1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Support/CFG.h"
25 #include "llvm/Type.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SelectionDAGISel.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 using namespace llvm;
42
43 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44
45 //===----------------------------------------------------------------------===//
46 // Pattern Matcher Implementation
47 //===----------------------------------------------------------------------===//
48
49 namespace {
50 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
51 /// SDValue's instead of register numbers for the leaves of the matched
52 /// tree.
53 struct X86ISelAddressMode {
54 enum {
55 RegBase,
56 FrameIndexBase
57 } BaseType;
58
59 // This is really a union, discriminated by BaseType!
60 SDValue Base_Reg;
61 int Base_FrameIndex;
62
63 unsigned Scale;
64 SDValue IndexReg;
65 int32_t Disp;
66 SDValue Segment;
67 const GlobalValue *GV;
68 const Constant *CP;
69 const BlockAddress *BlockAddr;
70 const char *ES;
71 int JT;
72 unsigned Align; // CP alignment.
73 unsigned char SymbolFlags; // X86II::MO_*
74
X86ISelAddressMode__anon4c55d6570111::X86ISelAddressMode75 X86ISelAddressMode()
76 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
77 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
78 SymbolFlags(X86II::MO_NO_FLAG) {
79 }
80
hasSymbolicDisplacement__anon4c55d6570111::X86ISelAddressMode81 bool hasSymbolicDisplacement() const {
82 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
83 }
84
hasBaseOrIndexReg__anon4c55d6570111::X86ISelAddressMode85 bool hasBaseOrIndexReg() const {
86 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
87 }
88
89 /// isRIPRelative - Return true if this addressing mode is already RIP
90 /// relative.
isRIPRelative__anon4c55d6570111::X86ISelAddressMode91 bool isRIPRelative() const {
92 if (BaseType != RegBase) return false;
93 if (RegisterSDNode *RegNode =
94 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
95 return RegNode->getReg() == X86::RIP;
96 return false;
97 }
98
setBaseReg__anon4c55d6570111::X86ISelAddressMode99 void setBaseReg(SDValue Reg) {
100 BaseType = RegBase;
101 Base_Reg = Reg;
102 }
103
dump__anon4c55d6570111::X86ISelAddressMode104 void dump() {
105 dbgs() << "X86ISelAddressMode " << this << '\n';
106 dbgs() << "Base_Reg ";
107 if (Base_Reg.getNode() != 0)
108 Base_Reg.getNode()->dump();
109 else
110 dbgs() << "nul";
111 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112 << " Scale" << Scale << '\n'
113 << "IndexReg ";
114 if (IndexReg.getNode() != 0)
115 IndexReg.getNode()->dump();
116 else
117 dbgs() << "nul";
118 dbgs() << " Disp " << Disp << '\n'
119 << "GV ";
120 if (GV)
121 GV->dump();
122 else
123 dbgs() << "nul";
124 dbgs() << " CP ";
125 if (CP)
126 CP->dump();
127 else
128 dbgs() << "nul";
129 dbgs() << '\n'
130 << "ES ";
131 if (ES)
132 dbgs() << ES;
133 else
134 dbgs() << "nul";
135 dbgs() << " JT" << JT << " Align" << Align << '\n';
136 }
137 };
138 }
139
140 namespace {
141 //===--------------------------------------------------------------------===//
142 /// ISel - X86 specific code to select X86 machine instructions for
143 /// SelectionDAG operations.
144 ///
145 class X86DAGToDAGISel : public SelectionDAGISel {
146 /// X86Lowering - This object fully describes how to lower LLVM code to an
147 /// X86-specific SelectionDAG.
148 const X86TargetLowering &X86Lowering;
149
150 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
151 /// make the right decision when generating code for different targets.
152 const X86Subtarget *Subtarget;
153
154 /// OptForSize - If true, selector should try to optimize for code size
155 /// instead of performance.
156 bool OptForSize;
157
158 public:
X86DAGToDAGISel(X86TargetMachine & tm,CodeGenOpt::Level OptLevel)159 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
160 : SelectionDAGISel(tm, OptLevel),
161 X86Lowering(*tm.getTargetLowering()),
162 Subtarget(&tm.getSubtarget<X86Subtarget>()),
163 OptForSize(false) {}
164
getPassName() const165 virtual const char *getPassName() const {
166 return "X86 DAG->DAG Instruction Selection";
167 }
168
169 virtual void EmitFunctionEntryCode();
170
171 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
172
173 virtual void PreprocessISelDAG();
174
immSext8(SDNode * N) const175 inline bool immSext8(SDNode *N) const {
176 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
177 }
178
179 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
180 // sign extended field.
i64immSExt32(SDNode * N) const181 inline bool i64immSExt32(SDNode *N) const {
182 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
183 return (int64_t)v == (int32_t)v;
184 }
185
186 // Include the pieces autogenerated from the target description.
187 #include "X86GenDAGISel.inc"
188
189 private:
190 SDNode *Select(SDNode *N);
191 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
192 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193 SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
194
195 bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
196 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
197 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
198 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
199 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
200 unsigned Depth);
201 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
202 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
203 SDValue &Scale, SDValue &Index, SDValue &Disp,
204 SDValue &Segment);
205 bool SelectLEAAddr(SDValue N, SDValue &Base,
206 SDValue &Scale, SDValue &Index, SDValue &Disp,
207 SDValue &Segment);
208 bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
209 SDValue &Scale, SDValue &Index, SDValue &Disp,
210 SDValue &Segment);
211 bool SelectScalarSSELoad(SDNode *Root, SDValue N,
212 SDValue &Base, SDValue &Scale,
213 SDValue &Index, SDValue &Disp,
214 SDValue &Segment,
215 SDValue &NodeWithChain);
216
217 bool TryFoldLoad(SDNode *P, SDValue N,
218 SDValue &Base, SDValue &Scale,
219 SDValue &Index, SDValue &Disp,
220 SDValue &Segment);
221
222 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
223 /// inline asm expressions.
224 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
225 char ConstraintCode,
226 std::vector<SDValue> &OutOps);
227
228 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
229
getAddressOperands(X86ISelAddressMode & AM,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)230 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
231 SDValue &Scale, SDValue &Index,
232 SDValue &Disp, SDValue &Segment) {
233 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
234 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
235 AM.Base_Reg;
236 Scale = getI8Imm(AM.Scale);
237 Index = AM.IndexReg;
238 // These are 32-bit even in 64-bit mode since RIP relative offset
239 // is 32-bit.
240 if (AM.GV)
241 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
242 MVT::i32, AM.Disp,
243 AM.SymbolFlags);
244 else if (AM.CP)
245 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
246 AM.Align, AM.Disp, AM.SymbolFlags);
247 else if (AM.ES)
248 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249 else if (AM.JT != -1)
250 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251 else if (AM.BlockAddr)
252 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
253 true, AM.SymbolFlags);
254 else
255 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257 if (AM.Segment.getNode())
258 Segment = AM.Segment;
259 else
260 Segment = CurDAG->getRegister(0, MVT::i32);
261 }
262
263 /// getI8Imm - Return a target constant with the specified value, of type
264 /// i8.
getI8Imm(unsigned Imm)265 inline SDValue getI8Imm(unsigned Imm) {
266 return CurDAG->getTargetConstant(Imm, MVT::i8);
267 }
268
269 /// getI32Imm - Return a target constant with the specified value, of type
270 /// i32.
getI32Imm(unsigned Imm)271 inline SDValue getI32Imm(unsigned Imm) {
272 return CurDAG->getTargetConstant(Imm, MVT::i32);
273 }
274
275 /// getGlobalBaseReg - Return an SDNode that returns the value of
276 /// the global base register. Output instructions required to
277 /// initialize the global base register, if necessary.
278 ///
279 SDNode *getGlobalBaseReg();
280
281 /// getTargetMachine - Return a reference to the TargetMachine, casted
282 /// to the target-specific type.
getTargetMachine()283 const X86TargetMachine &getTargetMachine() {
284 return static_cast<const X86TargetMachine &>(TM);
285 }
286
287 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288 /// to the target-specific type.
getInstrInfo()289 const X86InstrInfo *getInstrInfo() {
290 return getTargetMachine().getInstrInfo();
291 }
292 };
293 }
294
295
296 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const297 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298 if (OptLevel == CodeGenOpt::None) return false;
299
300 if (!N.hasOneUse())
301 return false;
302
303 if (N.getOpcode() != ISD::LOAD)
304 return true;
305
306 // If N is a load, do additional profitability checks.
307 if (U == Root) {
308 switch (U->getOpcode()) {
309 default: break;
310 case X86ISD::ADD:
311 case X86ISD::SUB:
312 case X86ISD::AND:
313 case X86ISD::XOR:
314 case X86ISD::OR:
315 case ISD::ADD:
316 case ISD::ADDC:
317 case ISD::ADDE:
318 case ISD::AND:
319 case ISD::OR:
320 case ISD::XOR: {
321 SDValue Op1 = U->getOperand(1);
322
323 // If the other operand is a 8-bit immediate we should fold the immediate
324 // instead. This reduces code size.
