1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitPHINode function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 using namespace llvm;
20
21 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
22 /// and if a/b/c and the add's all have a single use, turn this into a phi
23 /// and a single binop.
FoldPHIArgBinOpIntoPHI(PHINode & PN)24 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
25 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
26 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
27 unsigned Opc = FirstInst->getOpcode();
28 Value *LHSVal = FirstInst->getOperand(0);
29 Value *RHSVal = FirstInst->getOperand(1);
30
31 Type *LHSType = LHSVal->getType();
32 Type *RHSType = RHSVal->getType();
33
34 bool isNUW = false, isNSW = false, isExact = false;
35 if (OverflowingBinaryOperator *BO =
36 dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
37 isNUW = BO->hasNoUnsignedWrap();
38 isNSW = BO->hasNoSignedWrap();
39 } else if (PossiblyExactOperator *PEO =
40 dyn_cast<PossiblyExactOperator>(FirstInst))
41 isExact = PEO->isExact();
42
43 // Scan to see if all operands are the same opcode, and all have one use.
44 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
45 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
46 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
47 // Verify type of the LHS matches so we don't fold cmp's of different
48 // types.
49 I->getOperand(0)->getType() != LHSType ||
50 I->getOperand(1)->getType() != RHSType)
51 return 0;
52
53 // If they are CmpInst instructions, check their predicates
54 if (CmpInst *CI = dyn_cast<CmpInst>(I))
55 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
56 return 0;
57
58 if (isNUW)
59 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
60 if (isNSW)
61 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
62 if (isExact)
63 isExact = cast<PossiblyExactOperator>(I)->isExact();
64
65 // Keep track of which operand needs a phi node.
66 if (I->getOperand(0) != LHSVal) LHSVal = 0;
67 if (I->getOperand(1) != RHSVal) RHSVal = 0;
68 }
69
70 // If both LHS and RHS would need a PHI, don't do this transformation,
71 // because it would increase the number of PHIs entering the block,
72 // which leads to higher register pressure. This is especially
73 // bad when the PHIs are in the header of a loop.
74 if (!LHSVal && !RHSVal)
75 return 0;
76
77 // Otherwise, this is safe to transform!
78
79 Value *InLHS = FirstInst->getOperand(0);
80 Value *InRHS = FirstInst->getOperand(1);
81 PHINode *NewLHS = 0, *NewRHS = 0;
82 if (LHSVal == 0) {
83 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
84 FirstInst->getOperand(0)->getName() + ".pn");
85 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
86 InsertNewInstBefore(NewLHS, PN);
87 LHSVal = NewLHS;
88 }
89
90 if (RHSVal == 0) {
91 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
92 FirstInst->getOperand(1)->getName() + ".pn");
93 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
94 InsertNewInstBefore(NewRHS, PN);
95 RHSVal = NewRHS;
96 }
97
98 // Add all operands to the new PHIs.
99 if (NewLHS || NewRHS) {
100 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
101 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
102 if (NewLHS) {
103 Value *NewInLHS = InInst->getOperand(0);
104 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
105 }
106 if (NewRHS) {
107 Value *NewInRHS = InInst->getOperand(1);
108 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
109 }
110 }
111 }
112
113 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
114 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
115 LHSVal, RHSVal);
116 NewCI->setDebugLoc(FirstInst->getDebugLoc());
117 return NewCI;
118 }
119
120 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
121 BinaryOperator *NewBinOp =
122 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
123 if (isNUW) NewBinOp->setHasNoUnsignedWrap();
124 if (isNSW) NewBinOp->setHasNoSignedWrap();
125 if (isExact) NewBinOp->setIsExact();
126 NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
127 return NewBinOp;
128 }
129
FoldPHIArgGEPIntoPHI(PHINode & PN)130 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
131 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
132
133 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
134 FirstInst->op_end());
135 // This is true if all GEP bases are allocas and if all indices into them are
136 // constants.
137 bool AllBasePointersAreAllocas = true;
138
139 // We don't want to replace this phi if the replacement would require
140 // more than one phi, which leads to higher register pressure. This is
141 // especially bad when the PHIs are in the header of a loop.
142 bool NeededPhi = false;
143
144 bool AllInBounds = true;
145
146 // Scan to see if all operands are the same opcode, and all have one use.
