1 /* ----------------------------------------------------------------------- *
2  *
3  *   Copyright 2006 Erwan Velu - All Rights Reserved
4  *
5  *   Permission is hereby granted, free of charge, to any person
6  *   obtaining a copy of this software and associated documentation
7  *   files (the "Software"), to deal in the Software without
8  *   restriction, including without limitation the rights to use,
9  *   copy, modify, merge, publish, distribute, sublicense, and/or
10  *   sell copies of the Software, and to permit persons to whom
11  *   the Software is furnished to do so, subject to the following
12  *   conditions:
13  *
14  *   The above copyright notice and this permission notice shall
15  *   be included in all copies or substantial portions of the Software.
16  *
17  *   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18  *   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
19  *   OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
20  *   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
21  *   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
22  *   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  *   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  *   OTHER DEALINGS IN THE SOFTWARE.
25  *
26  * -----------------------------------------------------------------------
27 */
28 
29 #include <stdio.h>
30 #include <string.h>
31 #include "dmi/dmi.h"
32 
33 const char *out_of_spec = "<OUT OF SPEC>";
34 const char *bad_index = "<BAD INDEX>";
35 
36 /*
37  * Misc. util stuff
38  */
39 
40 /*
41  * 3.3.11 On Board Devices Information (Type 10)
42  */
43 
dmi_on_board_devices_type(uint8_t code)44 static const char *dmi_on_board_devices_type(uint8_t code)
45 {
46     /* 3.3.11.1 */
47     static const char *type[] = {
48 	"Other",		/* 0x01 */
49 	"Unknown",
50 	"Video",
51 	"SCSI Controller",
52 	"Ethernet",
53 	"Token Ring",
54 	"Sound",
55 	"PATA Controller",
56 	"SATA Controller",
57 	"SAS Controller"	/* 0x0A */
58     };
59 
60     if (code >= 0x01 && code <= 0x0A)
61 	return type[code - 0x01];
62     return out_of_spec;
63 }
64 
dmi_on_board_devices(struct dmi_header * h,s_dmi * dmi)65 static void dmi_on_board_devices(struct dmi_header *h, s_dmi * dmi)
66 {
67     uint8_t *p = h->data + 4;
68     uint8_t count = (h->length - 0x04) / 2;
69     unsigned int i;
70 
71     for (i = 0;
72 	 i < count
73 	 && i <
74 	 sizeof dmi->base_board.devices_information /
75 	 sizeof *dmi->base_board.devices_information; i++) {
76 	strlcpy(dmi->base_board.devices_information[i].type,
77 		dmi_on_board_devices_type(p[2 * i] & 0x7F),
78 		sizeof dmi->base_board.devices_information[i].type);
79 	dmi->base_board.devices_information[i].status = p[2 * i] & 0x80;
80 	strlcpy(dmi->base_board.devices_information[i].description,
81 		dmi_string(h, p[2 * i + 1]),
82 		sizeof dmi->base_board.devices_information[i].description);
83     }
84 }
85 
86 /*
87  * 3.3.24 System Reset (Type 23)
88  */
89 
dmi_system_reset_boot_option(uint8_t code)90 static const char *dmi_system_reset_boot_option(uint8_t code)
91 {
92     static const char *option[] = {
93 	"Operating System",	/* 0x1 */
94 	"System Utilities",
95 	"Do Not Reboot"		/* 0x3 */
96     };
97 
98     if (code >= 0x1)
99 	return option[code - 0x1];
100     return out_of_spec;
101 }
102 
dmi_system_reset_count(uint16_t code,char * array)103 static void dmi_system_reset_count(uint16_t code, char *array)
104 {
105     if (code == 0xFFFF)
106 	strlcpy(array, "Unknown", sizeof array);
107     else
108 	snprintf(array, sizeof array, "%u", code);
109 }
110 
dmi_system_reset_timer(uint16_t code,char * array)111 static void dmi_system_reset_timer(uint16_t code, char *array)
112 {
113     if (code == 0xFFFF)
114 	strlcpy(array, "Unknown", sizeof array);
115     else
116 	snprintf(array, sizeof array, "%u min", code);
117 }
118 
119 /*
120  * 3.3.25 Hardware Security (Type 24)
121  */
122 
dmi_hardware_security_status(uint8_t code)123 static const char *dmi_hardware_security_status(uint8_t code)
124 {
125     static const char *status[] = {
126 	"Disabled",		/* 0x00 */
127 	"Enabled",
128 	"Not Implemented",
129 	"Unknown"		/* 0x03 */
130     };
131 
132     return status[code];
133 }
134 
135 /*
136  * 3.3.12 OEM Strings (Type 11)
137  */
138 
dmi_oem_strings(struct dmi_header * h,const char * prefix,s_dmi * dmi)139 static void dmi_oem_strings(struct dmi_header *h, const char *prefix,
140 			    s_dmi * dmi)
141 {
142     uint8_t *p = h->data + 4;
143     uint8_t count = p[0x00];
144     int i;
145 
146     for (i = 1; i <= count; i++)
147 	snprintf(dmi->oem_strings, OEM_STRINGS_SIZE, "%s %s %s\n",
148 		 dmi->oem_strings, prefix, dmi_string(h, i));
149 }
150 
151 /*
152  * 3.3.13 System Configuration Options (Type 12)
153  */
dmi_system_configuration_options(struct dmi_header * h,const char * prefix,s_dmi * dmi)154 static void dmi_system_configuration_options(struct dmi_header *h,
155 					     const char *prefix, s_dmi * dmi)
156 {
157     uint8_t *p = h->data + 4;
158     uint8_t count = p[0x00];
159     int i;
160 
161     for (i = 1; i <= count; i++)
162 	snprintf(dmi->system.configuration_options,
163 		 SYSTEM_CONFIGURATION_OPTIONS_SIZE, "%s %s %s\n",
164 		 dmi->system.configuration_options, prefix, dmi_string(h, i));
165 }
166 
dmi_system_boot_status(uint8_t code,char * array)167 static void dmi_system_boot_status(uint8_t code, char *array)
168 {
169     static const char *status[] = {
170 	"No errors detected",	/* 0 */
171 	"No bootable media",
172 	"Operating system failed to load",