325 // e.g.
326 // movl 4(%esp), %eax
327 // addl $4, %eax
328 // vs.
329 // movl $4, %eax
330 // addl 4(%esp), %eax
331 // The former is 2 bytes shorter. In case where the increment is 1, then
332 // the saving can be 4 bytes (by using incl %eax).
333 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334 if (Imm->getAPIntValue().isSignedIntN(8))
335 return false;
336
337 // If the other operand is a TLS address, we should fold it instead.
338 // This produces
339 // movl %gs:0, %eax
340 // leal i@NTPOFF(%eax), %eax
341 // instead of
342 // movl $i@NTPOFF, %eax
343 // addl %gs:0, %eax
344 // if the block also has an access to a second TLS address this will save
345 // a load.
346 // FIXME: This is probably also true for non TLS addresses.
347 if (Op1.getOpcode() == X86ISD::Wrapper) {
348 SDValue Val = Op1.getOperand(0);
349 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350 return false;
351 }
352 }
353 }
354 }
355
356 return true;
357 }
358
359 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360 /// load's chain operand and move load below the call's chain operand.
MoveBelowOrigChain(SelectionDAG * CurDAG,SDValue Load,SDValue Call,SDValue OrigChain)361 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362 SDValue Call, SDValue OrigChain) {
363 SmallVector<SDValue, 8> Ops;
364 SDValue Chain = OrigChain.getOperand(0);
365 if (Chain.getNode() == Load.getNode())
366 Ops.push_back(Load.getOperand(0));
367 else {
368 assert(Chain.getOpcode() == ISD::TokenFactor &&
369 "Unexpected chain operand");
370 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371 if (Chain.getOperand(i).getNode() == Load.getNode())
372 Ops.push_back(Load.getOperand(0));
373 else
374 Ops.push_back(Chain.getOperand(i));
375 SDValue NewChain =
376 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
377 MVT::Other, &Ops[0], Ops.size());
378 Ops.clear();
379 Ops.push_back(NewChain);
380 }
381 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382 Ops.push_back(OrigChain.getOperand(i));
383 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385 Load.getOperand(1), Load.getOperand(2));
386 Ops.clear();
387 Ops.push_back(SDValue(Load.getNode(), 1));
388 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
389 Ops.push_back(Call.getOperand(i));
390 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
391 }
392
393 /// isCalleeLoad - Return true if call address is a load and it can be
394 /// moved below CALLSEQ_START and the chains leading up to the call.
395 /// Return the CALLSEQ_START by reference as a second output.
396 /// In the case of a tail call, there isn't a callseq node between the call
397 /// chain and the load.
isCalleeLoad(SDValue Callee,SDValue & Chain,bool HasCallSeq)398 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
399 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
400 return false;
401 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
402 if (!LD ||
403 LD->isVolatile() ||
404 LD->getAddressingMode() != ISD::UNINDEXED ||
405 LD->getExtensionType() != ISD::NON_EXTLOAD)
406 return false;
407
408 // Now let's find the callseq_start.
409 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
410 if (!Chain.hasOneUse())
411 return false;
412 Chain = Chain.getOperand(0);
413 }
414
415 if (!Chain.getNumOperands())
416 return false;
417 if (Chain.getOperand(0).getNode() == Callee.getNode())
418 return true;
419 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
420 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
421 Callee.getValue(1).hasOneUse())
422 return true;
423 return false;
424 }
425
PreprocessISelDAG()426 void X86DAGToDAGISel::PreprocessISelDAG() {
427 // OptForSize is used in pattern predicates that isel is matching.
428 OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
429
430 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
431 E = CurDAG->allnodes_end(); I != E; ) {
432 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
433
434 if (OptLevel != CodeGenOpt::None &&
435 (N->getOpcode() == X86ISD::CALL ||
436 N->getOpcode() == X86ISD::TC_RETURN)) {
437 /// Also try moving call address load from outside callseq_start to just
438 /// before the call to allow it to be folded.
439 ///
440 /// [Load chain]
441 /// ^
442 /// |
443 /// [Load]
444 /// ^ ^
445 /// | |
446 /// / \--
447 /// / |
448 ///[CALLSEQ_START] |
449 /// ^ |
450 /// | |
451 /// [LOAD/C2Reg] |
452 /// | |
453 /// \ /
454 /// \ /
455 /// [CALL]
456 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
457 SDValue Chain = N->getOperand(0);
458 SDValue Load = N->getOperand(1);
459 if (!isCalleeLoad(Load, Chain, HasCallSeq))
460 continue;
461 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
462 ++NumLoadMoved;
463 continue;
464 }
465
466 // Lower fpround and fpextend nodes that target the FP stack to be store and
467 // load to the stack. This is a gross hack. We would like to simply mark
468 // these as being illegal, but when we do that, legalize produces these when
469 // it expands calls, then expands these in the same legalize pass. We would
470 // like dag combine to be able to hack on these between the call expansion
471 // and the node legalization. As such this pass basically does "really
472 // late" legalization of these inline with the X86 isel pass.
473 // FIXME: This should only happen when not compiled with -O0.
474 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
475 continue;
476
477 EVT SrcVT = N->getOperand(0).getValueType();
478 EVT DstVT = N->getValueType(0);
479
480 // If any of the sources are vectors, no fp stack involved.
481 if (SrcVT.isVector() || DstVT.isVector())
482 continue;
483
484 // If the source and destination are SSE registers, then this is a legal
485 // conversion that should not be lowered.
486 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
487 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
488 if (SrcIsSSE && DstIsSSE)
489 continue;
490
491 if (!SrcIsSSE && !DstIsSSE) {
492 // If this is an FPStack extension, it is a noop.
493 if (N->getOpcode() == ISD::FP_EXTEND)
494 continue;
495 // If this is a value-preserving FPStack truncation, it is a noop.
496 if (N->getConstantOperandVal(1))
497 continue;
498 }
499
500 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
501 // FPStack has extload and truncstore. SSE can fold direct loads into other
502 // operations. Based on this, decide what we want to do.
503 EVT MemVT;
504 if (N->getOpcode() == ISD::FP_ROUND)
505 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
506 else
507 MemVT = SrcIsSSE ? SrcVT : DstVT;
508
509 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
510 DebugLoc dl = N->getDebugLoc();
511
512 // FIXME: optimize the case where the src/dest is a load or store?
513 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
514 N->getOperand(0),
515 MemTmp, MachinePointerInfo(), MemVT,
516 false, false, 0);
517 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
518 MachinePointerInfo(),
519 MemVT, false, false, 0);
520
521 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
522 // extload we created. This will cause general havok on the dag because
523 // anything below the conversion could be folded into other existing nodes.
524 // To avoid invalidating 'I', back it up to the convert node.
525 --I;
526 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
527
528 // Now that we did that, the node is dead. Increment the iterator to the
529 // next node to process, then delete N.
530 ++I;
531 CurDAG->DeleteNode(N);
532 }
533 }
534
535
536 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
537 /// the main function.
EmitSpecialCodeForMain(MachineBasicBlock * BB,MachineFrameInfo * MFI)538 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
539 MachineFrameInfo *MFI) {
540 const TargetInstrInfo *TII = TM.getInstrInfo();
541 if (Subtarget->isTargetCygMing()) {
542 unsigned CallOp =
543 Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
544 BuildMI(BB, DebugLoc(),
545 TII->get(CallOp)).addExternalSymbol("__main");
546 }
547 }
548
EmitFunctionEntryCode()549 void X86DAGToDAGISel::EmitFunctionEntryCode() {
550 // If this is main, emit special code for main.
551 if (const Function *Fn = MF->getFunction())
552 if (Fn->hasExternalLinkage() && Fn->getName() == "main")
553 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
554 }
555
isDispSafeForFrameIndex(int64_t Val)556 static bool isDispSafeForFrameIndex(int64_t Val) {
557 // On 64-bit platforms, we can run into an issue where a frame index
558 // includes a displacement that, when added to the explicit displacement,
559 // will overflow the displacement field. Assuming that the frame index
560 // displacement fits into a 31-bit integer (which is only slightly more
561 // aggressive than the current fundamental assumption that it fits into
562 // a 32-bit integer), a 31-bit disp should always be safe.
563 return isInt<31>(Val);
564 }
565
FoldOffsetIntoAddress(uint64_t Offset,X86ISelAddressMode & AM)566 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
567 X86ISelAddressMode &AM) {
568 int64_t Val = AM.Disp + Offset;
569 CodeModel::Model M = TM.getCodeModel();
570 if (Subtarget->is64Bit()) {
571 if (!X86::isOffsetSuitableForCodeModel(Val, M,
572 AM.hasSymbolicDisplacement()))
573 return true;
574 // In addition to the checks required for a register base, check that
575 // we do not try to use an unsafe Disp with a frame index.