147 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
148 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
149 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
150 GEP->getNumOperands() != FirstInst->getNumOperands())
151 return 0;
152
153 AllInBounds &= GEP->isInBounds();
154
155 // Keep track of whether or not all GEPs are of alloca pointers.
156 if (AllBasePointersAreAllocas &&
157 (!isa<AllocaInst>(GEP->getOperand(0)) ||
158 !GEP->hasAllConstantIndices()))
159 AllBasePointersAreAllocas = false;
160
161 // Compare the operand lists.
162 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
163 if (FirstInst->getOperand(op) == GEP->getOperand(op))
164 continue;
165
166 // Don't merge two GEPs when two operands differ (introducing phi nodes)
167 // if one of the PHIs has a constant for the index. The index may be
168 // substantially cheaper to compute for the constants, so making it a
169 // variable index could pessimize the path. This also handles the case
170 // for struct indices, which must always be constant.
171 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
172 isa<ConstantInt>(GEP->getOperand(op)))
173 return 0;
174
175 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
176 return 0;
177
178 // If we already needed a PHI for an earlier operand, and another operand
179 // also requires a PHI, we'd be introducing more PHIs than we're
180 // eliminating, which increases register pressure on entry to the PHI's
181 // block.
182 if (NeededPhi)
183 return 0;
184
185 FixedOperands[op] = 0; // Needs a PHI.
186 NeededPhi = true;
187 }
188 }
189
190 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
191 // bother doing this transformation. At best, this will just save a bit of
192 // offset calculation, but all the predecessors will have to materialize the
193 // stack address into a register anyway. We'd actually rather *clone* the
194 // load up into the predecessors so that we have a load of a gep of an alloca,
195 // which can usually all be folded into the load.
196 if (AllBasePointersAreAllocas)
197 return 0;
198
199 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
200 // that is variable.
201 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
202
203 bool HasAnyPHIs = false;
204 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
205 if (FixedOperands[i]) continue; // operand doesn't need a phi.
206 Value *FirstOp = FirstInst->getOperand(i);
207 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
208 FirstOp->getName()+".pn");
209 InsertNewInstBefore(NewPN, PN);
210
211 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
212 OperandPhis[i] = NewPN;
213 FixedOperands[i] = NewPN;
214 HasAnyPHIs = true;
215 }
216
217
218 // Add all operands to the new PHIs.
219 if (HasAnyPHIs) {
220 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
221 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
222 BasicBlock *InBB = PN.getIncomingBlock(i);
223
224 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
225 if (PHINode *OpPhi = OperandPhis[op])
226 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
227 }
228 }
229
230 Value *Base = FixedOperands[0];
231 GetElementPtrInst *NewGEP =
232 GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
233 if (AllInBounds) NewGEP->setIsInBounds();
234 NewGEP->setDebugLoc(FirstInst->getDebugLoc());
235 return NewGEP;
236 }
237
238
239 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
240 /// sink the load out of the block that defines it. This means that it must be
241 /// obvious the value of the load is not changed from the point of the load to
242 /// the end of the block it is in.
243 ///
244 /// Finally, it is safe, but not profitable, to sink a load targeting a
245 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
246 /// to a register.
isSafeAndProfitableToSinkLoad(LoadInst * L)247 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
248 BasicBlock::iterator BBI = L, E = L->getParent()->end();
249
250 for (++BBI; BBI != E; ++BBI)
251 if (BBI->mayWriteToMemory())
252 return false;
253
254 // Check for non-address taken alloca. If not address-taken already, it isn't
255 // profitable to do this xform.
256 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
257 bool isAddressTaken = false;
258 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
259 UI != E; ++UI) {
260 User *U = *UI;
261 if (isa<LoadInst>(U)) continue;
262 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
263 // If storing TO the alloca, then the address isn't taken.
264 if (SI->getOperand(1) == AI) continue;
265 }
266 isAddressTaken = true;
267 break;
268 }
269
270 if (!isAddressTaken && AI->isStaticAlloca())
271 return false;
272 }
273
274 // If this load is a load from a GEP with a constant offset from an alloca,
275 // then we don't want to sink it. In its present form, it will be
276 // load [constant stack offset]. Sinking it will cause us to have to
277 // materialize the stack addresses in each predecessor in a register only to
278 // do a shared load from register in the successor.
