1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
13 #include "llvm/TableGen/Record.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringMap.h"
17 #include <utility>
18 using namespace llvm;
19 
20 
21 /// getRegisterValueType - Look up and return the ValueType of the specified
22 /// register. If the register is a member of multiple register classes which
23 /// have different associated types, return MVT::Other.
getRegisterValueType(Record * R,const CodeGenTarget & T)24 static MVT::SimpleValueType getRegisterValueType(Record *R,
25                                                  const CodeGenTarget &T) {
26   bool FoundRC = false;
27   MVT::SimpleValueType VT = MVT::Other;
28   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
29   ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();
30 
31   for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
32     const CodeGenRegisterClass &RC = *RCs[rc];
33     if (!RC.contains(Reg))
34       continue;
35 
36     if (!FoundRC) {
37       FoundRC = true;
38       VT = RC.getValueTypeNum(0);
39       continue;
40     }
41 
42     // If this occurs in multiple register classes, they all have to agree.
43     assert(VT == RC.getValueTypeNum(0));
44   }
45   return VT;
46 }
47 
48 
49 namespace {
50   class MatcherGen {
51     const PatternToMatch &Pattern;
52     const CodeGenDAGPatterns &CGP;
53 
54     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
55     /// out with all of the types removed.  This allows us to insert type checks
56     /// as we scan the tree.
57     TreePatternNode *PatWithNoTypes;
58 
59     /// VariableMap - A map from variable names ('$dst') to the recorded operand
60     /// number that they were captured as.  These are biased by 1 to make
61     /// insertion easier.
62     StringMap<unsigned> VariableMap;
63 
64     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
65     /// the RecordedNodes array, this keeps track of which slot will be next to
66     /// record into.
67     unsigned NextRecordedOperandNo;
68 
69     /// MatchedChainNodes - This maintains the position in the recorded nodes
70     /// array of all of the recorded input nodes that have chains.
71     SmallVector<unsigned, 2> MatchedChainNodes;
72 
73     /// MatchedGlueResultNodes - This maintains the position in the recorded
74     /// nodes array of all of the recorded input nodes that have glue results.
75     SmallVector<unsigned, 2> MatchedGlueResultNodes;
76 
77     /// MatchedComplexPatterns - This maintains a list of all of the
78     /// ComplexPatterns that we need to check.  The patterns are known to have
79     /// names which were recorded.  The second element of each pair is the first
80     /// slot number that the OPC_CheckComplexPat opcode drops the matched
81     /// results into.
82     SmallVector<std::pair<const TreePatternNode*,
83                           unsigned>, 2> MatchedComplexPatterns;
84 
85     /// PhysRegInputs - List list has an entry for each explicitly specified
86     /// physreg input to the pattern.  The first elt is the Register node, the
87     /// second is the recorded slot number the input pattern match saved it in.
88     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
89 
90     /// Matcher - This is the top level of the generated matcher, the result.
91     Matcher *TheMatcher;
92 
93     /// CurPredicate - As we emit matcher nodes, this points to the latest check
94     /// which should have future checks stuck into its Next position.
95     Matcher *CurPredicate;
96   public:
97     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
98 
~MatcherGen()99     ~MatcherGen() {
100       delete PatWithNoTypes;
101     }
102 
103     bool EmitMatcherCode(unsigned Variant);
104     void EmitResultCode();
105 
GetMatcher() const106     Matcher *GetMatcher() const { return TheMatcher; }
107   private:
108     void AddMatcher(Matcher *NewNode);
109     void InferPossibleTypes();
110 
111     // Matcher Generation.
112     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
113     void EmitLeafMatchCode(const TreePatternNode *N);
114     void EmitOperatorMatchCode(const TreePatternNode *N,
115                                TreePatternNode *NodeNoTypes);
116 
117     // Result Code Generation.
getNamedArgumentSlot(StringRef Name)118     unsigned getNamedArgumentSlot(StringRef Name) {
119       unsigned VarMapEntry = VariableMap[Name];
120       assert(VarMapEntry != 0 &&
121              "Variable referenced but not defined and not caught earlier!");
122       return VarMapEntry-1;
123     }
124 
125     /// GetInstPatternNode - Get the pattern for an instruction.