576 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
577 !isDispSafeForFrameIndex(Val))
578 return true;
579 }
580 AM.Disp = Val;
581 return false;
582
583 }
584
MatchLoadInAddress(LoadSDNode * N,X86ISelAddressMode & AM)585 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
586 SDValue Address = N->getOperand(1);
587
588 // load gs:0 -> GS segment register.
589 // load fs:0 -> FS segment register.
590 //
591 // This optimization is valid because the GNU TLS model defines that
592 // gs:0 (or fs:0 on X86-64) contains its own address.
593 // For more information see http://people.redhat.com/drepper/tls.pdf
594 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
595 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
596 Subtarget->isTargetELF())
597 switch (N->getPointerInfo().getAddrSpace()) {
598 case 256:
599 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
600 return false;
601 case 257:
602 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
603 return false;
604 }
605
606 return true;
607 }
608
609 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
610 /// into an addressing mode. These wrap things that will resolve down into a
611 /// symbol reference. If no match is possible, this returns true, otherwise it
612 /// returns false.
MatchWrapper(SDValue N,X86ISelAddressMode & AM)613 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
614 // If the addressing mode already has a symbol as the displacement, we can
615 // never match another symbol.
616 if (AM.hasSymbolicDisplacement())
617 return true;
618
619 SDValue N0 = N.getOperand(0);
620 CodeModel::Model M = TM.getCodeModel();
621
622 // Handle X86-64 rip-relative addresses. We check this before checking direct
623 // folding because RIP is preferable to non-RIP accesses.
624 if (Subtarget->is64Bit() &&
625 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
626 // they cannot be folded into immediate fields.
627 // FIXME: This can be improved for kernel and other models?
628 (M == CodeModel::Small || M == CodeModel::Kernel) &&
629 // Base and index reg must be 0 in order to use %rip as base and lowering
630 // must allow RIP.
631 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
632 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
633 X86ISelAddressMode Backup = AM;
634 AM.GV = G->getGlobal();
635 AM.SymbolFlags = G->getTargetFlags();
636 if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
637 AM = Backup;
638 return true;
639 }
640 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
641 X86ISelAddressMode Backup = AM;
642 AM.CP = CP->getConstVal();
643 AM.Align = CP->getAlignment();
644 AM.SymbolFlags = CP->getTargetFlags();
645 if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
646 AM = Backup;
647 return true;
648 }
649 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
650 AM.ES = S->getSymbol();
651 AM.SymbolFlags = S->getTargetFlags();
652 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
653 AM.JT = J->getIndex();
654 AM.SymbolFlags = J->getTargetFlags();
655 } else {
656 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
657 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
658 }
659
660 if (N.getOpcode() == X86ISD::WrapperRIP)
661 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
662 return false;
663 }
664
665 // Handle the case when globals fit in our immediate field: This is true for
666 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
667 // mode, this results in a non-RIP-relative computation.
668 if (!Subtarget->is64Bit() ||
669 ((M == CodeModel::Small || M == CodeModel::Kernel) &&
670 TM.getRelocationModel() == Reloc::Static)) {
671 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
672 AM.GV = G->getGlobal();
673 AM.Disp += G->getOffset();
674 AM.SymbolFlags = G->getTargetFlags();
675 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
676 AM.CP = CP->getConstVal();
677 AM.Align = CP->getAlignment();
678 AM.Disp += CP->getOffset();
679 AM.SymbolFlags = CP->getTargetFlags();
680 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
681 AM.ES = S->getSymbol();
682 AM.SymbolFlags = S->getTargetFlags();
683 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
684 AM.JT = J->getIndex();
685 AM.SymbolFlags = J->getTargetFlags();
686 } else {
687 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
688 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
689 }
690 return false;
691 }
692
693 return true;
694 }
695
696 /// MatchAddress - Add the specified node to the specified addressing mode,
697 /// returning true if it cannot be done. This just pattern matches for the
698 /// addressing mode.
MatchAddress(SDValue N,X86ISelAddressMode & AM)699 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
700 if (MatchAddressRecursively(N, AM, 0))
701 return true;
702
703 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
704 // a smaller encoding and avoids a scaled-index.
705 if (AM.Scale == 2 &&
706 AM.BaseType == X86ISelAddressMode::RegBase &&
707 AM.Base_Reg.getNode() == 0) {
708 AM.Base_Reg = AM.IndexReg;
709 AM.Scale = 1;
710 }
711
712 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
713 // because it has a smaller encoding.
714 // TODO: Which other code models can use this?
715 if (TM.getCodeModel() == CodeModel::Small &&
716 Subtarget->is64Bit() &&
717 AM.Scale == 1 &&
718 AM.BaseType == X86ISelAddressMode::RegBase &&
719 AM.Base_Reg.getNode() == 0 &&
720 AM.IndexReg.getNode() == 0 &&
721 AM.SymbolFlags == X86II::MO_NO_FLAG &&
722 AM.hasSymbolicDisplacement())
723 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
724
725 return false;
726 }
727
MatchAddressRecursively(SDValue N,X86ISelAddressMode & AM,unsigned Depth)728 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
729 unsigned Depth) {
730 DebugLoc dl = N.getDebugLoc();
731 DEBUG({
732 dbgs() << "MatchAddress: ";
733 AM.dump();
734 });
735 // Limit recursion.
736 if (Depth > 5)
737 return MatchAddressBase(N, AM);
738
739 // If this is already a %rip relative address, we can only merge immediates
740 // into it. Instead of handling this in every case, we handle it here.
741 // RIP relative addressing: %rip + 32-bit displacement!
742 if (AM.isRIPRelative()) {
743 // FIXME: JumpTable and ExternalSymbol address currently don't like
744 // displacements. It isn't very important, but this should be fixed for
745 // consistency.
746 if (!AM.ES && AM.JT != -1) return true;
747
748 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
749 if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
750 return false;
751 return true;
752 }
753
754 switch (N.getOpcode()) {
755 default: break;
756 case ISD::Constant: {
757 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
758 if (!FoldOffsetIntoAddress(Val, AM))
759 return false;
760 break;
761 }
762
763 case X86ISD::Wrapper:
764 case X86ISD::WrapperRIP:
765 if (!MatchWrapper(N, AM))
766 return false;
767 break;
768
769 case ISD::LOAD:
770 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
771 return false;
772 break;
773
774 case ISD::FrameIndex:
775 if (AM.BaseType == X86ISelAddressMode::RegBase &&
776 AM.Base_Reg.getNode() == 0 &&
777 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
778 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
779 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
780 return false;
781 }
782 break;
783
784 case ISD::SHL:
785 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
786 break;
787
788 if (ConstantSDNode
789 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
790 unsigned Val = CN->getZExtValue();
791 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
792 // that the base operand remains free for further matching. If
793 // the base doesn't end up getting used, a post-processing step
794 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
795 if (Val == 1 || Val == 2 || Val == 3) {
796 AM.Scale = 1 << Val;
797 SDValue ShVal = N.getNode()->getOperand(0);
798
799 // Okay, we know that we have a scale by now. However, if the scaled
800 // value is an add of something and a constant, we can fold the
801 // constant into the disp field here.
802 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
803 AM.IndexReg = ShVal.getNode()->getOperand(0);
804 ConstantSDNode *AddVal =
805 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
806 uint64_t Disp = AddVal->getSExtValue() << Val;
807 if (!FoldOffsetIntoAddress(Disp, AM))
808 return false;
809 }
810
811 AM.IndexReg = ShVal;
812 return false;
813 }
814 break;
815 }
816
817 case ISD::SMUL_LOHI:
818 case ISD::UMUL_LOHI:
819 // A mul_lohi where we need the low part can be folded as a plain multiply.
820 if (N.getResNo() != 0) break;
821 // FALL THROUGH
822 case ISD::MUL:
823 case X86ISD::MUL_IMM:
824 // X*[3,5,9] -> X+X*[2,4,8]
825 if (AM.BaseType == X86ISelAddressMode::RegBase &&
826 AM.Base_Reg.getNode() == 0 &&
827 AM.IndexReg.getNode() == 0) {
828 if (ConstantSDNode
829 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
830 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
831 CN->getZExtValue() == 9) {
832 AM.Scale = unsigned(CN->getZExtValue())-1;
833
834 SDValue MulVal = N.getNode()->getOperand(0);
835 SDValue Reg;
836
837 // Okay, we know that we have a scale by now. However, if the scaled
838 // value is an add of something and a constant, we can fold the
839 // constant into the disp field here.
840 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
841 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
842 Reg = MulVal.getNode()->getOperand(0);
843 ConstantSDNode *AddVal =
844 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
845 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
846 if (FoldOffsetIntoAddress(Disp, AM))
847 Reg = N.getNode()->getOperand(0);
848 } else {
849 Reg = N.getNode()->getOperand(0);
850 }
851
852 AM.IndexReg = AM.Base_Reg = Reg;
853 return false;
854 }
855 }
856 break;
857
858 case ISD::SUB: {
859 // Given A-B, if A can be completely folded into the address and
860 // the index field with the index field unused, use -B as the index.