279 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
280 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
281 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
282 return false;
283
284 return true;
285 }
286
FoldPHIArgLoadIntoPHI(PHINode & PN)287 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
288 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
289
290 // FIXME: This is overconservative; this transform is allowed in some cases
291 // for atomic operations.
292 if (FirstLI->isAtomic())
293 return 0;
294
295 // When processing loads, we need to propagate two bits of information to the
296 // sunk load: whether it is volatile, and what its alignment is. We currently
297 // don't sink loads when some have their alignment specified and some don't.
298 // visitLoadInst will propagate an alignment onto the load when TD is around,
299 // and if TD isn't around, we can't handle the mixed case.
300 bool isVolatile = FirstLI->isVolatile();
301 unsigned LoadAlignment = FirstLI->getAlignment();
302 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
303
304 // We can't sink the load if the loaded value could be modified between the
305 // load and the PHI.
306 if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
307 !isSafeAndProfitableToSinkLoad(FirstLI))
308 return 0;
309
310 // If the PHI is of volatile loads and the load block has multiple
311 // successors, sinking it would remove a load of the volatile value from
312 // the path through the other successor.
313 if (isVolatile &&
314 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
315 return 0;
316
317 // Check to see if all arguments are the same operation.
318 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
319 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
320 if (!LI || !LI->hasOneUse())
321 return 0;
322
323 // We can't sink the load if the loaded value could be modified between
324 // the load and the PHI.
325 if (LI->isVolatile() != isVolatile ||
326 LI->getParent() != PN.getIncomingBlock(i) ||
327 LI->getPointerAddressSpace() != LoadAddrSpace ||
328 !isSafeAndProfitableToSinkLoad(LI))
329 return 0;
330
331 // If some of the loads have an alignment specified but not all of them,
332 // we can't do the transformation.
333 if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
334 return 0;
335
336 LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
337
338 // If the PHI is of volatile loads and the load block has multiple
339 // successors, sinking it would remove a load of the volatile value from
340 // the path through the other successor.
341 if (isVolatile &&
342 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
343 return 0;
344 }
345
346 // Okay, they are all the same operation. Create a new PHI node of the
347 // correct type, and PHI together all of the LHS's of the instructions.
348 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
349 PN.getNumIncomingValues(),
350 PN.getName()+".in");
351
352 Value *InVal = FirstLI->getOperand(0);
353 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
354
355 // Add all operands to the new PHI.
356 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
357 Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
358 if (NewInVal != InVal)
359 InVal = 0;
360 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
361 }
362
363 Value *PhiVal;
364 if (InVal) {
365 // The new PHI unions all of the same values together. This is really
366 // common, so we handle it intelligently here for compile-time speed.
367 PhiVal = InVal;
368 delete NewPN;
369 } else {
370 InsertNewInstBefore(NewPN, PN);
371 PhiVal = NewPN;
372 }
373
374 // If this was a volatile load that we are merging, make sure to loop through
375 // and mark all the input loads as non-volatile. If we don't do this, we will
376 // insert a new volatile load and the old ones will not be deletable.
377 if (isVolatile)
378 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
379 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
380
381 LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
382 NewLI->setDebugLoc(FirstLI->getDebugLoc());
383 return NewLI;
384 }
385
386
387
388 /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
389 /// operator and they all are only used by the PHI, PHI together their
390 /// inputs, and do the operation once, to the result of the PHI.
FoldPHIArgOpIntoPHI(PHINode & PN)391 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
392 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
393
394 if (isa<GetElementPtrInst>(FirstInst))
395 return FoldPHIArgGEPIntoPHI(PN);
396 if (isa<LoadInst>(FirstInst))
397 return FoldPHIArgLoadIntoPHI(PN);
398
399 // Scan the instruction, looking for input operations that can be folded away.
400 // If all input operands to the phi are the same instruction (e.g. a cast from
401 // the same type or "+42") we can pull the operation through the PHI, reducing
402 // code size and simplifying code.
