSizes.push_back(MBBSize);
660 BBOffsets.push_back(Offset);
661 Offset += MBBSize;
662 }
663 }
664
665 /// GetOffsetOf - Return the current offset of the specified machine instruction
666 /// from the start of the function. This offset changes as stuff is moved
667 /// around inside the function.
GetOffsetOf(MachineInstr * MI) const668 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
669 MachineBasicBlock *MBB = MI->getParent();
670
671 // The offset is composed of two things: the sum of the sizes of all MBB's
672 // before this instruction's block, and the offset from the start of the block
673 // it is in.
674 unsigned Offset = BBOffsets[MBB->getNumber()];
675
676 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
677 // alignment padding, and compensate if so.
678 if (isThumb &&
679 MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
680 (Offset%4 != 0 || HasInlineAsm))
681 Offset += 2;
682
683 // Sum instructions before MI in MBB.
684 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
685 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
686 if (&*I == MI) return Offset;
687 Offset += TII->GetInstSizeInBytes(I);
688 }
689 }
690
691 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
692 /// ID.
CompareMBBNumbers(const MachineBasicBlock * LHS,const MachineBasicBlock * RHS)693 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
694 const MachineBasicBlock *RHS) {
695 return LHS->getNumber() < RHS->getNumber();
696 }
697
698 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
699 /// machine function, it upsets all of the block numbers. Renumber the blocks
700 /// and update the arrays that parallel this numbering.
UpdateForInsertedWaterBlock(MachineBasicBlock * NewBB)701 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
702 // Renumber the MBB's to keep them consecutive.
703 NewBB->getParent()->RenumberBlocks(NewBB);
704
705 // Insert a size into BBSizes to align it properly with the (newly
706 // renumbered) block numbers.
707 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
708
709 // Likewise for BBOffsets.
710 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
711
712 // Next, update WaterList. Specifically, we need to add NewMBB as having
713 // available water after it.
714 water_iterator IP =
715 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
716 CompareMBBNumbers);
717 WaterList.insert(IP, NewBB);
718 }
719
720
721 /// Split the basic block containing MI into two blocks, which are joined by
722 /// an unconditional branch. Update data structures and renumber blocks to
723 /// account for this change and returns the newly created block.
SplitBlockBeforeInstr(MachineInstr * MI)724 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
725 MachineBasicBlock *OrigBB = MI->getParent();
726 MachineFunction &MF = *OrigBB->getParent();
727
728 // Create a new MBB for the code after the OrigBB.
729 MachineBasicBlock *NewBB =
730 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
731 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
732 MF.insert(MBBI, NewBB);
733
734 // Splice the instructions starting with MI over to NewBB.
735 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
736
737 // Add an unconditional branch from OrigBB to NewBB.
738 // Note the new unconditional branch is not being recorded.
739 // There doesn't seem to be meaningful DebugInfo available; this doesn't
740 // correspond to anything in the source.
741 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
742 if (!isThumb)
743 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
744 else
745 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
746 .addImm(ARMCC::AL).addReg(0);
747 ++NumSplit;
748
749 // Update the CFG. All succs of OrigBB are now succs of NewBB.
750 while (!OrigBB->succ_empty()) {
751 MachineBasicBlock *Succ = *OrigBB->succ_begin();
752 OrigBB->removeSuccessor(Succ);
753 NewBB->addSuccessor(Succ);
754
755 // This pass should be run after register allocation, so there should be no
756 // PHI nodes to update.
757 assert((Succ->empty() || !Succ->begin()->isPHI())
758 && "PHI nodes should be eliminated by now!");
759 }
760
761 // OrigBB branches to NewBB.
762 OrigBB->addSuccessor(NewBB);
763
764 // Update internal data structures to account for the newly inserted MBB.
765 // This is almost the same as UpdateForInsertedWaterBlock, except that
766 // the Water goes after OrigBB, not NewBB.
767 MF.RenumberBlocks(NewBB);
768
769 // Insert a size into BBSizes to align it properly with the (newly
770 // renumbered) block numbers.
771 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
772
773 // Likewise for BBOffsets.
774 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
775
776 // Next, update WaterList. Specifically, we need to add OrigMBB as having
777 // available water after it (but not if it's already there, which happens
778 // when splitting before a conditional branch that is followed by an
779 // unconditional branch - in that case we want to insert NewBB).
780 water_iterator IP =
781 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
782 CompareMBBNumbers);
783 MachineBasicBlock* WaterBB = *IP;
784 if (WaterBB == OrigBB)
785 WaterList.insert(llvm::next(IP), NewBB);
786 else
787 WaterList.insert(IP, OrigBB);
788 NewWaterList.insert(OrigBB);
789
790 unsigned OrigBBI = OrigBB->getNumber();
791 unsigned NewBBI = NewBB->getNumber();
792
793 int delta = isThumb1 ? 2 : 4;
794
795 // Figure out how large the OrigBB is. As the first half of the original
796 // block, it cannot contain a tablejump. The size includes
797 // the new jump we added. (It should be possible to do this without
798 // recounting everything, but it's very confusing, and this is rarely
799 // executed.)
800 unsigned OrigBBSize = 0;
801 for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end();
802 I != E; ++I)
803 OrigBBSize += TII->GetInstSizeInBytes(I);
804 BBSizes[OrigBBI] = OrigBBSize;
805
806 // ...and adjust BBOffsets for NewBB accordingly.
807 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
808
809 // Figure out how large the NewMBB is. As the second half of the original
810 // block, it may contain a tablejump.
811 unsigned NewBBSize = 0;
812 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
813 I != E; ++I)
814 NewBBSize += TII->GetInstSizeInBytes(I);
815 // Set the size of NewBB in BBSizes. It does not include any padding now.