126     const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
127                                               const TreePatternNode *N);
128 
129     void EmitResultOperand(const TreePatternNode *N,
130                            SmallVectorImpl<unsigned> &ResultOps);
131     void EmitResultOfNamedOperand(const TreePatternNode *N,
132                                   SmallVectorImpl<unsigned> &ResultOps);
133     void EmitResultLeafAsOperand(const TreePatternNode *N,
134                                  SmallVectorImpl<unsigned> &ResultOps);
135     void EmitResultInstructionAsOperand(const TreePatternNode *N,
136                                         SmallVectorImpl<unsigned> &ResultOps);
137     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
138                                         SmallVectorImpl<unsigned> &ResultOps);
139     };
140 
141 } // end anon namespace.
142 
MatcherGen(const PatternToMatch & pattern,const CodeGenDAGPatterns & cgp)143 MatcherGen::MatcherGen(const PatternToMatch &pattern,
144                        const CodeGenDAGPatterns &cgp)
145 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
146   TheMatcher(0), CurPredicate(0) {
147   // We need to produce the matcher tree for the patterns source pattern.  To do
148   // this we need to match the structure as well as the types.  To do the type
149   // matching, we want to figure out the fewest number of type checks we need to
150   // emit.  For example, if there is only one integer type supported by a
151   // target, there should be no type comparisons at all for integer patterns!
152   //
153   // To figure out the fewest number of type checks needed, clone the pattern,
154   // remove the types, then perform type inference on the pattern as a whole.
155   // If there are unresolved types, emit an explicit check for those types,
156   // apply the type to the tree, then rerun type inference.  Iterate until all
157   // types are resolved.
158   //
159   PatWithNoTypes = Pattern.getSrcPattern()->clone();
160   PatWithNoTypes->RemoveAllTypes();
161 
162   // If there are types that are manifestly known, infer them.
163   InferPossibleTypes();
164 }
165 
166 /// InferPossibleTypes - As we emit the pattern, we end up generating type
167 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
168 /// want to propagate implied types as far throughout the tree as possible so
169 /// that we avoid doing redundant type checks.  This does the type propagation.
InferPossibleTypes()170 void MatcherGen::InferPossibleTypes() {
171   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
172   // diagnostics, which we know are impossible at this point.
173   TreePattern &TP = *CGP.pf_begin()->second;
174 
175   try {
176     bool MadeChange = true;
177     while (MadeChange)
178       MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
179                                                 true/*Ignore reg constraints*/);
180   } catch (...) {
181     errs() << "Type constraint application shouldn't fail!";
182     abort();
183   }
184 }
185 
186 
187 /// AddMatcher - Add a matcher node to the current graph we're building.
AddMatcher(Matcher * NewNode)188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189   if (CurPredicate != 0)
190     CurPredicate->setNext(NewNode);
191   else
192     TheMatcher = NewNode;
193   CurPredicate = NewNode;
194 }
195 
196 
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
200 
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
EmitLeafMatchCode(const TreePatternNode * N)202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
203   assert(N->isLeaf() && "Not a leaf?");
204 
205   // Direct match against an integer constant.
206   if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
207     // If this is the root of the dag we're matching, we emit a redundant opcode
208     // check to ensure that this gets folded into the normal top-level
209     // OpcodeSwitch.
210     if (N == Pattern.getSrcPattern()) {
211       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
212       AddMatcher(new CheckOpcodeMatcher(NI));
213     }
214 
215     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
216   }
217 
218   DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
219   if (DI == 0) {
220     errs() << "Unknown leaf kind: " << *DI << "\n";
221     abort();
222   }
223 
224   Record *LeafRec = DI->getDef();
225   if (// Handle register references.  Nothing to do here, they always match.
226       LeafRec->isSubClassOf("RegisterClass") ||
227       LeafRec->isSubClassOf("RegisterOperand") ||
228       LeafRec->isSubClassOf("PointerLikeRegClass") ||
229       LeafRec->isSubClassOf("SubRegIndex") ||
230       // Place holder for SRCVALUE nodes. Nothing to do here.