403 Constant *ConstantOp = 0;
404 Type *CastSrcTy = 0;
405 bool isNUW = false, isNSW = false, isExact = false;
406
407 if (isa<CastInst>(FirstInst)) {
408 CastSrcTy = FirstInst->getOperand(0)->getType();
409
410 // Be careful about transforming integer PHIs. We don't want to pessimize
411 // the code by turning an i32 into an i1293.
412 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
413 if (!ShouldChangeType(PN.getType(), CastSrcTy))
414 return 0;
415 }
416 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
417 // Can fold binop, compare or shift here if the RHS is a constant,
418 // otherwise call FoldPHIArgBinOpIntoPHI.
419 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
420 if (ConstantOp == 0)
421 return FoldPHIArgBinOpIntoPHI(PN);
422
423 if (OverflowingBinaryOperator *BO =
424 dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
425 isNUW = BO->hasNoUnsignedWrap();
426 isNSW = BO->hasNoSignedWrap();
427 } else if (PossiblyExactOperator *PEO =
428 dyn_cast<PossiblyExactOperator>(FirstInst))
429 isExact = PEO->isExact();
430 } else {
431 return 0; // Cannot fold this operation.
432 }
433
434 // Check to see if all arguments are the same operation.
435 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
436 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
437 if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
438 return 0;
439 if (CastSrcTy) {
440 if (I->getOperand(0)->getType() != CastSrcTy)
441 return 0; // Cast operation must match.
442 } else if (I->getOperand(1) != ConstantOp) {
443 return 0;
444 }
445
446 if (isNUW)
447 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
448 if (isNSW)
449 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
450 if (isExact)
451 isExact = cast<PossiblyExactOperator>(I)->isExact();
452 }
453
454 // Okay, they are all the same operation. Create a new PHI node of the
455 // correct type, and PHI together all of the LHS's of the instructions.
456 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
457 PN.getNumIncomingValues(),
458 PN.getName()+".in");
459
460 Value *InVal = FirstInst->getOperand(0);
461 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
462
463 // Add all operands to the new PHI.
464 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
465 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
466 if (NewInVal != InVal)
467 InVal = 0;
468 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
469 }
470
471 Value *PhiVal;
472 if (InVal) {
473 // The new PHI unions all of the same values together. This is really
474 // common, so we handle it intelligently here for compile-time speed.
475 PhiVal = InVal;
476 delete NewPN;
477 } else {
478 InsertNewInstBefore(NewPN, PN);
479 PhiVal = NewPN;
480 }
481
482 // Insert and return the new operation.
483 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
484 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
485 PN.getType());
486 NewCI->setDebugLoc(FirstInst->getDebugLoc());
487 return NewCI;
488 }
489
490 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
491 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
492 if (isNUW) BinOp->setHasNoUnsignedWrap();
493 if (isNSW) BinOp->setHasNoSignedWrap();
494 if (isExact) BinOp->setIsExact();
495 BinOp->setDebugLoc(FirstInst->getDebugLoc());
496 return BinOp;
497 }
498
499 CmpInst *CIOp = cast<CmpInst>(FirstInst);
500 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
501 PhiVal, ConstantOp);
502 NewCI->setDebugLoc(FirstInst->getDebugLoc());
503 return NewCI;
504 }
505
506 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
507 /// that is dead.
DeadPHICycle(PHINode * PN,SmallPtrSet<PHINode *,16> & PotentiallyDeadPHIs)508 static bool DeadPHICycle(PHINode *PN,
509 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
510 if (PN->use_empty()) return true;
511 if (!PN->hasOneUse()) return false;
512
513 // Remember this node, and if we find the cycle, return.
514 if (!PotentiallyDeadPHIs.insert(PN))
515 return true;
516
517 // Don't scan crazily complex things.
518 if (PotentiallyDeadPHIs.size() == 16)
519 return false;
520
521 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
522 return DeadPHICycle(PU, PotentiallyDeadPHIs);
523
524 return false;
525 }
526
527 /// PHIsEqualValue - Return true if this phi node is always equal to
528 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
529 /// z = some value; x = phi (y, z); y = phi (x, z)
PHIsEqualValue(PHINode * PN,Value * NonPhiInVal,SmallPtrSet<PHINode *,16> & ValueEqualPHIs)530 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
531 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
532 // See if we already saw this PHI node.
533 if (!ValueEqualPHIs.insert(PN))
534 return true;
535
536 // Don't scan crazily complex things.