816 BBSizes[NewBBI] = NewBBSize;
817
818 MachineInstr* ThumbJTMI = prior(NewBB->end());
819 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
820 // We've added another 2-byte instruction before this tablejump, which
821 // means we will always need padding if we didn't before, and vice versa.
822
823 // The original offset of the jump instruction was:
824 unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta;
825 if (OrigOffset%4 == 0) {
826 // We had padding before and now we don't. No net change in code size.
827 delta = 0;
828 } else {
829 // We didn't have padding before and now we do.
830 BBSizes[NewBBI] += 2;
831 delta = 4;
832 }
833 }
834
835 // All BBOffsets following these blocks must be modified.
836 if (delta)
837 AdjustBBOffsetsAfter(NewBB, delta);
838
839 return NewBB;
840 }
841
842 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
843 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
844 /// constant pool entry).
OffsetIsInRange(unsigned UserOffset,unsigned TrialOffset,unsigned MaxDisp,bool NegativeOK,bool IsSoImm)845 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
846 unsigned TrialOffset, unsigned MaxDisp,
847 bool NegativeOK, bool IsSoImm) {
848 // On Thumb offsets==2 mod 4 are rounded down by the hardware for
849 // purposes of the displacement computation; compensate for that here.
850 // Effectively, the valid range of displacements is 2 bytes smaller for such
851 // references.
852 unsigned TotalAdj = 0;
853 if (isThumb && UserOffset%4 !=0) {
854 UserOffset -= 2;
855 TotalAdj = 2;
856 }
857 // CPEs will be rounded up to a multiple of 4.
858 if (isThumb && TrialOffset%4 != 0) {
859 TrialOffset += 2;
860 TotalAdj += 2;
861 }
862
863 // In Thumb2 mode, later branch adjustments can shift instructions up and
864 // cause alignment change. In the worst case scenario this can cause the
865 // user's effective address to be subtracted by 2 and the CPE's address to
866 // be plus 2.
867 if (isThumb2 && TotalAdj != 4)
868 MaxDisp -= (4 - TotalAdj);
869
870 if (UserOffset <= TrialOffset) {
871 // User before the Trial.
872 if (TrialOffset - UserOffset <= MaxDisp)
873 return true;
874 // FIXME: Make use full range of soimm values.
875 } else if (NegativeOK) {
876 if (UserOffset - TrialOffset <= MaxDisp)
877 return true;
878 // FIXME: Make use full range of soimm values.
879 }
880 return false;
881 }
882
883 /// WaterIsInRange - Returns true if a CPE placed after the specified
884 /// Water (a basic block) will be in range for the specific MI.
885
WaterIsInRange(unsigned UserOffset,MachineBasicBlock * Water,CPUser & U)886 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
887 MachineBasicBlock* Water, CPUser &U) {
888 unsigned MaxDisp = U.MaxDisp;
889 unsigned CPEOffset = BBOffsets[Water->getNumber()] +
890 BBSizes[Water->getNumber()];
891
892 // If the CPE is to be inserted before the instruction, that will raise
893 // the offset of the instruction.
894 if (CPEOffset < UserOffset)
895 UserOffset += U.CPEMI->getOperand(2).getImm();
896
897 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
898 }
899
900 /// CPEIsInRange - Returns true if the distance between specific MI and
901 /// specific ConstPool entry instruction can fit in MI's displacement field.
CPEIsInRange(MachineInstr * MI,unsigned UserOffset,MachineInstr * CPEMI,unsigned MaxDisp,bool NegOk,bool DoDump)902 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
903 MachineInstr *CPEMI, unsigned MaxDisp,
904 bool NegOk, bool DoDump) {
905 unsigned CPEOffset = GetOffsetOf(CPEMI);
906 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
907
908 if (DoDump) {
909 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
910 << " max delta=" << MaxDisp
911 << " insn address=" << UserOffset
912 << " CPE address=" << CPEOffset
913 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
914 }
915
916 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
917 }
918
919 #ifndef NDEBUG
920 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
921 /// unconditionally branches to its only successor.
BBIsJumpedOver(MachineBasicBlock * MBB)922 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
923 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
924 return false;
925
926 MachineBasicBlock *Succ = *MBB->succ_begin();
927 MachineBasicBlock *Pred = *MBB->pred_begin();
928 MachineInstr *PredMI = &Pred->back();
929 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
930 || PredMI->getOpcode() == ARM::t2B)
931 return PredMI->getOperand(0).getMBB() == Succ;
932 return false;
933 }
934 #endif // NDEBUG
935
AdjustBBOffsetsAfter(MachineBasicBlock * BB,int delta)936 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
937 int delta) {
938 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
939 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
940 i < e; ++i) {
941 BBOffsets[i] += delta;
942 // If some existing blocks have padding, adjust the padding as needed, a
943 // bit tricky. delta can be negative so don't use % on that.
944 if (!isThumb)
945 continue;
946 MachineBasicBlock *MBB = MBBI;
947 if (!MBB->empty() && !HasInlineAsm) {
948 // Constant pool entries require padding.
949 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
950 unsigned OldOffset = BBOffsets[i] - delta;
951 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
952 // add new padding
953 BBSizes[i] += 2;
954 delta += 2;
955 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
956 // remove existing padding
957 BBSizes[i] -= 2;
958 delta -= 2;
959 }
960 }
961 // Thumb1 jump tables require padding. They should be at the end;
962 // following unconditional branches are removed by AnalyzeBranch.
963 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
964 // table entries. So this code checks whether offset of tBR_JTr
965 // is aligned; if it is, the offset of the jump table following the
966 // instruction will not be aligned, and we need padding.