231       LeafRec->getName() == "srcvalue")
232     return;
233 
234   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
235   // record the register
236   if (LeafRec->isSubClassOf("Register")) {
237     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
238                                  NextRecordedOperandNo));
239     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
240     return;
241   }
242 
243   if (LeafRec->isSubClassOf("ValueType"))
244     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
245 
246   if (LeafRec->isSubClassOf("CondCode"))
247     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
248 
249   if (LeafRec->isSubClassOf("ComplexPattern")) {
250     // We can't model ComplexPattern uses that don't have their name taken yet.
251     // The OPC_CheckComplexPattern operation implicitly records the results.
252     if (N->getName().empty()) {
253       errs() << "We expect complex pattern uses to have names: " << *N << "\n";
254       exit(1);
255     }
256 
257     // Remember this ComplexPattern so that we can emit it after all the other
258     // structural matches are done.
259     MatchedComplexPatterns.push_back(std::make_pair(N, 0));
260     return;
261   }
262 
263   errs() << "Unknown leaf kind: " << *N << "\n";
264   abort();
265 }
266 
EmitOperatorMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)267 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
268                                        TreePatternNode *NodeNoTypes) {
269   assert(!N->isLeaf() && "Not an operator?");
270   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
271 
272   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
273   // a constant without a predicate fn that has more that one bit set, handle
274   // this as a special case.  This is usually for targets that have special
275   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
276   // handling stuff).  Using these instructions is often far more efficient
277   // than materializing the constant.  Unfortunately, both the instcombiner
278   // and the dag combiner can often infer that bits are dead, and thus drop
279   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
280   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
281   // to handle this.
282   if ((N->getOperator()->getName() == "and" ||
283        N->getOperator()->getName() == "or") &&
284       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
285       N->getPredicateFns().empty()) {
286     if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
287       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
288         // If this is at the root of the pattern, we emit a redundant
289         // CheckOpcode so that the following checks get factored properly under
290         // a single opcode check.
291         if (N == Pattern.getSrcPattern())
292           AddMatcher(new CheckOpcodeMatcher(CInfo));
293 
294         // Emit the CheckAndImm/CheckOrImm node.
295         if (N->getOperator()->getName() == "and")
296           AddMatcher(new CheckAndImmMatcher(II->getValue()));
297         else
298           AddMatcher(new CheckOrImmMatcher(II->getValue()));
299 
300         // Match the LHS of the AND as appropriate.
301         AddMatcher(new MoveChildMatcher(0));
302         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
303         AddMatcher(new MoveParentMatcher());
304         return;
305       }
306     }
307   }
308 
309   // Check that the current opcode lines up.
310   AddMatcher(new CheckOpcodeMatcher(CInfo));
311 
312   // If this node has memory references (i.e. is a load or store), tell the
313   // interpreter to capture them in the memref array.
314   if (N->NodeHasProperty(SDNPMemOperand, CGP))
315     AddMatcher(new RecordMemRefMatcher());
316 
317   // If this node has a chain, then the chain is operand #0 is the SDNode, and
318   // the child numbers of the node are all offset by one.
319   unsigned OpNo = 0;
320   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
321     // Record the node and remember it in our chained nodes list.
322     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
323                                          "' chained node",
324                                  NextRecordedOperandNo));
325     // Remember all of the input chains our pattern will match.
326     MatchedChainNodes.push_back(NextRecordedOperandNo++);
327 
328     // Don't look at the input chain when matching the tree pattern to the
329     // SDNode.
330     OpNo = 1;
331 
332     // If this node is not the root and the subtree underneath it produces a
333     // chain, then the result of matching the node is also produce a chain.
334     // Beyond that, this means that we're also folding (at least) the root node
335     // into the node that produce the chain (for example, matching
336     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
337     // problematic, if the 'reg' node also uses the load (say, its chain).
338     // Graphically:
339     //
340     //         [LD]
341     //         ^  ^
342     //         |  \                              DAG's like cheese.
343     //        /    |
344     //       /    [YY]
345     //       |     ^
346     //      [XX]--/
347     //
348     // It would be invalid to fold XX and LD.  In this case, folding the two
349     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
350     // To prevent this, we emit a dynamic check for legality before allowing
351     // this to be folded.
352     //
353     const TreePatternNode *Root = Pattern.getSrcPattern();
354     if (N != Root) {                             // Not the root of the pattern.