861 // This is a win if a has multiple parts that can be folded into
862 // the address. Also, this saves a mov if the base register has
863 // other uses, since it avoids a two-address sub instruction, however
864 // it costs an additional mov if the index register has other uses.
865
866 // Add an artificial use to this node so that we can keep track of
867 // it if it gets CSE'd with a different node.
868 HandleSDNode Handle(N);
869
870 // Test if the LHS of the sub can be folded.
871 X86ISelAddressMode Backup = AM;
872 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
873 AM = Backup;
874 break;
875 }
876 // Test if the index field is free for use.
877 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
878 AM = Backup;
879 break;
880 }
881
882 int Cost = 0;
883 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
884 // If the RHS involves a register with multiple uses, this
885 // transformation incurs an extra mov, due to the neg instruction
886 // clobbering its operand.
887 if (!RHS.getNode()->hasOneUse() ||
888 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
889 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
890 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
891 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
892 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
893 ++Cost;
894 // If the base is a register with multiple uses, this
895 // transformation may save a mov.
896 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
897 AM.Base_Reg.getNode() &&
898 !AM.Base_Reg.getNode()->hasOneUse()) ||
899 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
900 --Cost;
901 // If the folded LHS was interesting, this transformation saves
902 // address arithmetic.
903 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
904 ((AM.Disp != 0) && (Backup.Disp == 0)) +
905 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
906 --Cost;
907 // If it doesn't look like it may be an overall win, don't do it.
908 if (Cost >= 0) {
909 AM = Backup;
910 break;
911 }
912
913 // Ok, the transformation is legal and appears profitable. Go for it.
914 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
915 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
916 AM.IndexReg = Neg;
917 AM.Scale = 1;
918
919 // Insert the new nodes into the topological ordering.
920 if (Zero.getNode()->getNodeId() == -1 ||
921 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
922 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
923 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
924 }
925 if (Neg.getNode()->getNodeId() == -1 ||
926 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
927 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
928 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
929 }
930 return false;
931 }
932
933 case ISD::ADD: {
934 // Add an artificial use to this node so that we can keep track of
935 // it if it gets CSE'd with a different node.
936 HandleSDNode Handle(N);
937
938 X86ISelAddressMode Backup = AM;
939 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
940 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
941 return false;
942 AM = Backup;
943
944 // Try again after commuting the operands.
945 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
946 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
947 return false;
948 AM = Backup;
949
950 // If we couldn't fold both operands into the address at the same time,
951 // see if we can just put each operand into a register and fold at least
952 // the add.
953 if (AM.BaseType == X86ISelAddressMode::RegBase &&
954 !AM.Base_Reg.getNode() &&
955 !AM.IndexReg.getNode()) {
956 N = Handle.getValue();
957 AM.Base_Reg = N.getOperand(0);
958 AM.IndexReg = N.getOperand(1);
959 AM.Scale = 1;
960 return false;
961 }
962 N = Handle.getValue();
963 break;
964 }
965
966 case ISD::OR:
967 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
968 if (CurDAG->isBaseWithConstantOffset(N)) {
969 X86ISelAddressMode Backup = AM;
970 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
971
972 // Start with the LHS as an addr mode.
973 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
974 !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
975 return false;
976 AM = Backup;
977 }
978 break;
979
980 case ISD::AND: {
981 // Perform some heroic transforms on an and of a constant-count shift
982 // with a constant to enable use of the scaled offset field.
983
984 SDValue Shift = N.getOperand(0);
985 if (Shift.getNumOperands() != 2) break;
986
987 // Scale must not be used already.
988 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
989
990 SDValue X = Shift.getOperand(0);
991 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
992 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
993 if (!C1 || !C2) break;
994
995 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
996 // allows us to convert the shift and and into an h-register extract and
997 // a scaled index.
998 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
999 unsigned ScaleLog = 8 - C1->getZExtValue();
1000 if (ScaleLog > 0 && ScaleLog < 4 &&
1001 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1002 SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1003 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1004 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1005 X, Eight);
1006 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1007 Srl, Mask);
1008 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1009 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1010 And, ShlCount);
1011
1012 // Insert the new nodes into the topological ordering.
1013 if (Eight.getNode()->getNodeId() == -1 ||
1014 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1015 CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1016 Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1017 }
1018 if (Mask.getNode()->getNodeId() == -1 ||
1019 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1020 CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1021 Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1022 }
1023 if (Srl.getNode()->getNodeId() == -1 ||
1024 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1025 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1026 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1027 }
1028 if (And.getNode()->getNodeId() == -1 ||
1029 And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1030 CurDAG->RepositionNode(N.getNode(), And.getNode());
1031 And.getNode()->setNodeId(N.getNode()->getNodeId());
1032 }
1033 if (ShlCount.getNode()->getNodeId() == -1 ||
1034 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1035 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1036 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1037 }
1038 if (Shl.getNode()->getNodeId() == -1 ||
1039 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1040 CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1041 Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1042 }
1043 CurDAG->ReplaceAllUsesWith(N, Shl);
1044 AM.IndexReg = And;
1045 AM.Scale = (1 << ScaleLog);
1046 return false;
1047 }
1048 }
1049
1050 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1051 // allows us to fold the shift into this addressing mode.
1052 if (Shift.getOpcode() != ISD::SHL) break;
1053
1054 // Not likely to be profitable if either the AND or SHIFT node has more
1055 // than one use (unless all uses are for address computation). Besides,
1056 // isel mechanism requires their node ids to be reused.
1057 if (!N.hasOneUse() || !Shift.hasOneUse())
1058 break;
1059
1060 // Verify that the shift amount is something we can fold.
1061 unsigned ShiftCst = C1->getZExtValue();
1062 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1063 break;
1064
1065 // Get the new AND mask, this folds to a constant.
1066 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1067 SDValue(C2, 0), SDValue(C1, 0));
1068 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1069 NewANDMask);
1070 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1071 NewAND, SDValue(C1, 0));
1072
1073 // Insert the new nodes into the topological ordering.
1074 if (C1->getNodeId() > X.getNode()->getNodeId()) {
1075 CurDAG->RepositionNode(X.getNode(), C1);
1076 C1->setNodeId(X.getNode()->getNodeId());
1077 }
1078 if (NewANDMask.getNode()->getNodeId() == -1 ||
1079 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1080 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1081 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1082 }
1083 if (NewAND.getNode()->getNodeId() == -1 ||
1084 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1085 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1086 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1087 }
1088 if (NewSHIFT.getNode()->getNodeId() == -1 ||
1089 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1090 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1091 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1092 }
1093
1094 CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1095
1096 AM.Scale = 1 << ShiftCst;
1097 AM.IndexReg = NewAND;
1098 return false;
1099 }
1100 }
1101
1102 return MatchAddressBase(N, AM);
1103 }
1104
1105 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1106 /// specified addressing mode without any further recursion.
MatchAddressBase(SDValue N,X86ISelAddressMode & AM)1107 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1108 // Is the base register already occupied?
1109 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1110 // If so, check to see if the scale index register is set.
1111 if (AM.IndexReg.getNode() == 0) {
1112 AM.IndexReg = N;
1113 AM.Scale = 1;
1114 return false;
1115 }
1116
1117 // Otherwise, we cannot select it.
1118 return true;
1119 }
1120
1121 // Default, generate it as a register.
1122 AM.BaseType = X86ISelAddressMode::RegBase;
1123 AM.Base_Reg = N;
1124 return false;
1125 }
1126
1127 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1128 /// It returns the operands which make up the maximal addressing mode it can
1129 /// match by reference.
1130 ///
1131 /// Parent is the parent node of the addr operand that is being matched. It
1132 /// is always a load, store, atomic node, or null. It is only null when
1133 /// checking memory operands for inline asm nodes.
SelectAddr(SDNode * Parent,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1134 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1135 SDValue &Scale, SDValue &Index,
1136 SDValue &Disp, SDValue &Segment) {
1137 X86ISelAddressMode AM;
1138
1139 if (Parent &&
1140 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1141 // that are not a MemSDNode, and thus don't have proper addrspace info.
1142 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1143 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1144 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1145 unsigned AddrSpace =
1146 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1147 // AddrSpace 256 -> GS, 257 -> FS.
1148 if (AddrSpace == 256)
1149 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1150 if (AddrSpace == 257)
1151 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1152 }
1153
1154 if (MatchAddress(N, AM))
1155 return false;
1156
1157 EVT VT = N.getValueType();
1158 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1159 if (!AM.Base_Reg.getNode())
1160 AM.Base_Reg = CurDAG->getRegister(0, VT);
1161 }
1162
1163 if (!AM.IndexReg.getNode())
1164 AM.IndexReg = CurDAG->getRegister(0, VT);
1165
1166 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1167 return true;
1168 }
1169
1170 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1171 /// match a load whose top elements are either undef or zeros. The load flavor
1172 /// is derived from the type of N, which is either v4f32 or v2f64.