967 MachineInstr *ThumbJTMI = prior(MBB->end());
968 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
969 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
970 unsigned OldMIOffset = NewMIOffset - delta;
971 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
972 // remove existing padding
973 BBSizes[i] -= 2;
974 delta -= 2;
975 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
976 // add new padding
977 BBSizes[i] += 2;
978 delta += 2;
979 }
980 }
981 if (delta==0)
982 return;
983 }
984 MBBI = llvm::next(MBBI);
985 }
986 }
987
988 /// DecrementOldEntry - find the constant pool entry with index CPI
989 /// and instruction CPEMI, and decrement its refcount. If the refcount
990 /// becomes 0 remove the entry and instruction. Returns true if we removed
991 /// the entry, false if we didn't.
992
DecrementOldEntry(unsigned CPI,MachineInstr * CPEMI)993 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
994 // Find the old entry. Eliminate it if it is no longer used.
995 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
996 assert(CPE && "Unexpected!");
997 if (--CPE->RefCount == 0) {
998 RemoveDeadCPEMI(CPEMI);
999 CPE->CPEMI = NULL;
1000 --NumCPEs;
1001 return true;
1002 }
1003 return false;
1004 }
1005
1006 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1007 /// if not, see if an in-range clone of the CPE is in range, and if so,
1008 /// change the data structures so the user references the clone. Returns:
1009 /// 0 = no existing entry found
1010 /// 1 = entry found, and there were no code insertions or deletions
1011 /// 2 = entry found, and there were code insertions or deletions
LookForExistingCPEntry(CPUser & U,unsigned UserOffset)1012 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
1013 {
1014 MachineInstr *UserMI = U.MI;
1015 MachineInstr *CPEMI = U.CPEMI;
1016
1017 // Check to see if the CPE is already in-range.
1018 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
1019 DEBUG(errs() << "In range\n");
1020 return 1;
1021 }
1022
1023 // No. Look for previously created clones of the CPE that are in range.
1024 unsigned CPI = CPEMI->getOperand(1).getIndex();
1025 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1026 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1027 // We already tried this one
1028 if (CPEs[i].CPEMI == CPEMI)
1029 continue;
1030 // Removing CPEs can leave empty entries, skip
1031 if (CPEs[i].CPEMI == NULL)
1032 continue;
1033 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
1034 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
1035 << CPEs[i].CPI << "\n");
1036 // Point the CPUser node to the replacement
1037 U.CPEMI = CPEs[i].CPEMI;
1038 // Change the CPI in the instruction operand to refer to the clone.
1039 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1040 if (UserMI->getOperand(j).isCPI()) {
1041 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1042 break;
1043 }
1044 // Adjust the refcount of the clone...
1045 CPEs[i].RefCount++;
1046 // ...and the original. If we didn't remove the old entry, none of the
1047 // addresses changed, so we don't need another pass.
1048 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
1049 }
1050 }
1051 return 0;
1052 }
1053
1054 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1055 /// the specific unconditional branch instruction.
getUnconditionalBrDisp(int Opc)1056 static inline unsigned getUnconditionalBrDisp(int Opc) {
1057 switch (Opc) {
1058 case ARM::tB:
1059 return ((1<<10)-1)*2;
1060 case ARM::t2B:
1061 return ((1<<23)-1)*2;
1062 default:
1063 break;
1064 }
1065
1066 return ((1<<23)-1)*4;
1067 }
1068
1069 /// LookForWater - Look for an existing entry in the WaterList in which
1070 /// we can place the CPE referenced from U so it's within range of U's MI.
1071 /// Returns true if found, false if not. If it returns true, WaterIter
1072 /// is set to the WaterList entry. For Thumb, prefer water that will not
1073 /// introduce padding to water that will. To ensure that this pass
1074 /// terminates, the CPE location for a particular CPUser is only allowed to
1075 /// move to a lower address, so search backward from the end of the list and
1076 /// prefer the first water that is in range.
LookForWater(CPUser & U,unsigned UserOffset,water_iterator & WaterIter)1077 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
1078 water_iterator &WaterIter) {
1079 if (WaterList.empty())
1080 return false;
1081
1082 bool FoundWaterThatWouldPad = false;
1083 water_iterator IPThatWouldPad;
1084 for (water_iterator IP = prior(WaterList.end()),
1085 B = WaterList.begin();; --IP) {
1086 MachineBasicBlock* WaterBB = *IP;
1087 // Check if water is in range and is either at a lower address than the
1088 // current "high water mark" or a new water block that was created since
1089 // the previous iteration by inserting an unconditional branch. In the
1090 // latter case, we want to allow resetting the high water mark back to
1091 // this new water since we haven't seen it before. Inserting branches
1092 // should be relatively uncommon and when it does happen, we want to be
1093 // sure to take advantage of it for all the CPEs near that block, so that
1094 // we don't insert more branches than necessary.
1095 if (WaterIsInRange(UserOffset, WaterBB, U) &&
1096 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1097 NewWaterList.count(WaterBB))) {
1098 unsigned WBBId = WaterBB->getNumber();
1099 if (isThumb &&
1100 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
1101 // This is valid Water, but would introduce padding. Remember
1102 // it in case we don't find any Water that doesn't do this.
1103 if (!FoundWaterThatWouldPad) {
1104 FoundWaterThatWouldPad = true;
1105 IPThatWouldPad = IP;
1106 }
1107 } else {
1108 WaterIter = IP;
1109 return true;
1110 }
1111 }
1112 if (IP == B)
1113 break;
1114 }
1115 if (FoundWaterThatWouldPad) {
1116 WaterIter = IPThatWouldPad;
1117 return true;
1118 }
1119 return false;
1120 }
1121
1122 /// CreateNewWater - No existing WaterList entry will work for
1123 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1124 /// block is used if in range, and the conditional branch munged so control
1125 /// flow is correct. Otherwise the block is split to create a hole with an
1126 /// unconditional branch around it. In either case NewMBB is set to a
1127 /// block following which the new island can be inserted (the WaterList
1128 /// is not adjusted).