173 	"Firmware-detected hardware failure",
174 	"Operating system-detected hardware failure",
175 	"User-requested boot",
176 	"System security violation",
177 	"Previously-requested image",
178 	"System watchdog timer expired"	/* 8 */
179     };
180 
181     if (code <= 8)
182 	strlcpy(array, status[code], SYSTEM_BOOT_STATUS_SIZE);
183     if (code >= 128 && code <= 191)
184 	strlcpy(array, "OEM-specific", SYSTEM_BOOT_STATUS_SIZE);
185     if (code >= 192)
186 	strlcpy(array, "Product-specific", SYSTEM_BOOT_STATUS_SIZE);
187 }
188 
dmi_bios_runtime_size(uint32_t code,s_dmi * dmi)189 void dmi_bios_runtime_size(uint32_t code, s_dmi * dmi)
190 {
191     if (code & 0x000003FF) {
192 	dmi->bios.runtime_size = code;
193 	strlcpy(dmi->bios.runtime_size_unit, "bytes",
194 		sizeof(dmi->bios.runtime_size_unit));
195     } else {
196 	dmi->bios.runtime_size = code >> 10;
197 	strlcpy(dmi->bios.runtime_size_unit, "KB",
198 		sizeof(dmi->bios.runtime_size_unit));
199 
200     }
201 }
202 
dmi_bios_characteristics(uint64_t code,s_dmi * dmi)203 void dmi_bios_characteristics(uint64_t code, s_dmi * dmi)
204 {
205     int i;
206     /*
207      * This isn't very clear what this bit is supposed to mean
208      */
209     //if(code.l&(1<<3))
210     if (code && (1 << 3)) {
211 	((bool *) (&dmi->bios.characteristics))[0] = true;
212 	return;
213     }
214 
215     for (i = 4; i <= 31; i++)
216 	//if(code.l&(1<<i))
217 	if (code & (1 << i))
218 	    ((bool *) (&dmi->bios.characteristics))[i - 3] = true;
219 }
220 
dmi_bios_characteristics_x1(uint8_t code,s_dmi * dmi)221 void dmi_bios_characteristics_x1(uint8_t code, s_dmi * dmi)
222 {
223     int i;
224 
225     for (i = 0; i <= 7; i++)
226 	if (code & (1 << i))
227 	    ((bool *) (&dmi->bios.characteristics_x1))[i] = true;
228 }
229 
dmi_bios_characteristics_x2(uint8_t code,s_dmi * dmi)230 void dmi_bios_characteristics_x2(uint8_t code, s_dmi * dmi)
231 {
232     int i;
233 
234     for (i = 0; i <= 2; i++)
235 	if (code & (1 << i))
236 	    ((bool *) (&dmi->bios.characteristics_x2))[i] = true;
237 }
238 
dmi_system_uuid(uint8_t * p,s_dmi * dmi)239 void dmi_system_uuid(uint8_t * p, s_dmi * dmi)
240 {
241     int only0xFF = 1, only0x00 = 1;
242     int i;
243 
244     for (i = 0; i < 16 && (only0x00 || only0xFF); i++) {
245 	if (p[i] != 0x00)
246 	    only0x00 = 0;
247 	if (p[i] != 0xFF)
248 	    only0xFF = 0;
249     }
250 
251     if (only0xFF) {
252 	sprintf(dmi->system.uuid, "Not Present");
253 	return;
254     }
255     if (only0x00) {
256 	sprintf(dmi->system.uuid, "Not Settable");
257 	return;
258     }
259 
260     sprintf(dmi->system.uuid,
261 	    "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
262 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10],
263 	    p[11], p[12], p[13], p[14], p[15]);
264 }
265 
dmi_system_wake_up_type(uint8_t code,s_dmi * dmi)266 void dmi_system_wake_up_type(uint8_t code, s_dmi * dmi)
267 {
268     /* 3.3.2.1 */
269     static const char *type[] = {
270 	"Reserved",		/* 0x00 */
271 	"Other",
272 	"Unknown",
273 	"APM Timer",
274 	"Modem Ring",
275 	"LAN Remote",
276 	"Power Switch",
277 	"PCI PME#",
278 	"AC Power Restored"	/* 0x08 */
279     };
280 
281     if (code <= 0x08) {
282 	strlcpy(dmi->system.wakeup_type, type[code],
283 		sizeof(dmi->system.wakeup_type));
284     } else {
285 	strlcpy(dmi->system.wakeup_type, out_of_spec,
286 		sizeof(dmi->system.wakeup_type));
287     }
288     return;
289 }
290 
dmi_base_board_features(uint8_t code,s_dmi * dmi)291 static void dmi_base_board_features(uint8_t code, s_dmi * dmi)
292 {
293     if ((code & 0x1F) != 0) {
294 	int i;
295 
296 	for (i = 0; i <= 4; i++)
297 	    if (code & (1 << i))
298 		((bool *) (&dmi->base_board.features))[i] = true;
299     }
300 }
301 
dmi_base_board_type(uint8_t code,s_dmi * dmi)302 static void dmi_base_board_type(uint8_t code, s_dmi * dmi)
303 {
304     /* 3.3.3.2 */
305     static const char *type[] = {
306             "Unknown", /* 0x01 */
307             "Other",
308             "Server Blade",
309             "Connectivity Switch",
310             "System Management Module",
311             "Processor Module",
312             "I/O Module",
313             "Memory Module",
314             "Daughter Board",
315             "Motherboard",
316             "Processor+Memory Module",
317             "Processor+I/O Module",
318             "Interconnect Board" /* 0x0D */
319     };
320 
321     if (code >= 0x01 && code <= 0x0D) {
322 	strlcpy(dmi->base_board.type, type[code],
323 		sizeof(dmi->base_board.type));
324     } else {
325 	strlcpy(dmi->base_board.type, out_of_spec,
326 		sizeof(dmi->base_board.type));
327     }
328     return;
329 }
330 
dmi_processor_voltage(uint8_t code,s_dmi * dmi)331 static void dmi_processor_voltage(uint8_t code, s_dmi * dmi)
332 {
333     /* 3.3.5.4 */
334     static const uint16_t voltage[] = {
335 	5000,
336 	3300,
337 	2900
338     };
339     int i;
340 
341     if (code & 0x80)
342 	dmi->processor.voltage_mv = (code & 0x7f) * 100;
343     else {
344 	for (i = 0; i <= 2; i++)
345 	    if (code & (1 << i))
346 		dmi->processor.voltage_mv = voltage[i];
347     }
348 }
349 
dmi_processor_id(uint8_t type,uint8_t * p,const char * version,s_dmi * dmi)350 static void dmi_processor_id(uint8_t type, uint8_t * p, const char *version,
351 			     s_dmi * dmi)
352 {
353     /*
354      * Extra flags are now returned in the ECX register when one calls
355      * the CPUID instruction. Their meaning is explained in table 6, but
356      * DMI doesn't support this yet.