1173 ///
1174 /// We also return:
1175 /// PatternChainNode: this is the matched node that has a chain input and
1176 /// output.
SelectScalarSSELoad(SDNode * Root,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment,SDValue & PatternNodeWithChain)1177 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1178 SDValue N, SDValue &Base,
1179 SDValue &Scale, SDValue &Index,
1180 SDValue &Disp, SDValue &Segment,
1181 SDValue &PatternNodeWithChain) {
1182 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1183 PatternNodeWithChain = N.getOperand(0);
1184 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1185 PatternNodeWithChain.hasOneUse() &&
1186 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1187 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1188 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1189 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1190 return false;
1191 return true;
1192 }
1193 }
1194
1195 // Also handle the case where we explicitly require zeros in the top
1196 // elements. This is a vector shuffle from the zero vector.
1197 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1198 // Check to see if the top elements are all zeros (or bitcast of zeros).
1199 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1200 N.getOperand(0).getNode()->hasOneUse() &&
1201 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1202 N.getOperand(0).getOperand(0).hasOneUse() &&
1203 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1204 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1205 // Okay, this is a zero extending load. Fold it.
1206 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1207 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1208 return false;
1209 PatternNodeWithChain = SDValue(LD, 0);
1210 return true;
1211 }
1212 return false;
1213 }
1214
1215
1216 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1217 /// mode it matches can be cost effectively emitted as an LEA instruction.
SelectLEAAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1218 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1219 SDValue &Base, SDValue &Scale,
1220 SDValue &Index, SDValue &Disp,
1221 SDValue &Segment) {
1222 X86ISelAddressMode AM;
1223
1224 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1225 // segments.
1226 SDValue Copy = AM.Segment;
1227 SDValue T = CurDAG->getRegister(0, MVT::i32);
1228 AM.Segment = T;
1229 if (MatchAddress(N, AM))
1230 return false;
1231 assert (T == AM.Segment);
1232 AM.Segment = Copy;
1233
1234 EVT VT = N.getValueType();
1235 unsigned Complexity = 0;
1236 if (AM.BaseType == X86ISelAddressMode::RegBase)
1237 if (AM.Base_Reg.getNode())
1238 Complexity = 1;
1239 else
1240 AM.Base_Reg = CurDAG->getRegister(0, VT);
1241 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1242 Complexity = 4;
1243
1244 if (AM.IndexReg.getNode())
1245 Complexity++;
1246 else
1247 AM.IndexReg = CurDAG->getRegister(0, VT);
1248
1249 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1250 // a simple shift.
1251 if (AM.Scale > 1)
1252 Complexity++;
1253
1254 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1255 // to a LEA. This is determined with some expermentation but is by no means
1256 // optimal (especially for code size consideration). LEA is nice because of
1257 // its three-address nature. Tweak the cost function again when we can run
1258 // convertToThreeAddress() at register allocation time.
1259 if (AM.hasSymbolicDisplacement()) {
1260 // For X86-64, we should always use lea to materialize RIP relative
1261 // addresses.
1262 if (Subtarget->is64Bit())
1263 Complexity = 4;
1264 else
1265 Complexity += 2;
1266 }
1267
1268 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1269 Complexity++;
1270
1271 // If it isn't worth using an LEA, reject it.
1272 if (Complexity <= 2)
1273 return false;
1274
1275 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1276 return true;
1277 }
1278
1279 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
SelectTLSADDRAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1280 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1281 SDValue &Scale, SDValue &Index,
1282 SDValue &Disp, SDValue &Segment) {
1283 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1284 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1285
1286 X86ISelAddressMode AM;
1287 AM.GV = GA->getGlobal();
1288 AM.Disp += GA->getOffset();
1289 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1290 AM.SymbolFlags = GA->getTargetFlags();
1291
1292 if (N.getValueType() == MVT::i32) {
1293 AM.Scale = 1;
1294 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1295 } else {
1296 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1297 }
1298
1299 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1300 return true;
1301 }
1302
1303
TryFoldLoad(SDNode * P,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1304 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1305 SDValue &Base, SDValue &Scale,
1306 SDValue &Index, SDValue &Disp,
1307 SDValue &Segment) {
1308 if (!ISD::isNON_EXTLoad(N.getNode()) ||
1309 !IsProfitableToFold(N, P, P) ||
1310 !IsLegalToFold(N, P, P, OptLevel))
1311 return false;
1312
1313 return SelectAddr(N.getNode(),
1314 N.getOperand(1), Base, Scale, Index, Disp, Segment);
1315 }
1316
1317 /// getGlobalBaseReg - Return an SDNode that returns the value of
1318 /// the global base register. Output instructions required to
1319 /// initialize the global base register, if necessary.
1320 ///
getGlobalBaseReg()1321 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1322 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1323 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1324 }
1325
SelectAtomic64(SDNode * Node,unsigned Opc)1326 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1327 SDValue Chain = Node->getOperand(0);
1328 SDValue In1 = Node->getOperand(1);
1329 SDValue In2L = Node->getOperand(2);
1330 SDValue In2H = Node->getOperand(3);
1331 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1332 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1333 return NULL;
1334 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1335 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1336 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1337 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1338 MVT::i32, MVT::i32, MVT::Other, Ops,
1339 array_lengthof(Ops));
1340 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1341 return ResNode;
1342 }
1343
1344 // FIXME: Figure out some way to unify this with the 'or' and other code
1345 // below.
SelectAtomicLoadAdd(SDNode * Node,EVT NVT)1346 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1347 if (Node->hasAnyUseOfValue(0))
1348 return 0;
1349
1350 // Optimize common patterns for __sync_add_and_fetch and
1351 // __sync_sub_and_fetch where the result is not used. This allows us
1352 // to use "lock" version of add, sub, inc, dec instructions.
1353 // FIXME: Do not use special instructions but instead add the "lock"
1354 // prefix to the target node somehow. The extra information will then be
1355 // transferred to machine instruction and it denotes the prefix.
1356 SDValue Chain = Node->getOperand(0);
1357 SDValue Ptr = Node->getOperand(1);
1358 SDValue Val = Node->getOperand(2);
1359 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1360 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1361 return 0;
1362
1363 bool isInc = false, isDec = false, isSub = false, isCN = false;
1364 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1365 if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
1366 isCN = true;
1367 int64_t CNVal = CN->getSExtValue();
1368 if (CNVal == 1)
1369 isInc = true;
1370 else if (CNVal == -1)
1371 isDec = true;
1372 else if (CNVal >= 0)
1373 Val = CurDAG->getTargetConstant(CNVal, NVT);
1374 else {
1375 isSub = true;
1376 Val = CurDAG->getTargetConstant(-CNVal, NVT);
1377 }
1378 } else if (Val.hasOneUse() &&
1379 Val.getOpcode() == ISD::SUB &&
1380 X86::isZeroNode(Val.getOperand(0))) {
1381 isSub = true;
1382 Val = Val.getOperand(1);
1383 }
1384
1385 DebugLoc dl = Node->getDebugLoc();
1386 unsigned Opc = 0;
1387 switch (NVT.getSimpleVT().SimpleTy) {
1388 default: return 0;
1389 case MVT::i8:
1390 if (isInc)
1391 Opc = X86::LOCK_INC8m;
1392 else if (isDec)
1393 Opc = X86::LOCK_DEC8m;
1394 else if (isSub) {
1395 if (isCN)
1396 Opc = X86::LOCK_SUB8mi;
1397 else
1398 Opc = X86::LOCK_SUB8mr;
1399 } else {
1400 if (isCN)
1401 Opc = X86::LOCK_ADD8mi;
1402 else
1403 Opc = X86::LOCK_ADD8mr;
1404 }
1405 break;
1406 case MVT::i16:
1407 if (isInc)
1408 Opc = X86::LOCK_INC16m;
1409 else if (isDec)
1410 Opc = X86::LOCK_DEC16m;
1411 else if (isSub) {
1412 if (isCN) {
1413 if (immSext8(Val.getNode()))
1414 Opc = X86::LOCK_SUB16mi8;
1415 else
1416 Opc = X86::LOCK_SUB16mi;
1417 } else