355       // If there is a node between the root and this node, then we definitely
356       // need to emit the check.
357       bool NeedCheck = !Root->hasChild(N);
358 
359       // If it *is* an immediate child of the root, we can still need a check if
360       // the root SDNode has multiple inputs.  For us, this means that it is an
361       // intrinsic, has multiple operands, or has other inputs like chain or
362       // glue).
363       if (!NeedCheck) {
364         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
365         NeedCheck =
366           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
367           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
368           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
369           PInfo.getNumOperands() > 1 ||
370           PInfo.hasProperty(SDNPHasChain) ||
371           PInfo.hasProperty(SDNPInGlue) ||
372           PInfo.hasProperty(SDNPOptInGlue);
373       }
374 
375       if (NeedCheck)
376         AddMatcher(new CheckFoldableChainNodeMatcher());
377     }
378   }
379 
380   // If this node has an output glue and isn't the root, remember it.
381   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
382       N != Pattern.getSrcPattern()) {
383     // TODO: This redundantly records nodes with both glues and chains.
384 
385     // Record the node and remember it in our chained nodes list.
386     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
387                                          "' glue output node",
388                                  NextRecordedOperandNo));
389     // Remember all of the nodes with output glue our pattern will match.
390     MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
391   }
392 
393   // If this node is known to have an input glue or if it *might* have an input
394   // glue, capture it as the glue input of the pattern.
395   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
396       N->NodeHasProperty(SDNPInGlue, CGP))
397     AddMatcher(new CaptureGlueInputMatcher());
398 
399   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
400     // Get the code suitable for matching this child.  Move to the child, check
401     // it then move back to the parent.
402     AddMatcher(new MoveChildMatcher(OpNo));
403     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
404     AddMatcher(new MoveParentMatcher());
405   }
406 }
407 
408 
EmitMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)409 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
410                                TreePatternNode *NodeNoTypes) {
411   // If N and NodeNoTypes don't agree on a type, then this is a case where we
412   // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
413   // reinfer any correlated types.
414   SmallVector<unsigned, 2> ResultsToTypeCheck;
415 
416   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
417     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
418     NodeNoTypes->setType(i, N->getExtType(i));
419     InferPossibleTypes();
420     ResultsToTypeCheck.push_back(i);
421   }
422 
423   // If this node has a name associated with it, capture it in VariableMap. If
424   // we already saw this in the pattern, emit code to verify dagness.
425   if (!N->getName().empty()) {
426     unsigned &VarMapEntry = VariableMap[N->getName()];
427     if (VarMapEntry == 0) {
428       // If it is a named node, we must emit a 'Record' opcode.
429       AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
430       VarMapEntry = ++NextRecordedOperandNo;
431     } else {
432       // If we get here, this is a second reference to a specific name.  Since
433       // we already have checked that the first reference is valid, we don't
434       // have to recursively match it, just check that it's the same as the
435       // previously named thing.
436       AddMatcher(new CheckSameMatcher(VarMapEntry-1));
437       return;
438     }
439   }
440 
441   if (N->isLeaf())
442     EmitLeafMatchCode(N);
443   else
444     EmitOperatorMatchCode(N, NodeNoTypes);
445 
446   // If there are node predicates for this node, generate their checks.
447   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
448     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
449 
450   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
451     AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
452                                     ResultsToTypeCheck[i]));
453 }
454 
455 /// EmitMatcherCode - Generate the code that matches the predicate of this
456 /// pattern for the specified Variant.  If the variant is invalid this returns
457 /// true and does not generate code, if it is valid, it returns false.
EmitMatcherCode(unsigned Variant)458 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
459   // If the root of the pattern is a ComplexPattern and if it is specified to
460   // match some number of root opcodes, these are considered to be our variants.
461   // Depending on which variant we're generating code for, emit the root opcode
462   // check.
463   if (const ComplexPattern *CP =
464                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
465     const std::vector<Record*> &OpNodes = CP->getRootNodes();
466     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
467     if (Variant >= OpNodes.size()) return true;
468 
469     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
470   } else {
471     if (Variant != 0) return true;
472   }
473 
474   // Emit the matcher for the pattern structure and types.