CreateNewWater(unsigned CPUserIndex,unsigned UserOffset,MachineBasicBlock * & NewMBB)1129 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1130 unsigned UserOffset,
1131 MachineBasicBlock *&NewMBB) {
1132 CPUser &U = CPUsers[CPUserIndex];
1133 MachineInstr *UserMI = U.MI;
1134 MachineInstr *CPEMI = U.CPEMI;
1135 MachineBasicBlock *UserMBB = UserMI->getParent();
1136 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1137 BBSizes[UserMBB->getNumber()];
1138 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1139
1140 // If the block does not end in an unconditional branch already, and if the
1141 // end of the block is within range, make new water there. (The addition
1142 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1143 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for
1144 // inside OffsetIsInRange.
1145 if (BBHasFallthrough(UserMBB) &&
1146 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1147 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1148 DEBUG(errs() << "Split at end of block\n");
1149 if (&UserMBB->back() == UserMI)
1150 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1151 NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1152 // Add an unconditional branch from UserMBB to fallthrough block.
1153 // Record it for branch lengthening; this new branch will not get out of
1154 // range, but if the preceding conditional branch is out of range, the
1155 // targets will be exchanged, and the altered branch may be out of
1156 // range, so the machinery has to know about it.
1157 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1158 if (!isThumb)
1159 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1160 else
1161 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1162 .addImm(ARMCC::AL).addReg(0);
1163 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1164 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1165 MaxDisp, false, UncondBr));
1166 int delta = isThumb1 ? 2 : 4;
1167 BBSizes[UserMBB->getNumber()] += delta;
1168 AdjustBBOffsetsAfter(UserMBB, delta);
1169 } else {
1170 // What a big block. Find a place within the block to split it.
1171 // This is a little tricky on Thumb1 since instructions are 2 bytes
1172 // and constant pool entries are 4 bytes: if instruction I references
1173 // island CPE, and instruction I+1 references CPE', it will
1174 // not work well to put CPE as far forward as possible, since then
1175 // CPE' cannot immediately follow it (that location is 2 bytes
1176 // farther away from I+1 than CPE was from I) and we'd need to create
1177 // a new island. So, we make a first guess, then walk through the
1178 // instructions between the one currently being looked at and the
1179 // possible insertion point, and make sure any other instructions
1180 // that reference CPEs will be able to use the same island area;
1181 // if not, we back up the insertion point.
1182
1183 // The 4 in the following is for the unconditional branch we'll be
1184 // inserting (allows for long branch on Thumb1). Alignment of the
1185 // island is handled inside OffsetIsInRange.
1186 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1187 // This could point off the end of the block if we've already got
1188 // constant pool entries following this block; only the last one is
1189 // in the water list. Back past any possible branches (allow for a
1190 // conditional and a maximally long unconditional).
1191 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1192 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1193 (isThumb1 ? 6 : 8);
1194 unsigned EndInsertOffset = BaseInsertOffset +
1195 CPEMI->getOperand(2).getImm();
1196 MachineBasicBlock::iterator MI = UserMI;
1197 ++MI;
1198 unsigned CPUIndex = CPUserIndex+1;
1199 unsigned NumCPUsers = CPUsers.size();
1200 MachineInstr *LastIT = 0;
1201 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1202 Offset < BaseInsertOffset;
1203 Offset += TII->GetInstSizeInBytes(MI),
1204 MI = llvm::next(MI)) {
1205 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1206 CPUser &U = CPUsers[CPUIndex];
1207 if (!OffsetIsInRange(Offset, EndInsertOffset,
1208 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1209 BaseInsertOffset -= (isThumb1 ? 2 : 4);
1210 EndInsertOffset -= (isThumb1 ? 2 : 4);
1211 }
1212 // This is overly conservative, as we don't account for CPEMIs
1213 // being reused within the block, but it doesn't matter much.
1214 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1215 CPUIndex++;
1216 }
1217
1218 // Remember the last IT instruction.
1219 if (MI->getOpcode() == ARM::t2IT)
1220 LastIT = MI;
1221 }
1222
1223 DEBUG(errs() << "Split in middle of big block\n");
1224 --MI;
1225
1226 // Avoid splitting an IT block.
1227 if (LastIT) {
1228 unsigned PredReg = 0;
1229 ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg);
1230 if (CC != ARMCC::AL)
1231 MI = LastIT;
1232 }
1233 NewMBB = SplitBlockBeforeInstr(MI);
1234 }
1235 }
1236
1237 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1238 /// is out-of-range. If so, pick up the constant pool value and move it some
1239 /// place in-range. Return true if we changed any addresses (thus must run
1240 /// another pass of branch lengthening), false otherwise.
HandleConstantPoolUser(MachineFunction & MF,unsigned CPUserIndex)1241 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1242 unsigned CPUserIndex) {
1243 CPUser &U = CPUsers[CPUserIndex];
1244 MachineInstr *UserMI = U.MI;
1245 MachineInstr *CPEMI = U.CPEMI;
1246 unsigned CPI = CPEMI->getOperand(1).getIndex();
1247 unsigned Size = CPEMI->getOperand(2).getImm();
1248 // Compute this only once, it's expensive. The 4 or 8 is the value the
1249 // hardware keeps in the PC.
1250 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1251
1252 // See if the current entry is within range, or there is a clone of it
1253 // in range.
1254 int result = LookForExistingCPEntry(U, UserOffset);
1255 if (result==1) return false;
1256 else if (result==2) return true;
1257
1258 // No existing clone of this CPE is within range.
1259 // We will be generating a new clone. Get a UID for it.
1260 unsigned ID = AFI->createPICLabelUId();
1261
1262 // Look for water where we can place this CPE.
1263 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1264 MachineBasicBlock *NewMBB;
1265 water_iterator IP;
1266 if (LookForWater(U, UserOffset, IP)) {
1267 DEBUG(errs() << "found water in range\n");
1268 MachineBasicBlock *WaterBB = *IP;
1269
1270 // If the original WaterList entry was "new water" on this iteration,
1271 // propagate that to the new island. This is just keeping NewWaterList
1272 // updated to match the WaterList, which will be updated below.