1418 Opc = X86::LOCK_SUB16mr;
1419 } else {
1420 if (isCN) {
1421 if (immSext8(Val.getNode()))
1422 Opc = X86::LOCK_ADD16mi8;
1423 else
1424 Opc = X86::LOCK_ADD16mi;
1425 } else
1426 Opc = X86::LOCK_ADD16mr;
1427 }
1428 break;
1429 case MVT::i32:
1430 if (isInc)
1431 Opc = X86::LOCK_INC32m;
1432 else if (isDec)
1433 Opc = X86::LOCK_DEC32m;
1434 else if (isSub) {
1435 if (isCN) {
1436 if (immSext8(Val.getNode()))
1437 Opc = X86::LOCK_SUB32mi8;
1438 else
1439 Opc = X86::LOCK_SUB32mi;
1440 } else
1441 Opc = X86::LOCK_SUB32mr;
1442 } else {
1443 if (isCN) {
1444 if (immSext8(Val.getNode()))
1445 Opc = X86::LOCK_ADD32mi8;
1446 else
1447 Opc = X86::LOCK_ADD32mi;
1448 } else
1449 Opc = X86::LOCK_ADD32mr;
1450 }
1451 break;
1452 case MVT::i64:
1453 if (isInc)
1454 Opc = X86::LOCK_INC64m;
1455 else if (isDec)
1456 Opc = X86::LOCK_DEC64m;
1457 else if (isSub) {
1458 Opc = X86::LOCK_SUB64mr;
1459 if (isCN) {
1460 if (immSext8(Val.getNode()))
1461 Opc = X86::LOCK_SUB64mi8;
1462 else if (i64immSExt32(Val.getNode()))
1463 Opc = X86::LOCK_SUB64mi32;
1464 }
1465 } else {
1466 Opc = X86::LOCK_ADD64mr;
1467 if (isCN) {
1468 if (immSext8(Val.getNode()))
1469 Opc = X86::LOCK_ADD64mi8;
1470 else if (i64immSExt32(Val.getNode()))
1471 Opc = X86::LOCK_ADD64mi32;
1472 }
1473 }
1474 break;
1475 }
1476
1477 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1478 dl, NVT), 0);
1479 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1480 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1481 if (isInc || isDec) {
1482 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1483 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1484 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1485 SDValue RetVals[] = { Undef, Ret };
1486 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1487 } else {
1488 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1489 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1490 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1491 SDValue RetVals[] = { Undef, Ret };
1492 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1493 }
1494 }
1495
1496 enum AtomicOpc {
1497 OR,
1498 AND,
1499 XOR,
1500 AtomicOpcEnd
1501 };
1502
1503 enum AtomicSz {
1504 ConstantI8,
1505 I8,
1506 SextConstantI16,
1507 ConstantI16,
1508 I16,
1509 SextConstantI32,
1510 ConstantI32,
1511 I32,
1512 SextConstantI64,
1513 ConstantI64,
1514 I64,
1515 AtomicSzEnd
1516 };
1517
1518 static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1519 {
1520 X86::LOCK_OR8mi,
1521 X86::LOCK_OR8mr,
1522 X86::LOCK_OR16mi8,
1523 X86::LOCK_OR16mi,
1524 X86::LOCK_OR16mr,
1525 X86::LOCK_OR32mi8,
1526 X86::LOCK_OR32mi,
1527 X86::LOCK_OR32mr,
1528 X86::LOCK_OR64mi8,
1529 X86::LOCK_OR64mi32,
1530 X86::LOCK_OR64mr
1531 },
1532 {
1533 X86::LOCK_AND8mi,
1534 X86::LOCK_AND8mr,
1535 X86::LOCK_AND16mi8,
1536 X86::LOCK_AND16mi,
1537 X86::LOCK_AND16mr,
1538 X86::LOCK_AND32mi8,
1539 X86::LOCK_AND32mi,
1540 X86::LOCK_AND32mr,
1541 X86::LOCK_AND64mi8,
1542 X86::LOCK_AND64mi32,
1543 X86::LOCK_AND64mr
1544 },
1545 {
1546 X86::LOCK_XOR8mi,
1547 X86::LOCK_XOR8mr,
1548 X86::LOCK_XOR16mi8,
1549 X86::LOCK_XOR16mi,
1550 X86::LOCK_XOR16mr,
1551 X86::LOCK_XOR32mi8,
1552 X86::LOCK_XOR32mi,
1553 X86::LOCK_XOR32mr,
1554 X86::LOCK_XOR64mi8,
1555 X86::LOCK_XOR64mi32,
1556 X86::LOCK_XOR64mr
1557 }
1558 };
1559
SelectAtomicLoadArith(SDNode * Node,EVT NVT)1560 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1561 if (Node->hasAnyUseOfValue(0))
1562 return 0;
1563
1564 // Optimize common patterns for __sync_or_and_fetch and similar arith
1565 // operations where the result is not used. This allows us to use the "lock"
1566 // version of the arithmetic instruction.
1567 // FIXME: Same as for 'add' and 'sub', try to merge those down here.
1568 SDValue Chain = Node->getOperand(0);
1569 SDValue Ptr = Node->getOperand(1);
1570 SDValue Val = Node->getOperand(2);
1571 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1572 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1573 return 0;
1574
1575 // Which index into the table.
1576 enum AtomicOpc Op;
1577 switch (Node->getOpcode()) {
1578 case ISD::ATOMIC_LOAD_OR:
1579 Op = OR;
1580 break;
1581 case ISD::ATOMIC_LOAD_AND:
1582 Op = AND;
1583 break;
1584 case ISD::ATOMIC_LOAD_XOR:
1585 Op = XOR;
1586 break;
1587 default:
1588 return 0;
1589 }
1590
1591 bool isCN = false;
1592 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1593 if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
1594 isCN = true;
1595 Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
1596 }
1597
1598 unsigned Opc = 0;
1599 switch (NVT.getSimpleVT().SimpleTy) {
1600 default: return 0;
1601 case MVT::i8:
1602 if (isCN)
1603 Opc = AtomicOpcTbl[Op][ConstantI8];
1604 else
1605 Opc = AtomicOpcTbl[Op][I8];
1606 break;
1607 case MVT::i16:
1608 if (isCN) {
1609 if (immSext8(Val.getNode()))
1610 Opc = AtomicOpcTbl[Op][SextConstantI16];
1611 else
1612 Opc = AtomicOpcTbl[Op][ConstantI16];
1613 } else
1614 Opc = AtomicOpcTbl[Op][I16];
1615 break;
1616 case MVT::i32:
1617 if (isCN) {
1618 if (immSext8(Val.getNode()))
1619 Opc = AtomicOpcTbl[Op][SextConstantI32];
1620 else
1621 Opc = AtomicOpcTbl[Op][ConstantI32];
1622 } else
1623 Opc = AtomicOpcTbl[Op][I32];
1624 break;
1625 case MVT::i64:
1626 Opc = AtomicOpcTbl[Op][I64];
1627 if (isCN) {
1628 if (immSext8(Val.getNode()))
1629 Opc = AtomicOpcTbl[Op][SextConstantI64];
1630 else if (i64immSExt32(Val.getNode()))
1631 Opc = AtomicOpcTbl[Op][ConstantI64];
1632 }
1633 break;
1634 }
1635
1636 assert(Opc != 0 && "Invalid arith lock transform!");
1637
1638 DebugLoc dl = Node->getDebugLoc();
1639 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1640 dl, NVT), 0);
1641 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1642 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1643 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1644 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1645 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1646 SDValue RetVals[] = { Undef, Ret };
1647 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1648 }
1649
1650 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1651 /// any uses which require the SF or OF bits to be accurate.
HasNoSignedComparisonUses(SDNode * N)1652 static bool HasNoSignedComparisonUses(SDNode *N) {
1653 // Examine each user of the node.
1654 for (SDNode::use_iterator UI = N->use_begin(),
1655 UE = N->use_end(); UI != UE; ++UI) {
1656 // Only examine CopyToReg uses.
1657 if (UI->getOpcode() != ISD::CopyToReg)
1658 return false;
1659 // Only examine CopyToReg uses that copy to EFLAGS.
1660 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1661 X86::EFLAGS)
1662 return false;
1663 // Examine each user of the CopyToReg use.
1664 for (SDNode::use_iterator FlagUI = UI->use_begin(),
1665 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1666 // Only examine the Flag result.
1667 if (FlagUI.getUse().getResNo() != 1) continue;
1668 // Anything unusual: assume conservatively.
1669 if (!FlagUI->isMachineOpcode()) return false;
1670 // Examine the opcode of the user.
1671 switch (FlagUI->getMachineOpcode()) {
1672 // These comparisons don't treat the most significant bit specially.
1673 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1674 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1675 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1676 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1677 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1678 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1679 case X86::CMOVA16rr: case X86::CMOVA16rm:
1680 case X86::CMOVA32rr: case X86::CMOVA32rm:
1681 case X86::CMOVA64rr: case X86::CMOVA64rm:
1682 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1683 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1684 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1685 case X86::CMOVB16rr: case X86::CMOVB16rm:
1686 case X86::CMOVB32rr: case X86::CMOVB32rm:
1687 case X86::CMOVB64rr: case X86::CMOVB64rm:
1688 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1689 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1690 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1691 case X86::CMOVE16rr: case X86::CMOVE16rm:
1692 case X86::CMOVE32rr: case X86::CMOVE32rm:
1693 case X86::CMOVE64rr: case X86::CMOVE64rm:
1694 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1695 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1696 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1697 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1698 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1699 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1700 case X86::CMOVP16rr: case X86::CMOVP16rm:
1701 case X86::CMOVP32rr: case X86::CMOVP32rm:
1702 case X86::CMOVP64rr: case X86::CMOVP64rm:
1703 continue;
1704 // Anything else: assume conservatively.