537 if (ValueEqualPHIs.size() == 16)
538 return false;
539
540 // Scan the operands to see if they are either phi nodes or are equal to
541 // the value.
542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
543 Value *Op = PN->getIncomingValue(i);
544 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
545 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
546 return false;
547 } else if (Op != NonPhiInVal)
548 return false;
549 }
550
551 return true;
552 }
553
554
555 namespace {
556 struct PHIUsageRecord {
557 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
558 unsigned Shift; // The amount shifted.
559 Instruction *Inst; // The trunc instruction.
560
PHIUsageRecord__anon905420e20111::PHIUsageRecord561 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
562 : PHIId(pn), Shift(Sh), Inst(User) {}
563
operator <__anon905420e20111::PHIUsageRecord564 bool operator<(const PHIUsageRecord &RHS) const {
565 if (PHIId < RHS.PHIId) return true;
566 if (PHIId > RHS.PHIId) return false;
567 if (Shift < RHS.Shift) return true;
568 if (Shift > RHS.Shift) return false;
569 return Inst->getType()->getPrimitiveSizeInBits() <
570 RHS.Inst->getType()->getPrimitiveSizeInBits();
571 }
572 };
573
574 struct LoweredPHIRecord {
575 PHINode *PN; // The PHI that was lowered.
576 unsigned Shift; // The amount shifted.
577 unsigned Width; // The width extracted.
578
LoweredPHIRecord__anon905420e20111::LoweredPHIRecord579 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
580 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
581
582 // Ctor form used by DenseMap.
LoweredPHIRecord__anon905420e20111::LoweredPHIRecord583 LoweredPHIRecord(PHINode *pn, unsigned Sh)
584 : PN(pn), Shift(Sh), Width(0) {}
585 };
586 }
587
588 namespace llvm {
589 template<>
590 struct DenseMapInfo<LoweredPHIRecord> {
getEmptyKeyllvm::DenseMapInfo591 static inline LoweredPHIRecord getEmptyKey() {
592 return LoweredPHIRecord(0, 0);
593 }
getTombstoneKeyllvm::DenseMapInfo594 static inline LoweredPHIRecord getTombstoneKey() {
595 return LoweredPHIRecord(0, 1);
596 }
getHashValuellvm::DenseMapInfo597 static unsigned getHashValue(const LoweredPHIRecord &Val) {
598 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
599 (Val.Width>>3);
600 }
isEqualllvm::DenseMapInfo601 static bool isEqual(const LoweredPHIRecord &LHS,
602 const LoweredPHIRecord &RHS) {
603 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
604 LHS.Width == RHS.Width;
605 }
606 };
607 template <>
608 struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
609 }
610
611
612 /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
613 /// illegal type: see if it is only used by trunc or trunc(lshr) operations. If
614 /// so, we split the PHI into the various pieces being extracted. This sort of
615 /// thing is introduced when SROA promotes an aggregate to large integer values.
616 ///
617 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
618 /// inttoptr. We should produce new PHIs in the right type.
619 ///
SliceUpIllegalIntegerPHI(PHINode & FirstPhi)620 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
621 // PHIUsers - Keep track of all of the truncated values extracted from a set
622 // of PHIs, along with their offset. These are the things we want to rewrite.
623 SmallVector<PHIUsageRecord, 16> PHIUsers;
624
625 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
626 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
627 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
628 // check the uses of (to ensure they are all extracts).
629 SmallVector<PHINode*, 8> PHIsToSlice;
630 SmallPtrSet<PHINode*, 8> PHIsInspected;
631
632 PHIsToSlice.push_back(&FirstPhi);
633 PHIsInspected.insert(&FirstPhi);
634
635 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
636 PHINode *PN = PHIsToSlice[PHIId];
637
638 // Scan the input list of the PHI. If any input is an invoke, and if the
639 // input is defined in the predecessor, then we won't be split the critical
640 // edge which is required to insert a truncate. Because of this, we have to
641 // bail out.
642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
643 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
644 if (II == 0) continue;
645 if (II->getParent() != PN->getIncomingBlock(i))
646 continue;
647
648 // If we have a phi, and if it's directly in the predecessor, then we have
649 // a critical edge where we need to put the truncate. Since we can't
650 // split the edge in instcombine, we have to bail out.