1273 if (NewWaterList.count(WaterBB)) {
1274 NewWaterList.erase(WaterBB);
1275 NewWaterList.insert(NewIsland);
1276 }
1277 // The new CPE goes before the following block (NewMBB).
1278 NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1279
1280 } else {
1281 // No water found.
1282 DEBUG(errs() << "No water found\n");
1283 CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1284
1285 // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1286 // called while handling branches so that the water will be seen on the
1287 // next iteration for constant pools, but in this context, we don't want
1288 // it. Check for this so it will be removed from the WaterList.
1289 // Also remove any entry from NewWaterList.
1290 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1291 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1292 if (IP != WaterList.end())
1293 NewWaterList.erase(WaterBB);
1294
1295 // We are adding new water. Update NewWaterList.
1296 NewWaterList.insert(NewIsland);
1297 }
1298
1299 // Remove the original WaterList entry; we want subsequent insertions in
1300 // this vicinity to go after the one we're about to insert. This
1301 // considerably reduces the number of times we have to move the same CPE
1302 // more than once and is also important to ensure the algorithm terminates.
1303 if (IP != WaterList.end())
1304 WaterList.erase(IP);
1305
1306 // Okay, we know we can put an island before NewMBB now, do it!
1307 MF.insert(NewMBB, NewIsland);
1308
1309 // Update internal data structures to account for the newly inserted MBB.
1310 UpdateForInsertedWaterBlock(NewIsland);
1311
1312 // Decrement the old entry, and remove it if refcount becomes 0.
1313 DecrementOldEntry(CPI, CPEMI);
1314
1315 // Now that we have an island to add the CPE to, clone the original CPE and
1316 // add it to the island.
1317 U.HighWaterMark = NewIsland;
1318 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
1319 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1320 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1321 ++NumCPEs;
1322
1323 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1324 // Compensate for .align 2 in thumb mode.
1325 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm))
1326 Size += 2;
1327 // Increase the size of the island block to account for the new entry.
1328 BBSizes[NewIsland->getNumber()] += Size;
1329 AdjustBBOffsetsAfter(NewIsland, Size);
1330
1331 // Finally, change the CPI in the instruction operand to be ID.
1332 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1333 if (UserMI->getOperand(i).isCPI()) {
1334 UserMI->getOperand(i).setIndex(ID);
1335 break;
1336 }
1337
1338 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI
1339 << '\t' << *UserMI);
1340
1341 return true;
1342 }
1343
1344 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1345 /// sizes and offsets of impacted basic blocks.
RemoveDeadCPEMI(MachineInstr * CPEMI)1346 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1347 MachineBasicBlock *CPEBB = CPEMI->getParent();
1348 unsigned Size = CPEMI->getOperand(2).getImm();
1349 CPEMI->eraseFromParent();
1350 BBSizes[CPEBB->getNumber()] -= Size;
1351 // All succeeding offsets have the current size value added in, fix this.
1352 if (CPEBB->empty()) {
1353 // In thumb1 mode, the size of island may be padded by two to compensate for
1354 // the alignment requirement. Then it will now be 2 when the block is
1355 // empty, so fix this.
1356 // All succeeding offsets have the current size value added in, fix this.
1357 if (BBSizes[CPEBB->getNumber()] != 0) {
1358 Size += BBSizes[CPEBB->getNumber()];
1359 BBSizes[CPEBB->getNumber()] = 0;
1360 }
1361 }
1362 AdjustBBOffsetsAfter(CPEBB, -Size);
1363 // An island has only one predecessor BB and one successor BB. Check if
1364 // this BB's predecessor jumps directly to this BB's successor. This
1365 // shouldn't happen currently.
1366 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1367 // FIXME: remove the empty blocks after all the work is done?
1368 }
1369
1370 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1371 /// are zero.
RemoveUnusedCPEntries()1372 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1373 unsigned MadeChange = false;
1374 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1375 std::vector<CPEntry> &CPEs = CPEntries[i];
1376 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1377 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1378 RemoveDeadCPEMI(CPEs[j].CPEMI);
1379 CPEs[j].CPEMI = NULL;
1380 MadeChange = true;
1381 }
1382 }
1383 }
1384 return MadeChange;
1385 }
1386
1387 /// BBIsInRange - Returns true if the distance between specific MI and
1388 /// specific BB can fit in MI's displacement field.
BBIsInRange(MachineInstr * MI,MachineBasicBlock * DestBB,unsigned MaxDisp)1389 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1390 unsigned MaxDisp) {
1391 unsigned PCAdj = isThumb ? 4 : 8;
1392 unsigned BrOffset = GetOffsetOf(MI) + PCAdj;
1393 unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1394
1395 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1396 << " from BB#" << MI->getParent()->getNumber()
1397 << " max delta=" << MaxDisp
1398 << " from " << GetOffsetOf(MI) << " to " << DestOffset
1399 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1400
1401 if (BrOffset <= DestOffset) {
1402 // Branch before the Dest.
1403 if (DestOffset-BrOffset <= MaxDisp)
1404 return true;
1405 } else {
1406 if (BrOffset-DestOffset <= MaxDisp)
1407 return true;
1408 }
1409 return false;
1410 }
1411
1412 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1413 /// away to fit in its displacement field.
FixUpImmediateBr(MachineFunction & MF,ImmBranch & Br)1414 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1415 MachineInstr *MI = Br.MI;
1416 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1417
1418 // Check to see if the DestBB is already in-range.
1419 if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1420 return false;
1421
1422 if (!Br.isCond)
1423 return FixUpUnconditionalBr(MF, Br);
1424 return FixUpConditionalBr(MF, Br);
1425 }
1426
1427 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1428 /// too far away to fit in its displacement field. If the LR register has been
1429 /// spilled in the epilogue, then we can use BL to implement a far jump.