1705 default: return false;
1706 }
1707 }
1708 }
1709 return true;
1710 }
1711
Select(SDNode * Node)1712 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1713 EVT NVT = Node->getValueType(0);
1714 unsigned Opc, MOpc;
1715 unsigned Opcode = Node->getOpcode();
1716 DebugLoc dl = Node->getDebugLoc();
1717
1718 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1719
1720 if (Node->isMachineOpcode()) {
1721 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
1722 return NULL; // Already selected.
1723 }
1724
1725 switch (Opcode) {
1726 default: break;
1727 case X86ISD::GlobalBaseReg:
1728 return getGlobalBaseReg();
1729
1730 case X86ISD::ATOMOR64_DAG:
1731 return SelectAtomic64(Node, X86::ATOMOR6432);
1732 case X86ISD::ATOMXOR64_DAG:
1733 return SelectAtomic64(Node, X86::ATOMXOR6432);
1734 case X86ISD::ATOMADD64_DAG:
1735 return SelectAtomic64(Node, X86::ATOMADD6432);
1736 case X86ISD::ATOMSUB64_DAG:
1737 return SelectAtomic64(Node, X86::ATOMSUB6432);
1738 case X86ISD::ATOMNAND64_DAG:
1739 return SelectAtomic64(Node, X86::ATOMNAND6432);
1740 case X86ISD::ATOMAND64_DAG:
1741 return SelectAtomic64(Node, X86::ATOMAND6432);
1742 case X86ISD::ATOMSWAP64_DAG:
1743 return SelectAtomic64(Node, X86::ATOMSWAP6432);
1744
1745 case ISD::ATOMIC_LOAD_ADD: {
1746 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1747 if (RetVal)
1748 return RetVal;
1749 break;
1750 }
1751 case ISD::ATOMIC_LOAD_XOR:
1752 case ISD::ATOMIC_LOAD_AND:
1753 case ISD::ATOMIC_LOAD_OR: {
1754 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
1755 if (RetVal)
1756 return RetVal;
1757 break;
1758 }
1759 case ISD::AND:
1760 case ISD::OR:
1761 case ISD::XOR: {
1762 // For operations of the form (x << C1) op C2, check if we can use a smaller
1763 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
1764 SDValue N0 = Node->getOperand(0);
1765 SDValue N1 = Node->getOperand(1);
1766
1767 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
1768 break;
1769
1770 // i8 is unshrinkable, i16 should be promoted to i32.
1771 if (NVT != MVT::i32 && NVT != MVT::i64)
1772 break;
1773
1774 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
1775 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1776 if (!Cst || !ShlCst)
1777 break;
1778
1779 int64_t Val = Cst->getSExtValue();
1780 uint64_t ShlVal = ShlCst->getZExtValue();
1781
1782 // Make sure that we don't change the operation by removing bits.
1783 // This only matters for OR and XOR, AND is unaffected.
1784 if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
1785 break;
1786
1787 unsigned ShlOp, Op = 0;
1788 EVT CstVT = NVT;
1789
1790 // Check the minimum bitwidth for the new constant.
1791 // TODO: AND32ri is the same as AND64ri32 with zext imm.
1792 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
1793 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
1794 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
1795 CstVT = MVT::i8;
1796 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
1797 CstVT = MVT::i32;
1798
1799 // Bail if there is no smaller encoding.
1800 if (NVT == CstVT)
1801 break;
1802
1803 switch (NVT.getSimpleVT().SimpleTy) {
1804 default: llvm_unreachable("Unsupported VT!");
1805 case MVT::i32:
1806 assert(CstVT == MVT::i8);
1807 ShlOp = X86::SHL32ri;
1808
1809 switch (Opcode) {
1810 case ISD::AND: Op = X86::AND32ri8; break;
1811 case ISD::OR: Op = X86::OR32ri8; break;
1812 case ISD::XOR: Op = X86::XOR32ri8; break;
1813 }
1814 break;
1815 case MVT::i64:
1816 assert(CstVT == MVT::i8 || CstVT == MVT::i32);
1817 ShlOp = X86::SHL64ri;
1818
1819 switch (Opcode) {
1820 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
1821 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
1822 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
1823 }
1824 break;
1825 }
1826
1827 // Emit the smaller op and the shift.
1828 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
1829 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
1830 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
1831 getI8Imm(ShlVal));
1832 break;
1833 }
1834 case X86ISD::UMUL: {
1835 SDValue N0 = Node->getOperand(0);
1836 SDValue N1 = Node->getOperand(1);
1837
1838 unsigned LoReg;
1839 switch (NVT.getSimpleVT().SimpleTy) {
1840 default: llvm_unreachable("Unsupported VT!");
1841 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
1842 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
1843 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
1844 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
1845 }
1846
1847 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1848 N0, SDValue()).getValue(1);
1849
1850 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1851 SDValue Ops[] = {N1, InFlag};
1852 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1853
1854 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
1855 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
1856 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
1857 return NULL;
1858 }
1859
1860 case ISD::SMUL_LOHI:
1861 case ISD::UMUL_LOHI: {
1862 SDValue N0 = Node->getOperand(0);
1863 SDValue N1 = Node->getOperand(1);
1864
1865 bool isSigned = Opcode == ISD::SMUL_LOHI;
1866 if (!isSigned) {
1867 switch (NVT.getSimpleVT().SimpleTy) {
1868 default: llvm_unreachable("Unsupported VT!");
1869 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
1870 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1871 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1872 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1873 }
1874 } else {
1875 switch (NVT.getSimpleVT().SimpleTy) {
1876 default: llvm_unreachable("Unsupported VT!");
1877 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
1878 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1879 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1880 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1881 }
1882 }
1883
1884 unsigned LoReg, HiReg;
1885 switch (NVT.getSimpleVT().SimpleTy) {
1886 default: llvm_unreachable("Unsupported VT!");
1887 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
1888 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
1889 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1890 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1891 }
1892
1893 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1894 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1895 // Multiply is commmutative.
1896 if (!foldedLoad) {
1897 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1898 if (foldedLoad)
1899 std::swap(N0, N1);
1900 }
1901
1902 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1903 N0, SDValue()).getValue(1);
1904
1905 if (foldedLoad) {
1906 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1907 InFlag };
1908 SDNode *CNode =
1909 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1910 array_lengthof(Ops));
1911 InFlag = SDValue(CNode, 1);
1912
1913 // Update the chain.
1914 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1915 } else {
1916 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
1917 InFlag = SDValue(CNode, 0);
1918 }
1919
1920 // Prevent use of AH in a REX instruction by referencing AX instead.
1921 if (HiReg == X86::AH && Subtarget->is64Bit() &&
1922 !SDValue(Node, 1).use_empty()) {
1923 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1924 X86::AX, MVT::i16, InFlag);
1925 InFlag = Result.getValue(2);
1926 // Get the low part if needed. Don't use getCopyFromReg for aliasing
1927 // registers.
1928 if (!SDValue(Node, 0).use_empty())
1929 ReplaceUses(SDValue(Node, 1),
1930 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1931
1932 // Shift AX down 8 bits.
1933 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1934 Result,
1935 CurDAG->getTargetConstant(8, MVT::i8)), 0);
1936 // Then truncate it down to i8.
1937 ReplaceUses(SDValue(Node, 1),
1938 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1939 }
1940 // Copy the low half of the result, if it is needed.
1941 if (!SDValue(Node, 0).use_empty()) {
1942 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1943 LoReg, NVT, InFlag);
1944 InFlag = Result.getValue(2);
1945 ReplaceUses(SDValue(Node, 0), Result);
1946 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1947 }
1948 // Copy the high half of the result, if it is needed.