357      */
358     uint32_t eax, edx;
359     int sig = 0;
360 
361     /*
362      * This might help learn about new processors supporting the
363      * CPUID instruction or another form of identification.
364      */
365     sprintf(dmi->processor.id, "ID: %02X %02X %02X %02X %02X %02X %02X %02X\n",
366 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
367 
368     if (type == 0x05) {		/* 80386 */
369 	uint16_t dx = WORD(p);
370 	/*
371 	 * 80386 have a different signature.
372 	 */
373 	dmi->processor.signature.type = (dx >> 12);
374 	dmi->processor.signature.family = ((dx >> 8) & 0xF);
375 	dmi->processor.signature.stepping = (dx >> 4) & 0xF;
376 	dmi->processor.signature.minor_stepping = (dx & 0xF);
377 	return;
378     }
379     if (type == 0x06) {		/* 80486 */
380 	uint16_t dx = WORD(p);
381 	/*
382 	 * Not all 80486 CPU support the CPUID instruction, we have to find
383 	 * wether the one we have here does or not. Note that this trick
384 	 * works only because we know that 80486 must be little-endian.
385 	 */
386 	if ((dx & 0x0F00) == 0x0400
387 	    && ((dx & 0x00F0) == 0x0040 || (dx & 0x00F0) >= 0x0070)
388 	    && ((dx & 0x000F) >= 0x0003))
389 	    sig = 1;
390 	else {
391 	    dmi->processor.signature.type = ((dx >> 12) & 0x3);
392 	    dmi->processor.signature.family = ((dx >> 8) & 0xF);
393 	    dmi->processor.signature.model = ((dx >> 4) & 0xF);
394 	    dmi->processor.signature.stepping = (dx & 0xF);
395 	    return;
396 	}
397     } else if ((type >= 0x0B && type <= 0x13)	/* Intel, Cyrix */
398 	       ||(type >= 0xB0 && type <= 0xB3)	/* Intel */
399 	       ||type == 0xB5	/* Intel */
400 	       || type == 0xB9)	/* Intel */
401 	sig = 1;
402     else if ((type >= 0x18 && type <= 0x1D)	/* AMD */
403 	     ||type == 0x1F	/* AMD */
404 	     || (type >= 0xB6 && type <= 0xB7)	/* AMD */
405 	     ||(type >= 0x83 && type <= 0x85))	/* AMD */
406 	sig = 2;
407     else if (type == 0x01 || type == 0x02) {
408 	/*
409 	 * Some X86-class CPU have family "Other" or "Unknown". In this case,
410 	 * we use the version string to determine if they are known to
411 	 * support the CPUID instruction.