1430 /// Otherwise, add an intermediate branch instruction to a branch.
1431 bool
FixUpUnconditionalBr(MachineFunction & MF,ImmBranch & Br)1432 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1433 MachineInstr *MI = Br.MI;
1434 MachineBasicBlock *MBB = MI->getParent();
1435 if (!isThumb1)
1436 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1437
1438 // Use BL to implement far jump.
1439 Br.MaxDisp = (1 << 21) * 2;
1440 MI->setDesc(TII->get(ARM::tBfar));
1441 BBSizes[MBB->getNumber()] += 2;
1442 AdjustBBOffsetsAfter(MBB, 2);
1443 HasFarJump = true;
1444 ++NumUBrFixed;
1445
1446 DEBUG(errs() << " Changed B to long jump " << *MI);
1447
1448 return true;
1449 }
1450
1451 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1452 /// far away to fit in its displacement field. It is converted to an inverse
1453 /// conditional branch + an unconditional branch to the destination.
1454 bool
FixUpConditionalBr(MachineFunction & MF,ImmBranch & Br)1455 ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1456 MachineInstr *MI = Br.MI;
1457 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1458
1459 // Add an unconditional branch to the destination and invert the branch
1460 // condition to jump over it:
1461 // blt L1
1462 // =>
1463 // bge L2
1464 // b L1
1465 // L2:
1466 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1467 CC = ARMCC::getOppositeCondition(CC);
1468 unsigned CCReg = MI->getOperand(2).getReg();
1469
1470 // If the branch is at the end of its MBB and that has a fall-through block,
1471 // direct the updated conditional branch to the fall-through block. Otherwise,
1472 // split the MBB before the next instruction.
1473 MachineBasicBlock *MBB = MI->getParent();
1474 MachineInstr *BMI = &MBB->back();
1475 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1476
1477 ++NumCBrFixed;
1478 if (BMI != MI) {
1479 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1480 BMI->getOpcode() == Br.UncondBr) {
1481 // Last MI in the BB is an unconditional branch. Can we simply invert the
1482 // condition and swap destinations:
1483 // beq L1
1484 // b L2
1485 // =>
1486 // bne L2
1487 // b L1
1488 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1489 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1490 DEBUG(errs() << " Invert Bcc condition and swap its destination with "
1491 << *BMI);
1492 BMI->getOperand(0).setMBB(DestBB);
1493 MI->getOperand(0).setMBB(NewDest);
1494 MI->getOperand(1).setImm(CC);
1495 return true;
1496 }
1497 }
1498 }
1499
1500 if (NeedSplit) {
1501 SplitBlockBeforeInstr(MI);
1502 // No need for the branch to the next block. We're adding an unconditional
1503 // branch to the destination.
1504 int delta = TII->GetInstSizeInBytes(&MBB->back());
1505 BBSizes[MBB->getNumber()] -= delta;
1506 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
1507 AdjustBBOffsetsAfter(SplitBB, -delta);
1508 MBB->back().eraseFromParent();
1509 // BBOffsets[SplitBB] is wrong temporarily, fixed below
1510 }
1511 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1512
1513 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber()
1514 << " also invert condition and change dest. to BB#"
1515 << NextBB->getNumber() << "\n");
1516
1517 // Insert a new conditional branch and a new unconditional branch.
1518 // Also update the ImmBranch as well as adding a new entry for the new branch.
1519 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1520 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1521 Br.MI = &MBB->back();
1522 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1523 if (isThumb)
1524 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1525 .addImm(ARMCC::AL).addReg(0);
1526 else
1527 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1528 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1529 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1530 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1531
1532 // Remove the old conditional branch. It may or may not still be in MBB.
1533 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1534 MI->eraseFromParent();
1535
1536 // The net size change is an addition of one unconditional branch.
1537 int delta = TII->GetInstSizeInBytes(&MBB->back());
1538 AdjustBBOffsetsAfter(MBB, delta);
1539 return true;
1540 }
1541
1542 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1543 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1544 /// to do this if tBfar is not used.
UndoLRSpillRestore()1545 bool ARMConstantIslands::UndoLRSpillRestore() {
1546 bool MadeChange = false;
1547 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1548 MachineInstr *MI = PushPopMIs[i];
1549 // First two operands are predicates.
1550 if (MI->getOpcode() == ARM::tPOP_RET &&
1551 MI->getOperand(2).getReg() == ARM::PC &&
1552 MI->getNumExplicitOperands() == 3) {
1553 // Create the new insn and copy the predicate from the old.
1554 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1555 .addOperand(MI->getOperand(0))
1556 .addOperand(MI->getOperand(1));
1557 MI->eraseFromParent();
1558 MadeChange = true;
1559 }
1560 }
1561 return MadeChange;
1562 }
1563
OptimizeThumb2Instructions(MachineFunction & MF)1564 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1565 bool MadeChange = false;
1566
1567 // Shrink ADR and LDR from constantpool.
1568 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1569 CPUser &U = CPUsers[i];
1570 unsigned Opcode = U.MI->getOpcode();
1571 unsigned NewOpc = 0;
1572 unsigned Scale = 1;
1573 unsigned Bits = 0;
1574 switch (Opcode) {
1575 default: break;
1576 case ARM::t2LEApcrel:
1577 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1578 NewOpc = ARM::tLEApcrel;
1579 Bits = 8;
1580 Scale = 4;
1581 }
1582 break;
1583 case ARM::t2LDRpci:
1584 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1585 NewOpc = ARM::tLDRpci;
1586 Bits = 8;
1587 Scale = 4;
1588 }
1589 break;
1590 }
1591
1592 if (!NewOpc)
1593 continue;
1594
1595 unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1596 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1597 // FIXME: Check if offset is multiple of scale if scale is not 4.