475   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
476 
477   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
478   // feature is around, do the check).
479   if (!Pattern.getPredicateCheck().empty())
480     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
481 
482   // Now that we've completed the structural type match, emit any ComplexPattern
483   // checks (e.g. addrmode matches).  We emit this after the structural match
484   // because they are generally more expensive to evaluate and more difficult to
485   // factor.
486   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
487     const TreePatternNode *N = MatchedComplexPatterns[i].first;
488 
489     // Remember where the results of this match get stuck.
490     MatchedComplexPatterns[i].second = NextRecordedOperandNo;
491 
492     // Get the slot we recorded the value in from the name on the node.
493     unsigned RecNodeEntry = VariableMap[N->getName()];
494     assert(!N->getName().empty() && RecNodeEntry &&
495            "Complex pattern should have a name and slot");
496     --RecNodeEntry;  // Entries in VariableMap are biased.
497 
498     const ComplexPattern &CP =
499       CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
500 
501     // Emit a CheckComplexPat operation, which does the match (aborting if it
502     // fails) and pushes the matched operands onto the recorded nodes list.
503     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
504                                           N->getName(), NextRecordedOperandNo));
505 
506     // Record the right number of operands.
507     NextRecordedOperandNo += CP.getNumOperands();
508     if (CP.hasProperty(SDNPHasChain)) {
509       // If the complex pattern has a chain, then we need to keep track of the
510       // fact that we just recorded a chain input.  The chain input will be
511       // matched as the last operand of the predicate if it was successful.
512       ++NextRecordedOperandNo; // Chained node operand.
513 
514       // It is the last operand recorded.
515       assert(NextRecordedOperandNo > 1 &&
516              "Should have recorded input/result chains at least!");
517       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
518     }
519 
520     // TODO: Complex patterns can't have output glues, if they did, we'd want
521     // to record them.
522   }
523 
524   return false;
525 }
526 
527 
528 //===----------------------------------------------------------------------===//
529 // Node Result Generation
530 //===----------------------------------------------------------------------===//
531 
EmitResultOfNamedOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)532 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
533                                           SmallVectorImpl<unsigned> &ResultOps){
534   assert(!N->getName().empty() && "Operand not named!");
535 
536   // A reference to a complex pattern gets all of the results of the complex
537   // pattern's match.
538   if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
539     unsigned SlotNo = 0;
540     for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
541       if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
542         SlotNo = MatchedComplexPatterns[i].second;
543         break;
544       }
545     assert(SlotNo != 0 && "Didn't get a slot number assigned?");
546 
547     // The first slot entry is the node itself, the subsequent entries are the
548     // matched values.
549     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
550       ResultOps.push_back(SlotNo+i);
551     return;
552   }
553 
554   unsigned SlotNo = getNamedArgumentSlot(N->getName());
555 
556   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
557   // version of the immediate so that it doesn't get selected due to some other
558   // node use.
559   if (!N->isLeaf()) {
560     StringRef OperatorName = N->getOperator()->getName();
561     if (OperatorName == "imm" || OperatorName == "fpimm") {
562       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
563       ResultOps.push_back(NextRecordedOperandNo++);
564       return;
565     }
566   }
567 
568   ResultOps.push_back(SlotNo);
569 }
570 
EmitResultLeafAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)571 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
572                                          SmallVectorImpl<unsigned> &ResultOps) {
573   assert(N->isLeaf() && "Must be a leaf");
574 
575   if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
576     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
577     ResultOps.push_back(NextRecordedOperandNo++);
578     return;
579   }
580 
581   // If this is an explicit register reference, handle it.
582   if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
583     Record *Def = DI->getDef();
584     if (Def->isSubClassOf("Register")) {
585       const CodeGenRegister *Reg =
586         CGP.getTargetInfo().getRegBank().getReg(Def);
587       AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
588       ResultOps.push_back(NextRecordedOperandNo++);
589       return;
590     }
591 
592     if (Def->getName() == "zero_reg") {
593       AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
594       ResultOps.push_back(NextRecordedOperandNo++);
595       return;
596     }
597 
598     // Handle a reference to a register class. This is used
599     // in COPY_TO_SUBREG instructions.