651 return 0;
652 }
653
654
655 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
656 UI != E; ++UI) {
657 Instruction *User = cast<Instruction>(*UI);
658
659 // If the user is a PHI, inspect its uses recursively.
660 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
661 if (PHIsInspected.insert(UserPN))
662 PHIsToSlice.push_back(UserPN);
663 continue;
664 }
665
666 // Truncates are always ok.
667 if (isa<TruncInst>(User)) {
668 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
669 continue;
670 }
671
672 // Otherwise it must be a lshr which can only be used by one trunc.
673 if (User->getOpcode() != Instruction::LShr ||
674 !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
675 !isa<ConstantInt>(User->getOperand(1)))
676 return 0;
677
678 unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
679 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
680 }
681 }
682
683 // If we have no users, they must be all self uses, just nuke the PHI.
684 if (PHIUsers.empty())
685 return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
686
687 // If this phi node is transformable, create new PHIs for all the pieces
688 // extracted out of it. First, sort the users by their offset and size.
689 array_pod_sort(PHIUsers.begin(), PHIUsers.end());
690
691 DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
692 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
693 errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
694 );
695
696 // PredValues - This is a temporary used when rewriting PHI nodes. It is
697 // hoisted out here to avoid construction/destruction thrashing.
698 DenseMap<BasicBlock*, Value*> PredValues;
699
700 // ExtractedVals - Each new PHI we introduce is saved here so we don't
701 // introduce redundant PHIs.
702 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
703
704 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
705 unsigned PHIId = PHIUsers[UserI].PHIId;
706 PHINode *PN = PHIsToSlice[PHIId];
707 unsigned Offset = PHIUsers[UserI].Shift;
708 Type *Ty = PHIUsers[UserI].Inst->getType();
709
710 PHINode *EltPHI;
711
712 // If we've already lowered a user like this, reuse the previously lowered
713 // value.
714 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
715
716 // Otherwise, Create the new PHI node for this user.
717 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
718 PN->getName()+".off"+Twine(Offset), PN);
719 assert(EltPHI->getType() != PN->getType() &&
720 "Truncate didn't shrink phi?");
721
722 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
723 BasicBlock *Pred = PN->getIncomingBlock(i);
724 Value *&PredVal = PredValues[Pred];
725
726 // If we already have a value for this predecessor, reuse it.
727 if (PredVal) {
728 EltPHI->addIncoming(PredVal, Pred);
729 continue;
730 }
731
732 // Handle the PHI self-reuse case.
733 Value *InVal = PN->getIncomingValue(i);
734 if (InVal == PN) {
735 PredVal = EltPHI;
736 EltPHI->addIncoming(PredVal, Pred);
737 continue;
738 }
739
740 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
741 // If the incoming value was a PHI, and if it was one of the PHIs we
742 // already rewrote it, just use the lowered value.
743 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
744 PredVal = Res;
745 EltPHI->addIncoming(PredVal, Pred);
746 continue;
747 }
748 }
749
750 // Otherwise, do an extract in the predecessor.
751 Builder->SetInsertPoint(Pred, Pred->getTerminator());
752 Value *Res = InVal;
753 if (Offset)
754 Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
755 Offset), "extract");
756 Res = Builder->CreateTrunc(Res, Ty, "extract.t");
757 PredVal = Res;
758 EltPHI->addIncoming(Res, Pred);
759
760 // If the incoming value was a PHI, and if it was one of the PHIs we are
761 // rewriting, we will ultimately delete the code we inserted. This
762 // means we need to revisit that PHI to make sure we extract out the
763 // needed piece.
764 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
765 if (PHIsInspected.count(OldInVal)) {
766 unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
767 OldInVal)-PHIsToSlice.begin();
768 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
769 cast<Instruction>(Res)));
770 ++UserE;
771 }
772 }
773 PredValues.clear();
774
775 DEBUG(errs() << " Made element PHI for offset " << Offset << ": "
776 << *EltPHI << '\n');
777 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
778 }
779
780 // Replace the use of this piece with the PHI node.
781 ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
782 }
783
784 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
785 // with undefs.