1598 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1599 U.MI->setDesc(TII->get(NewOpc));
1600 MachineBasicBlock *MBB = U.MI->getParent();
1601 BBSizes[MBB->getNumber()] -= 2;
1602 AdjustBBOffsetsAfter(MBB, -2);
1603 ++NumT2CPShrunk;
1604 MadeChange = true;
1605 }
1606 }
1607
1608 MadeChange |= OptimizeThumb2Branches(MF);
1609 MadeChange |= OptimizeThumb2JumpTables(MF);
1610 return MadeChange;
1611 }
1612
OptimizeThumb2Branches(MachineFunction & MF)1613 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1614 bool MadeChange = false;
1615
1616 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1617 ImmBranch &Br = ImmBranches[i];
1618 unsigned Opcode = Br.MI->getOpcode();
1619 unsigned NewOpc = 0;
1620 unsigned Scale = 1;
1621 unsigned Bits = 0;
1622 switch (Opcode) {
1623 default: break;
1624 case ARM::t2B:
1625 NewOpc = ARM::tB;
1626 Bits = 11;
1627 Scale = 2;
1628 break;
1629 case ARM::t2Bcc: {
1630 NewOpc = ARM::tBcc;
1631 Bits = 8;
1632 Scale = 2;
1633 break;
1634 }
1635 }
1636 if (NewOpc) {
1637 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1638 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1639 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1640 Br.MI->setDesc(TII->get(NewOpc));
1641 MachineBasicBlock *MBB = Br.MI->getParent();
1642 BBSizes[MBB->getNumber()] -= 2;
1643 AdjustBBOffsetsAfter(MBB, -2);
1644 ++NumT2BrShrunk;
1645 MadeChange = true;
1646 }
1647 }
1648
1649 Opcode = Br.MI->getOpcode();
1650 if (Opcode != ARM::tBcc)
1651 continue;
1652
1653 NewOpc = 0;
1654 unsigned PredReg = 0;
1655 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
1656 if (Pred == ARMCC::EQ)
1657 NewOpc = ARM::tCBZ;
1658 else if (Pred == ARMCC::NE)
1659 NewOpc = ARM::tCBNZ;
1660 if (!NewOpc)
1661 continue;
1662 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1663 // Check if the distance is within 126. Subtract starting offset by 2
1664 // because the cmp will be eliminated.
1665 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
1666 unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1667 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1668 MachineBasicBlock::iterator CmpMI = Br.MI;
1669 if (CmpMI != Br.MI->getParent()->begin()) {
1670 --CmpMI;
1671 if (CmpMI->getOpcode() == ARM::tCMPi8) {
1672 unsigned Reg = CmpMI->getOperand(0).getReg();
1673 Pred = llvm::getInstrPredicate(CmpMI, PredReg);
1674 if (Pred == ARMCC::AL &&
1675 CmpMI->getOperand(1).getImm() == 0 &&
1676 isARMLowRegister(Reg)) {
1677 MachineBasicBlock *MBB = Br.MI->getParent();
1678 MachineInstr *NewBR =
1679 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1680 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1681 CmpMI->eraseFromParent();
1682 Br.MI->eraseFromParent();
1683 Br.MI = NewBR;
1684 BBSizes[MBB->getNumber()] -= 2;
1685 AdjustBBOffsetsAfter(MBB, -2);
1686 ++NumCBZ;
1687 MadeChange = true;
1688 }
1689 }
1690 }
1691 }
1692 }
1693
1694 return MadeChange;
1695 }
1696
1697 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1698 /// jumptables when it's possible.
OptimizeThumb2JumpTables(MachineFunction & MF)1699 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1700 bool MadeChange = false;
1701
1702 // FIXME: After the tables are shrunk, can we get rid some of the
1703 // constantpool tables?
1704 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1705 if (MJTI == 0) return false;
1706
1707 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1708 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1709 MachineInstr *MI = T2JumpTables[i];
1710 const MCInstrDesc &MCID = MI->getDesc();
1711 unsigned NumOps = MCID.getNumOperands();
1712 unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
1713 MachineOperand JTOP = MI->getOperand(JTOpIdx);
1714 unsigned JTI = JTOP.getIndex();
1715 assert(JTI < JT.size());
1716
1717 bool ByteOk = true;
1718 bool HalfWordOk = true;
1719 unsigned JTOffset = GetOffsetOf(MI) + 4;
1720 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1721 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1722 MachineBasicBlock *MBB = JTBBs[j];
1723 unsigned DstOffset = BBOffsets[MBB->getNumber()];
1724 // Negative offset is not ok. FIXME: We should change BB layout to make
1725 // sure all the branches are forward.
1726 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1727 ByteOk = false;
1728 unsigned TBHLimit = ((1<<16)-1)*2;
1729 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1730 HalfWordOk = false;
1731 if (!ByteOk && !HalfWordOk)
1732 break;
1733 }
1734
1735 if (ByteOk || HalfWordOk) {
1736 MachineBasicBlock *MBB = MI->getParent();
1737 unsigned BaseReg = MI->getOperand(0).getReg();
1738 bool BaseRegKill = MI->getOperand(0).isKill();
1739 if (!BaseRegKill)
1740 continue;
1741 unsigned IdxReg = MI->getOperand(1).getReg();
1742 bool IdxRegKill = MI->getOperand(1).isKill();
1743
1744 // Scan backwards to find the instruction that defines the base
1745 // register. Due to post-RA scheduling, we can't count on it
1746 // immediately preceding the branch instruction.
1747 MachineBasicBlock::iterator PrevI = MI;
1748 MachineBasicBlock::iterator B = MBB->begin();
1749 while (PrevI != B && !PrevI->definesRegister(BaseReg))
1750 --PrevI;
1751
1752 // If for some reason we didn't find it, we can't do anything, so
1753 // just skip this one.