412 	 */
413 	if (strncmp(version, "Pentium III MMX", 15) == 0)
414 	    sig = 1;
415 	else if (strncmp(version, "AMD Athlon(TM)", 14) == 0
416 		 || strncmp(version, "AMD Opteron(tm)", 15) == 0)
417 	    sig = 2;
418 	else
419 	    return;
420     } else			/* not X86-class */
421 	return;
422 
423     eax = DWORD(p);
424     edx = DWORD(p + 4);
425     switch (sig) {
426     case 1:			/* Intel */
427 	dmi->processor.signature.type = ((eax >> 12) & 0x3);
428 	dmi->processor.signature.family =
429 	    (((eax >> 16) & 0xFF0) + ((eax >> 8) & 0x00F));
430 	dmi->processor.signature.model =
431 	    (((eax >> 12) & 0xF0) + ((eax >> 4) & 0x0F));
432 	dmi->processor.signature.stepping = (eax & 0xF);
433 	break;
434     case 2:			/* AMD */
435 	dmi->processor.signature.family =
436 	    (((eax >> 8) & 0xF) == 0xF ? (eax >> 20) & 0xFF : (eax >> 8) & 0xF);
437 	dmi->processor.signature.model =
438 	    (((eax >> 4) & 0xF) == 0xF ? (eax >> 16) & 0xF : (eax >> 4) & 0xF);
439 	dmi->processor.signature.stepping = (eax & 0xF);
440 	break;
441     }
442 
443     edx = DWORD(p + 4);
444     if ((edx & 0x3FF7FDFF) != 0) {
445 	int i;
446 	for (i = 0; i <= 31; i++)
447 	    if (cpu_flags_strings[i] != NULL && edx & (1 << i))
448 		((bool *) (&dmi->processor.cpu_flags))[i] = true;
449     }
450 }
451 
to_dmi_header(struct dmi_header * h,uint8_t * data)452 void to_dmi_header(struct dmi_header *h, uint8_t * data)
453 {
454     h->type = data[0];
455     h->length = data[1];
456     h->handle = WORD(data + 2);
457     h->data = data;
458 }
459 
dmi_string(struct dmi_header * dm,uint8_t s)460 const char *dmi_string(struct dmi_header *dm, uint8_t s)
461 {
462     char *bp = (char *)dm->data;
463     size_t i, len;
464 
465     if (s == 0)
466 	return "Not Specified";
467 
468     bp += dm->length;
469     while (s > 1 && *bp) {
470 	bp += strlen(bp);
471 	bp++;
472 	s--;
473     }
474 
475     if (!*bp)
476 	return bad_index;
477 
478     /* ASCII filtering */
479     len = strlen(bp);
480     for (i = 0; i < len; i++)
481 	if (bp[i] < 32 || bp[i] == 127)
482 	    bp[i] = '.';
483 
484     return bp;
485 }
486 
checksum(uint8_t * buf,int len)487 int checksum(uint8_t * buf, int len)
488 {
489     uint8_t sum = 0;
490     int a;
491 
492     for (a = 0; a < len; a++)
493 	sum += buf[a];
494     return (sum == 0);
495 }
496 
smbios_decode(s_dmi * dmi,uint8_t * buf)497 static int smbios_decode(s_dmi * dmi, uint8_t * buf)
498 {
499 
500     dmi->dmitable.ver = (buf[0x06] << 8) + buf[0x07];
501     /* Some BIOS report weird SMBIOS version, fix that up */
502     switch (dmi->dmitable.ver) {
503     case 0x021F:
504 	dmi->dmitable.ver = 0x0203;
505 	break;
506     case 0x0233:
507 	dmi->dmitable.ver = 0x0206;
508 	break;
509     }
510     dmi->dmitable.major_version = dmi->dmitable.ver >> 8;
511     dmi->dmitable.minor_version = dmi->dmitable.ver & 0xFF;
512 
513     return DMI_TABLE_PRESENT;
514 }
515 
legacy_decode(s_dmi * dmi,uint8_t * buf)516 static int legacy_decode(s_dmi * dmi, uint8_t * buf)
517 {
518     dmi->dmitable.num = buf[13] << 8 | buf[12];
519     dmi->dmitable.len = buf[7] << 8 | buf[6];
520     dmi->dmitable.base = buf[11] << 24 | buf[10] << 16 | buf[9] << 8 | buf[8];
521 
522     /* Version already found? */
523     if (dmi->dmitable.ver > 0)
524 	return DMI_TABLE_PRESENT;
525 
526     dmi->dmitable.ver = (buf[0x06] << 8) + buf[0x07];
527 
528     /*
529      * DMI version 0.0 means that the real version is taken from
530      * the SMBIOS version, which we don't know at this point.
531      */
532     if (buf[14] != 0) {
533 	dmi->dmitable.major_version = buf[14] >> 4;
534 	dmi->dmitable.minor_version = buf[14] & 0x0F;
535     } else {
536 	dmi->dmitable.major_version = 0;
537 	dmi->dmitable.minor_version = 0;
538     }
539     return DMI_TABLE_PRESENT;
540 }
541 
dmi_iterate(s_dmi * dmi)542 int dmi_iterate(s_dmi * dmi)
543 {
544     uint8_t *p, *q;
545     int found = 0;
546 
547     /* Cleaning structures */
548     memset(dmi, 0, sizeof(s_dmi));
549 
550     memset(&dmi->base_board, 0, sizeof(s_base_board));
551     memset(&dmi->battery, 0, sizeof(s_battery));
552     memset(&dmi->bios, 0, sizeof(s_bios));
553     memset(&dmi->chassis, 0, sizeof(s_chassis));
554     for (int i = 0; i < MAX_DMI_MEMORY_ITEMS; i++)
555 	memset(&dmi->memory[i], 0, sizeof(s_memory));
556     memset(&dmi->processor, 0, sizeof(s_processor));
557     memset(&dmi->system, 0, sizeof(s_system));
558 
559     /* Until we found this elements in the dmitable, we consider them as not filled */
560     dmi->base_board.filled = false;
561     dmi->battery.filled = false;
562     dmi->bios.filled = false;