600     if (Def->isSubClassOf("RegisterOperand"))
601       Def = Def->getValueAsDef("RegClass");
602     if (Def->isSubClassOf("RegisterClass")) {
603       std::string Value = getQualifiedName(Def) + "RegClassID";
604       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
605       ResultOps.push_back(NextRecordedOperandNo++);
606       return;
607     }
608 
609     // Handle a subregister index. This is used for INSERT_SUBREG etc.
610     if (Def->isSubClassOf("SubRegIndex")) {
611       std::string Value = getQualifiedName(Def);
612       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
613       ResultOps.push_back(NextRecordedOperandNo++);
614       return;
615     }
616   }
617 
618   errs() << "unhandled leaf node: \n";
619   N->dump();
620 }
621 
622 /// GetInstPatternNode - Get the pattern for an instruction.
623 ///
624 const TreePatternNode *MatcherGen::
GetInstPatternNode(const DAGInstruction & Inst,const TreePatternNode * N)625 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
626   const TreePattern *InstPat = Inst.getPattern();
627 
628   // FIXME2?: Assume actual pattern comes before "implicit".
629   TreePatternNode *InstPatNode;
630   if (InstPat)
631     InstPatNode = InstPat->getTree(0);
632   else if (/*isRoot*/ N == Pattern.getDstPattern())
633     InstPatNode = Pattern.getSrcPattern();
634   else
635     return 0;
636 
637   if (InstPatNode && !InstPatNode->isLeaf() &&
638       InstPatNode->getOperator()->getName() == "set")
639     InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
640 
641   return InstPatNode;
642 }
643 
644 static bool
mayInstNodeLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)645 mayInstNodeLoadOrStore(const TreePatternNode *N,
646                        const CodeGenDAGPatterns &CGP) {
647   Record *Op = N->getOperator();
648   const CodeGenTarget &CGT = CGP.getTargetInfo();
649   CodeGenInstruction &II = CGT.getInstruction(Op);
650   return II.mayLoad || II.mayStore;
651 }
652 
653 static unsigned
numNodesThatMayLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)654 numNodesThatMayLoadOrStore(const TreePatternNode *N,
655                            const CodeGenDAGPatterns &CGP) {
656   if (N->isLeaf())
657     return 0;
658 
659   Record *OpRec = N->getOperator();
660   if (!OpRec->isSubClassOf("Instruction"))
661     return 0;
662 
663   unsigned Count = 0;
664   if (mayInstNodeLoadOrStore(N, CGP))
665     ++Count;
666 
667   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
668     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
669 
670   return Count;
671 }
672 
673 void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & OutputOps)674 EmitResultInstructionAsOperand(const TreePatternNode *N,
675                                SmallVectorImpl<unsigned> &OutputOps) {
676   Record *Op = N->getOperator();
677   const CodeGenTarget &CGT = CGP.getTargetInfo();
678   CodeGenInstruction &II = CGT.getInstruction(Op);
679   const DAGInstruction &Inst = CGP.getInstruction(Op);
680 
681   // If we can, get the pattern for the instruction we're generating.  We derive
682   // a variety of information from this pattern, such as whether it has a chain.
683   //
684   // FIXME2: This is extremely dubious for several reasons, not the least of
685   // which it gives special status to instructions with patterns that Pat<>
686   // nodes can't duplicate.
687   const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
688 
689   // NodeHasChain - Whether the instruction node we're creating takes chains.
690   bool NodeHasChain = InstPatNode &&
691                       InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
692 
693   bool isRoot = N == Pattern.getDstPattern();
694 
695   // TreeHasOutGlue - True if this tree has glue.
696   bool TreeHasInGlue = false, TreeHasOutGlue = false;
697   if (isRoot) {
698     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
699     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
700                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
701 
702     // FIXME2: this is checking the entire pattern, not just the node in
703     // question, doing this just for the root seems like a total hack.
704     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
705   }
706 
707   // NumResults - This is the number of results produced by the instruction in
708   // the "outs" list.