1949 if (!SDValue(Node, 1).use_empty()) {
1950 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1951 HiReg, NVT, InFlag);
1952 InFlag = Result.getValue(2);
1953 ReplaceUses(SDValue(Node, 1), Result);
1954 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1955 }
1956
1957 return NULL;
1958 }
1959
1960 case ISD::SDIVREM:
1961 case ISD::UDIVREM: {
1962 SDValue N0 = Node->getOperand(0);
1963 SDValue N1 = Node->getOperand(1);
1964
1965 bool isSigned = Opcode == ISD::SDIVREM;
1966 if (!isSigned) {
1967 switch (NVT.getSimpleVT().SimpleTy) {
1968 default: llvm_unreachable("Unsupported VT!");
1969 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
1970 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1971 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1972 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1973 }
1974 } else {
1975 switch (NVT.getSimpleVT().SimpleTy) {
1976 default: llvm_unreachable("Unsupported VT!");
1977 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
1978 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1979 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1980 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1981 }
1982 }
1983
1984 unsigned LoReg, HiReg, ClrReg;
1985 unsigned ClrOpcode, SExtOpcode;
1986 switch (NVT.getSimpleVT().SimpleTy) {
1987 default: llvm_unreachable("Unsupported VT!");
1988 case MVT::i8:
1989 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
1990 ClrOpcode = 0;
1991 SExtOpcode = X86::CBW;
1992 break;
1993 case MVT::i16:
1994 LoReg = X86::AX; HiReg = X86::DX;
1995 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX;
1996 SExtOpcode = X86::CWD;
1997 break;
1998 case MVT::i32:
1999 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2000 ClrOpcode = X86::MOV32r0;
2001 SExtOpcode = X86::CDQ;
2002 break;
2003 case MVT::i64:
2004 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2005 ClrOpcode = X86::MOV64r0;
2006 SExtOpcode = X86::CQO;
2007 break;
2008 }
2009
2010 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2011 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2012 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2013
2014 SDValue InFlag;
2015 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2016 // Special case for div8, just use a move with zero extension to AX to
2017 // clear the upper 8 bits (AH).
2018 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2019 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2020 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2021 Move =
2022 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2023 MVT::Other, Ops,
2024 array_lengthof(Ops)), 0);
2025 Chain = Move.getValue(1);
2026 ReplaceUses(N0.getValue(1), Chain);
2027 } else {
2028 Move =
2029 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2030 Chain = CurDAG->getEntryNode();
2031 }
2032 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2033 InFlag = Chain.getValue(1);
2034 } else {
2035 InFlag =
2036 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2037 LoReg, N0, SDValue()).getValue(1);
2038 if (isSigned && !signBitIsZero) {
2039 // Sign extend the low part into the high part.
2040 InFlag =
2041 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2042 } else {
2043 // Zero out the high part, effectively zero extending the input.
2044 SDValue ClrNode =
2045 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2046 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2047 ClrNode, InFlag).getValue(1);
2048 }
2049 }
2050
2051 if (foldedLoad) {
2052 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2053 InFlag };
2054 SDNode *CNode =
2055 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2056 array_lengthof(Ops));
2057 InFlag = SDValue(CNode, 1);
2058 // Update the chain.
2059 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2060 } else {
2061 InFlag =
2062 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2063 }
2064
2065 // Prevent use of AH in a REX instruction by referencing AX instead.
2066 // Shift it down 8 bits.
2067 if (HiReg == X86::AH && Subtarget->is64Bit() &&
2068 !SDValue(Node, 1).use_empty()) {
2069 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2070 X86::AX, MVT::i16, InFlag);
2071 InFlag = Result.getValue(2);
2072
2073 // If we also need AL (the quotient), get it by extracting a subreg from
2074 // Result. The fast register allocator does not like multiple CopyFromReg
2075 // nodes using aliasing registers.
2076 if (!SDValue(Node, 0).use_empty())
2077 ReplaceUses(SDValue(Node, 0),
2078 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2079
2080 // Shift AX right by 8 bits instead of using AH.
2081 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2082 Result,
2083 CurDAG->getTargetConstant(8, MVT::i8)),
2084 0);
2085 ReplaceUses(SDValue(Node, 1),
2086 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2087 }
2088 // Copy the division (low) result, if it is needed.
2089 if (!SDValue(Node, 0).use_empty()) {
2090 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2091 LoReg, NVT, InFlag);
2092 InFlag = Result.getValue(2);
2093 ReplaceUses(SDValue(Node, 0), Result);
2094 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2095 }
2096 // Copy the remainder (high) result, if it is needed.
2097 if (!SDValue(Node, 1).use_empty()) {
2098 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2099 HiReg, NVT, InFlag);
2100 InFlag = Result.getValue(2);
2101 ReplaceUses(SDValue(Node, 1), Result);
2102 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2103 }
2104 return NULL;
2105 }
2106
2107 case X86ISD::CMP: {
2108 SDValue N0 = Node->getOperand(0);
2109 SDValue N1 = Node->getOperand(1);
2110
2111 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2112 // use a smaller encoding.
2113 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2114 HasNoSignedComparisonUses(Node))
2115 // Look past the truncate if CMP is the only use of it.
2116 N0 = N0.getOperand(0);
2117 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2118 N0.getValueType() != MVT::i8 &&
2119 X86::isZeroNode(N1)) {
2120 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2121 if (!C) break;
2122
2123 // For example, convert "testl %eax, $8" to "testb %al, $8"
2124 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2125 (!(C->getZExtValue() & 0x80) ||
2126 HasNoSignedComparisonUses(Node))) {
2127 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2128 SDValue Reg = N0.getNode()->getOperand(0);
2129
2130 // On x86-32, only the ABCD registers have 8-bit subregisters.
2131 if (!Subtarget->is64Bit()) {
2132 TargetRegisterClass *TRC = 0;
2133 switch (N0.getValueType().getSimpleVT().SimpleTy) {
2134 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2135 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2136 default: llvm_unreachable("Unsupported TEST operand type!");
2137 }
2138 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2139 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2140 Reg.getValueType(), Reg, RC), 0);
2141 }
2142
2143 // Extract the l-register.
2144 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2145 MVT::i8, Reg);
2146
2147 // Emit a testb.
2148 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2149 }
2150
2151 // For example, "testl %eax, $2048" to "testb %ah, $8".
2152 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2153 (!(C->getZExtValue() & 0x8000) ||
2154 HasNoSignedComparisonUses(Node))) {
2155 // Shift the immediate right by 8 bits.
2156 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2157 MVT::i8);
2158 SDValue Reg = N0.getNode()->getOperand(0);
2159
2160 // Put the value in an ABCD register.
2161 TargetRegisterClass *TRC = 0;
2162 switch (N0.getValueType().getSimpleVT().SimpleTy) {
2163 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2164 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2165 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2166 default: llvm_unreachable("Unsupported TEST operand type!");
2167 }
2168 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2169 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2170 Reg.getValueType(), Reg, RC), 0);
2171
2172 // Extract the h-register.
2173 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2174 MVT::i8, Reg);
2175
2176 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only
2177 // target GR8_NOREX registers, so make sure the register class is
2178 // forced.
2179 return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
2180 Subreg, ShiftedImm);
2181 }
2182
2183 // For example, "testl %eax, $32776" to "testw %ax, $32776".
2184 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2185 N0.getValueType() != MVT::i16 &&
2186 (!(C->getZExtValue() & 0x8000) ||
2187 HasNoSignedComparisonUses(Node))) {
2188 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2189 SDValue Reg = N0.getNode()->getOperand(0);
2190
2191 // Extract the 16-bit subregister.
2192 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2193 MVT::i16, Reg);
2194
2195 // Emit a testw.
2196 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2197 }
2198
2199 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2200 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2201 N0.getValueType() == MVT::i64 &&
2202 (!(C->getZExtValue() & 0x80000000) ||
2203 HasNoSignedComparisonUses(Node))) {
2204 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2205 SDValue Reg = N0.getNode()->getOperand(0);
2206
2207 // Extract the 32-bit subregister.
2208 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2209 MVT::i32, Reg);
2210
2211 // Emit a testl.
2212 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2213 }
2214 }
2215 break;
2216 }
2217 }
2218
2219 SDNode *ResNode = SelectCode(Node);
2220
2221 DEBUG(dbgs() << "=> ";
2222 if (ResNode == NULL || ResNode == Node)
2223 Node->dump(CurDAG);
2224 else
2225 ResNode->dump(CurDAG);
2226 dbgs() << '\n');
2227
2228 return ResNode;
2229 }
2230
2231 bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,char ConstraintCode,std::vector<SDValue> & OutOps)2232 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2233 std::vector<SDValue> &OutOps) {
2234 SDValue Op0, Op1, Op2, Op3, Op4;
2235 switch (ConstraintCode) {
2236 case 'o': // offsetable ??
2237 case 'v': // not offsetable ??
2238 default: return true;
2239 case 'm': // memory
2240 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2241 return true;
2242 break;
2243 }
2244
2245 OutOps.push_back(Op0);
2246 OutOps.push_back(Op1);
2247 OutOps.push_back(Op2);
2248 OutOps.push_back(Op3);
2249 OutOps.push_back(Op4);
2250 return false;
2251 }
2252
2253 /// createX86ISelDag - This pass converts a legalized DAG into a
2254 /// X86-specific DAG, ready for instruction scheduling.
2255 ///
createX86ISelDag(X86TargetMachine & TM,llvm::CodeGenOpt::Level OptLevel)2256 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2257 llvm::CodeGenOpt::Level OptLevel) {
2258 return new X86DAGToDAGISel(TM, OptLevel);
2259 }
2260