563     dmi->chassis.filled = false;
564     for (int i = 0; i < MAX_DMI_MEMORY_ITEMS; i++)
565 	dmi->memory[i].filled = false;
566     dmi->processor.filled = false;
567     dmi->system.filled = false;
568 
569     p = (uint8_t *) 0xF0000;	/* The start address to look at the dmi table */
570     /* The anchor-string is 16-bytes aligned */
571     for (q = p; q < p + 0x10000; q += 16) {
572 	/* To validate the presence of SMBIOS:
573 	 * + the overall checksum must be correct
574 	 * + the intermediate anchor-string must be _DMI_
575 	 * + the intermediate checksum must be correct
576 	 */
577 	if (memcmp(q, "_SM_", 4) == 0 &&
578 	    checksum(q, q[0x05]) &&
579 	    memcmp(q + 0x10, "_DMI_", 5) == 0 && checksum(q + 0x10, 0x0F)) {
580 	    /* Do not return, legacy_decode will need to be called
581 	     * on the intermediate structure to get the table length
582 	     * and address
583 	     */
584 	    smbios_decode(dmi, q);
585 	} else if (memcmp(q, "_DMI_", 5) == 0 && checksum(q, 0x0F)) {
586 	    found = 1;
587 	    legacy_decode(dmi, q);
588 	}
589     }
590 
591     if (found)
592 	return DMI_TABLE_PRESENT;
593 
594     dmi->dmitable.base = 0;
595     dmi->dmitable.num = 0;
596     dmi->dmitable.ver = 0;
597     dmi->dmitable.len = 0;
598     return -ENODMITABLE;
599 }
600 
dmi_decode(struct dmi_header * h,uint16_t ver,s_dmi * dmi)601 void dmi_decode(struct dmi_header *h, uint16_t ver, s_dmi * dmi)
602 {
603     uint8_t *data = h->data;
604 
605     /*
606      * Note: DMI types 37, 38 and 39 are untested
607      */
608     switch (h->type) {
609     case 0:			/* 3.3.1 BIOS Information */
610 	if (h->length < 0x12)
611 	    break;
612 	dmi->bios.filled = true;
613 	strlcpy(dmi->bios.vendor, dmi_string(h, data[0x04]),
614 		sizeof(dmi->bios.vendor));
615 	strlcpy(dmi->bios.version, dmi_string(h, data[0x05]),
616 		sizeof(dmi->bios.version));
617 	strlcpy(dmi->bios.release_date, dmi_string(h, data[0x08]),
618 		sizeof(dmi->bios.release_date));
619 	dmi->bios.address = WORD(data + 0x06);
620 	dmi_bios_runtime_size((0x10000 - WORD(data + 0x06)) << 4, dmi);
621 	dmi->bios.rom_size = (data[0x09] + 1) << 6;
622 	strlcpy(dmi->bios.rom_size_unit, "kB", sizeof(dmi->bios.rom_size_unit));
623 	dmi_bios_characteristics(QWORD(data + 0x0A), dmi);
624 
625 	if (h->length < 0x13)
626 	    break;
627 	dmi_bios_characteristics_x1(data[0x12], dmi);
628 	if (h->length < 0x14)
629 	    break;
630 	dmi_bios_characteristics_x2(data[0x13], dmi);
631 	if (h->length < 0x18)
632 	    break;
633 	if (data[0x14] != 0xFF && data[0x15] != 0xFF)
634 	    snprintf(dmi->bios.bios_revision, sizeof(dmi->bios.bios_revision),
635 		     "%u.%u", data[0x14], data[0x15]);
636 	if (data[0x16] != 0xFF && data[0x17] != 0xFF)
637 	    snprintf(dmi->bios.firmware_revision,
638 		     sizeof(dmi->bios.firmware_revision), "%u.%u", data[0x16],
639 		     data[0x17]);
640 	break;
641     case 1:			/* 3.3.2 System Information */
642 	if (h->length < 0x08)
643 	    break;
644 	dmi->system.filled = true;
645 	strlcpy(dmi->system.manufacturer, dmi_string(h, data[0x04]),
646 		sizeof(dmi->system.manufacturer));
647 	strlcpy(dmi->system.product_name, dmi_string(h, data[0x05]),
648 		sizeof(dmi->system.product_name));
649 	strlcpy(dmi->system.version, dmi_string(h, data[0x06]),
650 		sizeof(dmi->system.version));
651 	strlcpy(dmi->system.serial, dmi_string(h, data[0x07]),
652 		sizeof(dmi->system.serial));
653 	if (h->length < 0x19)
654 	    break;
655 	dmi_system_uuid(data + 0x08, dmi);
656 	dmi_system_wake_up_type(data[0x18], dmi);
657 	if (h->length < 0x1B)
658 	    break;
659 	strlcpy(dmi->system.sku_number, dmi_string(h, data[0x19]),
660 		sizeof(dmi->system.sku_number));
661 	strlcpy(dmi->system.family, dmi_string(h, data[0x1A]),
662 		sizeof(dmi->system.family));
663 	break;
664 
665     case 2:			/* 3.3.3 Base Board Information */
666 	if (h->length < 0x08)
667 	    break;
668 	dmi->base_board.filled = true;
669 	strlcpy(dmi->base_board.manufacturer, dmi_string(h, data[0x04]),
670 		sizeof(dmi->base_board.manufacturer));
671 	strlcpy(dmi->base_board.product_name, dmi_string(h, data[0x05]),
672 		sizeof(dmi->base_board.product_name));
673 	strlcpy(dmi->base_board.version, dmi_string(h, data[0x06]),
674 		sizeof(dmi->base_board.version));
675 	strlcpy(dmi->base_board.serial, dmi_string(h, data[0x07]),
676 		sizeof(dmi->base_board.serial));
677 	if (h->length < 0x0F)
678 	    break;
679 	strlcpy(dmi->base_board.asset_tag, dmi_string(h, data[0x08]),
680 		sizeof(dmi->base_board.asset_tag));
681 	dmi_base_board_features(data[0x09], dmi);
682 	strlcpy(dmi->base_board.location, dmi_string(h, data[0x0A]),