709   unsigned NumResults = Inst.getNumResults();
710 
711   // Loop over all of the operands of the instruction pattern, emitting code
712   // to fill them all in.  The node 'N' usually has number children equal to
713   // the number of input operands of the instruction.  However, in cases
714   // where there are predicate operands for an instruction, we need to fill
715   // in the 'execute always' values.  Match up the node operands to the
716   // instruction operands to do this.
717   SmallVector<unsigned, 8> InstOps;
718   for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
719        InstOpNo != e; ++InstOpNo) {
720 
721     // Determine what to emit for this operand.
722     Record *OperandNode = II.Operands[InstOpNo].Rec;
723     if ((OperandNode->isSubClassOf("PredicateOperand") ||
724          OperandNode->isSubClassOf("OptionalDefOperand")) &&
725         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
726       // This is a predicate or optional def operand; emit the
727       // 'default ops' operands.
728       const DAGDefaultOperand &DefaultOp
729         = CGP.getDefaultOperand(OperandNode);
730       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
731         EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
732       continue;
733     }
734 
735     const TreePatternNode *Child = N->getChild(ChildNo);
736 
737     // Otherwise this is a normal operand or a predicate operand without
738     // 'execute always'; emit it.
739     unsigned BeforeAddingNumOps = InstOps.size();
740     EmitResultOperand(Child, InstOps);
741     assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
742 
743     // If the operand is an instruction and it produced multiple results, just
744     // take the first one.
745     if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
746       InstOps.resize(BeforeAddingNumOps+1);
747 
748     ++ChildNo;
749   }
750 
751   // If this node has input glue or explicitly specified input physregs, we
752   // need to add chained and glued copyfromreg nodes and materialize the glue
753   // input.
754   if (isRoot && !PhysRegInputs.empty()) {
755     // Emit all of the CopyToReg nodes for the input physical registers.  These
756     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
757     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
758       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
759                                           PhysRegInputs[i].first));
760     // Even if the node has no other glue inputs, the resultant node must be
761     // glued to the CopyFromReg nodes we just generated.
762     TreeHasInGlue = true;
763   }
764 
765   // Result order: node results, chain, glue
766 
767   // Determine the result types.
768   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
769   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
770     ResultVTs.push_back(N->getType(i));
771 
772   // If this is the root instruction of a pattern that has physical registers in
773   // its result pattern, add output VTs for them.  For example, X86 has:
774   //   (set AL, (mul ...))
775   // This also handles implicit results like:
776   //   (implicit EFLAGS)
777   if (isRoot && !Pattern.getDstRegs().empty()) {
778     // If the root came from an implicit def in the instruction handling stuff,
779     // don't re-add it.
780     Record *HandledReg = 0;
781     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
782       HandledReg = II.ImplicitDefs[0];
783 
784     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
785       Record *Reg = Pattern.getDstRegs()[i];
786       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
787       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
788     }
789   }
790 
791   // If this is the root of the pattern and the pattern we're matching includes
792   // a node that is variadic, mark the generated node as variadic so that it
793   // gets the excess operands from the input DAG.
794   int NumFixedArityOperands = -1;
795   if (isRoot &&
796       (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
797     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
798 
799   // If this is the root node and multiple matched nodes in the input pattern
800   // have MemRefs in them, have the interpreter collect them and plop them onto
801   // this node. If there is just one node with MemRefs, leave them on that node
802   // even if it is not the root.
803   //
804   // FIXME3: This is actively incorrect for result patterns with multiple
805   // memory-referencing instructions.
806   bool PatternHasMemOperands =
807     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
808 
809   bool NodeHasMemRefs = false;
810   if (PatternHasMemOperands) {
811     unsigned NumNodesThatLoadOrStore =
812       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
813     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
814                                    NumNodesThatLoadOrStore == 1;
815     NodeHasMemRefs =
816       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
817                                              NumNodesThatLoadOrStore != 1));
818   }
819 
820   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
821          "Node has no result");
822 
823   AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
824                                  ResultVTs.data(), ResultVTs.size(),
825                                  InstOps.data(), InstOps.size(),
826                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
827                                  NodeHasMemRefs, NumFixedArityOperands,
828                                  NextRecordedOperandNo));
829 
830   // The non-chain and non-glue results of the newly emitted node get recorded.