1754 if (!PrevI->definesRegister(BaseReg))
1755 continue;
1756
1757 MachineInstr *AddrMI = PrevI;
1758 bool OptOk = true;
1759 // Examine the instruction that calculates the jumptable entry address.
1760 // Make sure it only defines the base register and kills any uses
1761 // other than the index register.
1762 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1763 const MachineOperand &MO = AddrMI->getOperand(k);
1764 if (!MO.isReg() || !MO.getReg())
1765 continue;
1766 if (MO.isDef() && MO.getReg() != BaseReg) {
1767 OptOk = false;
1768 break;
1769 }
1770 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1771 OptOk = false;
1772 break;
1773 }
1774 }
1775 if (!OptOk)
1776 continue;
1777
1778 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1779 // that gave us the initial base register definition.
1780 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
1781 ;
1782
1783 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1784 // to delete it as well.
1785 MachineInstr *LeaMI = PrevI;
1786 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1787 LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1788 LeaMI->getOperand(0).getReg() != BaseReg)
1789 OptOk = false;
1790
1791 if (!OptOk)
1792 continue;
1793
1794 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
1795 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1796 .addReg(IdxReg, getKillRegState(IdxRegKill))
1797 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1798 .addImm(MI->getOperand(JTOpIdx+1).getImm());
1799 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1800 // is 2-byte aligned. For now, asm printer will fix it up.
1801 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1802 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1803 OrigSize += TII->GetInstSizeInBytes(LeaMI);
1804 OrigSize += TII->GetInstSizeInBytes(MI);
1805
1806 AddrMI->eraseFromParent();
1807 LeaMI->eraseFromParent();
1808 MI->eraseFromParent();
1809
1810 int delta = OrigSize - NewSize;
1811 BBSizes[MBB->getNumber()] -= delta;
1812 AdjustBBOffsetsAfter(MBB, -delta);
1813
1814 ++NumTBs;
1815 MadeChange = true;
1816 }
1817 }
1818
1819 return MadeChange;
1820 }
1821
1822 /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1823 /// jump tables always branch forwards, since that's what tbb and tbh need.
ReorderThumb2JumpTables(MachineFunction & MF)1824 bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
1825 bool MadeChange = false;
1826
1827 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1828 if (MJTI == 0) return false;
1829
1830 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1831 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1832 MachineInstr *MI = T2JumpTables[i];
1833 const MCInstrDesc &MCID = MI->getDesc();
1834 unsigned NumOps = MCID.getNumOperands();
1835 unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
1836 MachineOperand JTOP = MI->getOperand(JTOpIdx);
1837 unsigned JTI = JTOP.getIndex();
1838 assert(JTI < JT.size());
1839
1840 // We prefer if target blocks for the jump table come after the jump
1841 // instruction so we can use TB[BH]. Loop through the target blocks
1842 // and try to adjust them such that that's true.
1843 int JTNumber = MI->getParent()->getNumber();
1844 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1845 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1846 MachineBasicBlock *MBB = JTBBs[j];
1847 int DTNumber = MBB->getNumber();
1848
1849 if (DTNumber < JTNumber) {
1850 // The destination precedes the switch. Try to move the block forward
1851 // so we have a positive offset.
1852 MachineBasicBlock *NewBB =
1853 AdjustJTTargetBlockForward(MBB, MI->getParent());
1854 if (NewBB)
1855 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
1856 MadeChange = true;
1857 }
1858 }
1859 }
1860
1861 return MadeChange;
1862 }
1863
1864 MachineBasicBlock *ARMConstantIslands::
AdjustJTTargetBlockForward(MachineBasicBlock * BB,MachineBasicBlock * JTBB)1865 AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
1866 {
1867 MachineFunction &MF = *BB->getParent();
1868
1869 // If the destination block is terminated by an unconditional branch,
1870 // try to move it; otherwise, create a new block following the jump
1871 // table that branches back to the actual target. This is a very simple
1872 // heuristic. FIXME: We can definitely improve it.
1873 MachineBasicBlock *TBB = 0, *FBB = 0;
1874 SmallVector<MachineOperand, 4> Cond;
1875 SmallVector<MachineOperand, 4> CondPrior;
1876 MachineFunction::iterator BBi = BB;
1877 MachineFunction::iterator OldPrior = prior(BBi);
1878
1879 // If the block terminator isn't analyzable, don't try to move the block
1880 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
1881
1882 // If the block ends in an unconditional branch, move it. The prior block
1883 // has to have an analyzable terminator for us to move this one. Be paranoid
1884 // and make sure we're not trying to move the entry block of the function.
1885 if (!B && Cond.empty() && BB != MF.begin() &&
1886 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
1887 BB->moveAfter(JTBB);
1888 OldPrior->updateTerminator();
1889 BB->updateTerminator();
1890 // Update numbering to account for the block being moved.
1891 MF.RenumberBlocks();
1892 ++NumJTMoved;
1893 return NULL;
1894 }
1895
1896 // Create a new MBB for the code after the jump BB.
1897 MachineBasicBlock *NewBB =
1898 MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
1899 MachineFunction::iterator MBBI = JTBB; ++MBBI;
1900 MF.insert(MBBI, NewBB);
1901
1902 // Add an unconditional branch from NewBB to BB.
1903 // There doesn't seem to be meaningful DebugInfo available; this doesn't
1904 // correspond directly to anything in the source.
1905 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
1906 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
1907 .addImm(ARMCC::AL).addReg(0);
1908
1909 // Update internal data structures to account for the newly inserted MBB.
1910 MF.RenumberBlocks(NewBB);
1911
1912 // Update the CFG.
1913 NewBB->addSuccessor(BB);
1914 JTBB->removeSuccessor(BB);
1915 JTBB->addSuccessor(NewBB);
1916
1917 ++NumJTInserted;
1918 return NewBB;
1919 }
1920