683 		sizeof(dmi->base_board.location));
684 	dmi_base_board_type(data[0x0D], dmi);
685 	if (h->length < 0x0F + data[0x0E] * sizeof(uint16_t))
686 	    break;
687 	break;
688     case 3:			/* 3.3.4 Chassis Information */
689 	if (h->length < 0x09)
690 	    break;
691 	dmi->chassis.filled = true;
692 	strlcpy(dmi->chassis.manufacturer, dmi_string(h, data[0x04]),
693 		sizeof(dmi->chassis.manufacturer));
694 	strlcpy(dmi->chassis.type, dmi_chassis_type(data[0x05] & 0x7F),
695 		sizeof(dmi->chassis.type));
696 	strlcpy(dmi->chassis.lock, dmi_chassis_lock(data[0x05] >> 7),
697 		sizeof(dmi->chassis.lock));
698 	strlcpy(dmi->chassis.version, dmi_string(h, data[0x06]),
699 		sizeof(dmi->chassis.version));
700 	strlcpy(dmi->chassis.serial, dmi_string(h, data[0x07]),
701 		sizeof(dmi->chassis.serial));
702 	strlcpy(dmi->chassis.asset_tag, dmi_string(h, data[0x08]),
703 		sizeof(dmi->chassis.asset_tag));
704 	if (h->length < 0x0D)
705 	    break;
706 	strlcpy(dmi->chassis.boot_up_state, dmi_chassis_state(data[0x09]),
707 		sizeof(dmi->chassis.boot_up_state));
708 	strlcpy(dmi->chassis.power_supply_state,
709 		dmi_chassis_state(data[0x0A]),
710 		sizeof(dmi->chassis.power_supply_state));
711 	strlcpy(dmi->chassis.thermal_state,
712 		dmi_chassis_state(data[0x0B]),
713 		sizeof(dmi->chassis.thermal_state));
714 	strlcpy(dmi->chassis.security_status,
715 		dmi_chassis_security_status(data[0x0C]),
716 		sizeof(dmi->chassis.security_status));
717 	if (h->length < 0x11)
718 	    break;
719 	snprintf(dmi->chassis.oem_information,
720 		 sizeof(dmi->chassis.oem_information), "0x%08X",
721 		 DWORD(data + 0x0D));
722 	if (h->length < 0x15)
723 	    break;
724 	dmi->chassis.height = data[0x11];
725 	dmi->chassis.nb_power_cords = data[0x12];
726 	break;
727     case 4:			/* 3.3.5 Processor Information */
728 	if (h->length < 0x1A)
729 	    break;
730 	dmi->processor.filled = true;
731 	strlcpy(dmi->processor.socket_designation,
732 		dmi_string(h, data[0x04]),
733 		sizeof(dmi->processor.socket_designation));
734 	strlcpy(dmi->processor.type,
735 		dmi_processor_type(data[0x05]), sizeof(dmi->processor.type));
736 	strlcpy(dmi->processor.manufacturer,
737 		dmi_string(h, data[0x07]), sizeof(dmi->processor.manufacturer));
738 	strlcpy(dmi->processor.family,
739 		dmi_processor_family(data[0x06],
740 				     dmi->processor.manufacturer),
741 		sizeof(dmi->processor.family));
742 	dmi_processor_id(data[0x06], data + 8, dmi_string(h, data[0x10]), dmi);
743 	strlcpy(dmi->processor.version,
744 		dmi_string(h, data[0x10]), sizeof(dmi->processor.version));
745 	dmi_processor_voltage(data[0x11], dmi);
746 	dmi->processor.external_clock = WORD(data + 0x12);
747 	dmi->processor.max_speed = WORD(data + 0x14);
748 	dmi->processor.current_speed = WORD(data + 0x16);
749 	if (data[0x18] & (1 << 6))
750 	    strlcpy(dmi->processor.status,
751 		    dmi_processor_status(data[0x18] & 0x07),
752 		    sizeof(dmi->processor.status));
753 	else
754 	    sprintf(dmi->processor.status, "Unpopulated");
755 	strlcpy(dmi->processor.upgrade,
756 		dmi_processor_upgrade(data[0x19]),
757 		sizeof(dmi->processor.upgrade));
758 	if (h->length < 0x20)
759 	    break;
760 	dmi_processor_cache(WORD(data + 0x1A), "L1", ver,
761 			    dmi->processor.cache1);
762 	dmi_processor_cache(WORD(data + 0x1C), "L2", ver,
763 			    dmi->processor.cache2);
764 	dmi_processor_cache(WORD(data + 0x1E), "L3", ver,
765 			    dmi->processor.cache3);
766 	if (h->length < 0x23)
767 	    break;
768 	strlcpy(dmi->processor.serial, dmi_string(h, data[0x20]),
769 		sizeof(dmi->processor.serial));
770 	strlcpy(dmi->processor.asset_tag, dmi_string(h, data[0x21]),
771 		sizeof(dmi->processor.asset_tag));
772 	strlcpy(dmi->processor.part_number, dmi_string(h, data[0x22]),
773 		sizeof(dmi->processor.part_number));
774         dmi->processor.core_count = 0;
775         dmi->processor.core_enabled = 0;
776         dmi->processor.thread_count = 0;
777 	if (h->length < 0x28)
778 	    break;
779         dmi->processor.core_count = data[0x23];
780         dmi->processor.core_enabled = data[0x24];
781         dmi->processor.thread_count = data[0x25];
782 	break;
783     case 6:			/* 3.3.7 Memory Module Information */
784 	if (h->length < 0x0C)
785 	    break;
786 	dmi->memory_module_count++;
787 	s_memory_module *module =
788 	    &dmi->memory_module[dmi->memory_module_count - 1];
789 	dmi->memory_module[dmi->memory_module_count - 1].filled = true;
790 	strlcpy(module->socket_designation, dmi_string(h, data[0x04]),
791 		sizeof(module->socket_designation));
792 	dmi_memory_module_connections(data[0x05], module->bank_connections, sizeof(module->bank_connections));