831   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
832     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
833     OutputOps.push_back(NextRecordedOperandNo++);
834   }
835 }
836 
837 void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)838 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
839                                SmallVectorImpl<unsigned> &ResultOps) {
840   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
841 
842   // Emit the operand.
843   SmallVector<unsigned, 8> InputOps;
844 
845   // FIXME2: Could easily generalize this to support multiple inputs and outputs
846   // to the SDNodeXForm.  For now we just support one input and one output like
847   // the old instruction selector.
848   assert(N->getNumChildren() == 1);
849   EmitResultOperand(N->getChild(0), InputOps);
850 
851   // The input currently must have produced exactly one result.
852   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
853 
854   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
855   ResultOps.push_back(NextRecordedOperandNo++);
856 }
857 
EmitResultOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)858 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
859                                    SmallVectorImpl<unsigned> &ResultOps) {
860   // This is something selected from the pattern we matched.
861   if (!N->getName().empty())
862     return EmitResultOfNamedOperand(N, ResultOps);
863 
864   if (N->isLeaf())
865     return EmitResultLeafAsOperand(N, ResultOps);
866 
867   Record *OpRec = N->getOperator();
868   if (OpRec->isSubClassOf("Instruction"))
869     return EmitResultInstructionAsOperand(N, ResultOps);
870   if (OpRec->isSubClassOf("SDNodeXForm"))
871     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
872   errs() << "Unknown result node to emit code for: " << *N << '\n';
873   throw std::string("Unknown node in result pattern!");
874 }
875 
EmitResultCode()876 void MatcherGen::EmitResultCode() {
877   // Patterns that match nodes with (potentially multiple) chain inputs have to
878   // merge them together into a token factor.  This informs the generated code
879   // what all the chained nodes are.
880   if (!MatchedChainNodes.empty())
881     AddMatcher(new EmitMergeInputChainsMatcher
882                (MatchedChainNodes.data(), MatchedChainNodes.size()));
883 
884   // Codegen the root of the result pattern, capturing the resulting values.
885   SmallVector<unsigned, 8> Ops;
886   EmitResultOperand(Pattern.getDstPattern(), Ops);
887 
888   // At this point, we have however many values the result pattern produces.
889   // However, the input pattern might not need all of these.  If there are
890   // excess values at the end (such as implicit defs of condition codes etc)
891   // just lop them off.  This doesn't need to worry about glue or chains, just
892   // explicit results.
893   //
894   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
895 
896   // If the pattern also has (implicit) results, count them as well.
897   if (!Pattern.getDstRegs().empty()) {
898     // If the root came from an implicit def in the instruction handling stuff,
899     // don't re-add it.
900     Record *HandledReg = 0;
901     const TreePatternNode *DstPat = Pattern.getDstPattern();
902     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
903       const CodeGenTarget &CGT = CGP.getTargetInfo();
904       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
905 
906       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
907         HandledReg = II.ImplicitDefs[0];
908     }
909 
910     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
911       Record *Reg = Pattern.getDstRegs()[i];
912       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
913       ++NumSrcResults;
914     }
915   }
916 
917   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
918   Ops.resize(NumSrcResults);
919 
920   // If the matched pattern covers nodes which define a glue result, emit a node
921   // that tells the matcher about them so that it can update their results.
922   if (!MatchedGlueResultNodes.empty())
923     AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(),
924                                           MatchedGlueResultNodes.size()));
925 
926   AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
927 }
928 
929 
930 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
931 /// the specified variant.  If the variant number is invalid, this returns null.
ConvertPatternToMatcher(const PatternToMatch & Pattern,unsigned Variant,const CodeGenDAGPatterns & CGP)932 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
933                                        unsigned Variant,
934                                        const CodeGenDAGPatterns &CGP) {
935   MatcherGen Gen(Pattern, CGP);
936 
937   // Generate the code for the matcher.
938   if (Gen.EmitMatcherCode(Variant))
939     return 0;
940 
941   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
942   // FIXME2: Split result code out to another table, and make the matcher end
943   // with an "Emit <index>" command.  This allows result generation stuff to be
944   // shared and factored?
945 
946   // If the match succeeds, then we generate Pattern.
947   Gen.EmitResultCode();
948 
949   // Unconditional match.
950   return Gen.GetMatcher();
951 }
952