786 Value *Undef = UndefValue::get(FirstPhi.getType());
787 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
788 ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
789 return ReplaceInstUsesWith(FirstPhi, Undef);
790 }
791
792 // PHINode simplification
793 //
visitPHINode(PHINode & PN)794 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
795 if (Value *V = SimplifyInstruction(&PN, TD))
796 return ReplaceInstUsesWith(PN, V);
797
798 // If all PHI operands are the same operation, pull them through the PHI,
799 // reducing code size.
800 if (isa<Instruction>(PN.getIncomingValue(0)) &&
801 isa<Instruction>(PN.getIncomingValue(1)) &&
802 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
803 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
804 // FIXME: The hasOneUse check will fail for PHIs that use the value more
805 // than themselves more than once.
806 PN.getIncomingValue(0)->hasOneUse())
807 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
808 return Result;
809
810 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
811 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
812 // PHI)... break the cycle.
813 if (PN.hasOneUse()) {
814 Instruction *PHIUser = cast<Instruction>(PN.use_back());
815 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
816 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
817 PotentiallyDeadPHIs.insert(&PN);
818 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
819 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
820 }
821
822 // If this phi has a single use, and if that use just computes a value for
823 // the next iteration of a loop, delete the phi. This occurs with unused
824 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
825 // common case here is good because the only other things that catch this
826 // are induction variable analysis (sometimes) and ADCE, which is only run
827 // late.
828 if (PHIUser->hasOneUse() &&
829 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
830 PHIUser->use_back() == &PN) {
831 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
832 }
833 }
834
835 // We sometimes end up with phi cycles that non-obviously end up being the
836 // same value, for example:
837 // z = some value; x = phi (y, z); y = phi (x, z)
838 // where the phi nodes don't necessarily need to be in the same block. Do a
839 // quick check to see if the PHI node only contains a single non-phi value, if
840 // so, scan to see if the phi cycle is actually equal to that value.
841 {
842 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
843 // Scan for the first non-phi operand.
844 while (InValNo != NumIncomingVals &&
845 isa<PHINode>(PN.getIncomingValue(InValNo)))
846 ++InValNo;
847
848 if (InValNo != NumIncomingVals) {
849 Value *NonPhiInVal = PN.getIncomingValue(InValNo);
850
851 // Scan the rest of the operands to see if there are any conflicts, if so
852 // there is no need to recursively scan other phis.
853 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
854 Value *OpVal = PN.getIncomingValue(InValNo);
855 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
856 break;
857 }
858
859 // If we scanned over all operands, then we have one unique value plus
860 // phi values. Scan PHI nodes to see if they all merge in each other or
861 // the value.
862 if (InValNo == NumIncomingVals) {
863 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
864 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
865 return ReplaceInstUsesWith(PN, NonPhiInVal);
866 }
867 }
868 }
869
870 // If there are multiple PHIs, sort their operands so that they all list
871 // the blocks in the same order. This will help identical PHIs be eliminated
872 // by other passes. Other passes shouldn't depend on this for correctness
873 // however.
874 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
875 if (&PN != FirstPN)
876 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
877 BasicBlock *BBA = PN.getIncomingBlock(i);
878 BasicBlock *BBB = FirstPN->getIncomingBlock(i);
879 if (BBA != BBB) {
880 Value *VA = PN.getIncomingValue(i);
881 unsigned j = PN.getBasicBlockIndex(BBB);
882 Value *VB = PN.getIncomingValue(j);
883 PN.setIncomingBlock(i, BBB);
884 PN.setIncomingValue(i, VB);
885 PN.setIncomingBlock(j, BBA);
886 PN.setIncomingValue(j, VA);
887 // NOTE: Instcombine normally would want us to "return &PN" if we
888 // modified any of the operands of an instruction. However, since we
889 // aren't adding or removing uses (just rearranging them) we don't do
890 // this in this case.
891 }
892 }
893
894 // If this is an integer PHI and we know that it has an illegal type, see if
895 // it is only used by trunc or trunc(lshr) operations. If so, we split the
896 // PHI into the various pieces being extracted. This sort of thing is
897 // introduced when SROA promotes an aggregate to a single large integer type.
898 if (PN.getType()->isIntegerTy() && TD &&
899 !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
900 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
901 return Res;
902
903 return 0;
904 }
905