793 	dmi_memory_module_speed(data[0x06], module->speed);
794 	dmi_memory_module_types(WORD(data + 0x07), " ", module->type, sizeof(module->type));
795 	dmi_memory_module_size(data[0x09], module->installed_size, sizeof(module->installed_size));
796 	dmi_memory_module_size(data[0x0A], module->enabled_size, sizeof(module->enabled_size));
797 	dmi_memory_module_error(data[0x0B], "\t\t", module->error_status);
798 	break;
799     case 7:			/* 3.3.8 Cache Information */
800 	if (h->length < 0x0F)
801 	    break;
802 	dmi->cache_count++;
803 	if (dmi->cache_count > MAX_DMI_CACHE_ITEMS)
804 	    break;
805 	strlcpy(dmi->cache[dmi->cache_count - 1].socket_designation,
806 		dmi_string(h, data[0x04]),
807 		sizeof(dmi->cache[dmi->cache_count - 1].socket_designation));
808 	snprintf(dmi->cache[dmi->cache_count - 1].configuration,
809 		 sizeof(dmi->cache[dmi->cache_count - 1].configuration),
810 		 "%s, %s, %u",
811 		 WORD(data + 0x05) & 0x0080 ? "Enabled" : "Disabled",
812 		 WORD(data +
813 		      0x05) & 0x0008 ? "Socketed" : "Not Socketed",
814 		 (WORD(data + 0x05) & 0x0007) + 1);
815 	strlcpy(dmi->cache[dmi->cache_count - 1].mode,
816 		dmi_cache_mode((WORD(data + 0x05) >> 8) & 0x0003),
817 		sizeof(dmi->cache[dmi->cache_count - 1].mode));
818 	strlcpy(dmi->cache[dmi->cache_count - 1].location,
819 		dmi_cache_location((WORD(data + 0x05) >> 5) & 0x0003),
820 		sizeof(dmi->cache[dmi->cache_count - 1].location));
821 	dmi->cache[dmi->cache_count - 1].installed_size =
822 	    dmi_cache_size(WORD(data + 0x09));
823 	dmi->cache[dmi->cache_count - 1].max_size =
824 	    dmi_cache_size(WORD(data + 0x07));
825 	dmi_cache_types(WORD(data + 0x0B), " ",
826 			dmi->cache[dmi->cache_count - 1].supported_sram_types);
827 	dmi_cache_types(WORD(data + 0x0D), " ",
828 			dmi->cache[dmi->cache_count - 1].installed_sram_types);
829 	if (h->length < 0x13)
830 	    break;
831 	dmi->cache[dmi->cache_count - 1].speed = data[0x0F];	/* ns */
832 	strlcpy(dmi->cache[dmi->cache_count - 1].error_correction_type,
833 		dmi_cache_ec_type(data[0x10]),
834 		sizeof(dmi->cache[dmi->cache_count - 1].error_correction_type));
835 	strlcpy(dmi->cache[dmi->cache_count - 1].system_type,
836 		dmi_cache_type(data[0x11]),
837 		sizeof(dmi->cache[dmi->cache_count - 1].system_type));
838 	strlcpy(dmi->cache[dmi->cache_count - 1].associativity,
839 		dmi_cache_associativity(data[0x12]),
840 		sizeof(dmi->cache[dmi->cache_count - 1].associativity));
841 	break;
842     case 10:			/* 3.3.11 On Board Devices Information */
843 	dmi_on_board_devices(h, dmi);
844 	break;
845     case 11:			/* 3.3.12 OEM Strings */
846 	if (h->length < 0x05)
847 	    break;
848 	dmi_oem_strings(h, "\t", dmi);
849 	break;
850     case 12:			/* 3.3.13 System Configuration Options */
851 	if (h->length < 0x05)
852 	    break;
853 	dmi_system_configuration_options(h, "\t", dmi);
854 	break;
855     case 17:			/* 3.3.18 Memory Device */
856 	if (h->length < 0x15)
857 	    break;
858 	dmi->memory_count++;
859 	if (dmi->memory_count > MAX_DMI_MEMORY_ITEMS)
860 	    break;
861 	s_memory *mem = &dmi->memory[dmi->memory_count - 1];
862 	dmi->memory[dmi->memory_count - 1].filled = true;
863 	dmi_memory_array_error_handle(WORD(data + 0x06), mem->error);
864 	dmi_memory_device_width(WORD(data + 0x08), mem->total_width);
865 	dmi_memory_device_width(WORD(data + 0x0A), mem->data_width);
866 	dmi_memory_device_size(WORD(data + 0x0C), mem->size);
867 	strlcpy(mem->form_factor,
868 		dmi_memory_device_form_factor(data[0x0E]),
869 		sizeof(mem->form_factor));
870 	dmi_memory_device_set(data[0x0F], mem->device_set);
871 	strlcpy(mem->device_locator, dmi_string(h, data[0x10]),
872 		sizeof(mem->device_locator));
873 	strlcpy(mem->bank_locator, dmi_string(h, data[0x11]),
874 		sizeof(mem->bank_locator));
875 	strlcpy(mem->type, dmi_memory_device_type(data[0x12]),
876 		sizeof(mem->type));
877 	dmi_memory_device_type_detail(WORD(data + 0x13), mem->type_detail, sizeof(mem->type_detail));
878 	if (h->length < 0x17)
879 	    break;
880 	dmi_memory_device_speed(WORD(data + 0x15), mem->speed);
881 	if (h->length < 0x1B)
882 	    break;
883 	strlcpy(mem->manufacturer, dmi_string(h, data[0x17]),
884 		sizeof(mem->manufacturer));
885 	strlcpy(mem->serial, dmi_string(h, data[0x18]), sizeof(mem->serial));
886 	strlcpy(mem->asset_tag, dmi_string(h, data[0x19]),
887 		sizeof(mem->asset_tag));
888 	strlcpy(mem->part_number, dmi_string(h, data[0x1A]),
889 		sizeof(mem->part_number));
890 	break;
891     case 22:			/* 3.3.23 Portable Battery */
892 	if (h->length < 0x10)
893 	    break;
894 	dmi->battery.filled = true;
895 	strlcpy(dmi->battery.location, dmi_string(h, data[0x04]),
896 		sizeof(dmi->battery.location));
897 	strlcpy(dmi->battery.manufacturer, dmi_string(h, data[0x05]),
898 		sizeof(dmi->battery.manufacturer));
899 	if (data[0x06] || h->length < 0x1A)
900 	    strlcpy(dmi->battery.manufacture_date,
901 		    dmi_string(h, data[0x06]),
902 		    sizeof(dmi->battery.manufacture_date));
903 	if (data[0x07] || h->length < 0x1A)
904 	    strlcpy(dmi->battery.serial, dmi_string(h, data[0x07]),
905 		    sizeof(dmi->battery.serial));
906 	strlcpy(dmi->battery.name, dmi_string(h, data[0x08]),
907 		sizeof(dmi->battery.name));
908 	if (data[0x09] != 0x02 || h->length < 0x1A)
909 	    strlcpy(dmi->battery.chemistry,
910 		    dmi_battery_chemistry(data[0x09]),
911 		    sizeof(dmi->battery.chemistry));
912 	if (h->length < 0x1A)
913 	    dmi_battery_capacity(WORD(data + 0x0A), 1,
914 				 dmi->battery.design_capacity);
915 	else
916 	    dmi_battery_capacity(WORD(data + 0x0A), data[0x15],
917 				 dmi->battery.design_capacity);
918 	dmi_battery_voltage(WORD(data + 0x0C), dmi->battery.design_voltage);
919 	strlcpy(dmi->battery.sbds, dmi_string(h, data[0x0E]),
920 		sizeof(dmi->battery.sbds));
921 	dmi_battery_maximum_error(data[0x0F], dmi->battery.maximum_error);
922 	if (h->length < 0x1A)
923 	    break;
924 	if (data[0x07] == 0)
925 	    sprintf(dmi->battery.sbds_serial, "%04X", WORD(data + 0x10));
926 	if (data[0x06] == 0)
927 	    sprintf(dmi->battery.sbds_manufacture_date, "%u-%02u-%02u",
928 		    1980 + (WORD(data + 0x12) >> 9),
929 		    (WORD(data + 0x12) >> 5) & 0x0F, WORD(data + 0x12) & 0x1F);
930 	if (data[0x09] == 0x02)
931 	    strlcpy(dmi->battery.sbds_chemistry, dmi_string(h, data[0x14]),
932 		    sizeof(dmi->battery.sbds_chemistry));
933 	//      sprintf(dmi->battery.oem_info,"0x%08X",DWORD(h, data+0x16));
934 	break;
935     case 23:			/* 3.3.24 System Reset */
936 	if (h->length < 0x0D)
937 	    break;
938 	dmi->system.system_reset.filled = true;
939 	dmi->system.system_reset.status = data[0x04] & (1 << 0);
940 	dmi->system.system_reset.watchdog = data[0x04] & (1 << 5);
941 	if (!(data[0x04] & (1 << 5)))
942 	    break;
943 	strlcpy(dmi->system.system_reset.boot_option,
944 		dmi_system_reset_boot_option((data[0x04] >> 1) & 0x3),
945 		sizeof dmi->system.system_reset.boot_option);
946 	strlcpy(dmi->system.system_reset.boot_option_on_limit,
947 		dmi_system_reset_boot_option((data[0x04] >> 3) & 0x3),
948 		sizeof dmi->system.system_reset.boot_option_on_limit);
949 	dmi_system_reset_count(WORD(data + 0x05),
950 			       dmi->system.system_reset.reset_count);
951 	dmi_system_reset_count(WORD(data + 0x07),
952 			       dmi->system.system_reset.reset_limit);
953 	dmi_system_reset_timer(WORD(data + 0x09),
954 			       dmi->system.system_reset.timer_interval);
955 	dmi_system_reset_timer(WORD(data + 0x0B),
956 			       dmi->system.system_reset.timeout);
957 	break;
958     case 24:			/* 3.3.25 Hardware Security */
959 	if (h->length < 0x05)
960 	    break;
961 	dmi->hardware_security.filled = true;
962 	strlcpy(dmi->hardware_security.power_on_passwd_status,
963 		dmi_hardware_security_status(data[0x04] >> 6),
964 		sizeof dmi->hardware_security.power_on_passwd_status);
965 	strlcpy(dmi->hardware_security.keyboard_passwd_status,
966 		dmi_hardware_security_status((data[0x04] >> 4) & 0x3),
967 		sizeof dmi->hardware_security.keyboard_passwd_status);
968 	strlcpy(dmi->hardware_security.administrator_passwd_status,
969 		dmi_hardware_security_status((data[0x04] >> 2) & 0x3),
970 		sizeof dmi->hardware_security.administrator_passwd_status);
971 	strlcpy(dmi->hardware_security.front_panel_reset_status,
972 		dmi_hardware_security_status(data[0x04] & 0x3),
973 		sizeof dmi->hardware_security.front_panel_reset_status);
974 	break;
975     case 32:			/* 3.3.33 System Boot Information */
976 	if (h->length < 0x0B)
977 	    break;
978 	dmi_system_boot_status(data[0x0A], dmi->system.system_boot_status);
979     case 38:			/* 3.3.39 IPMI Device Information */
980 	if (h->length < 0x10)
981 	    break;
982 	dmi->ipmi.filled = true;
983 	snprintf(dmi->ipmi.interface_type,
984 		 sizeof(dmi->ipmi.interface_type), "%s",
985 		 dmi_ipmi_interface_type(data[0x04]));
986 	dmi->ipmi.major_specification_version = data[0x05] >> 4;
987 	dmi->ipmi.minor_specification_version = data[0x05] & 0x0F;
988 	dmi->ipmi.I2C_slave_address = data[0x06] >> 1;
989 	if (data[0x07] != 0xFF)
990 	    dmi->ipmi.nv_address = data[0x07];
991 	else
992 	    dmi->ipmi.nv_address = 0;	/* Not Present */
993 	dmi_ipmi_base_address(data[0x04], data + 0x08, &dmi->ipmi);
994 	if (h->length < 0x12)
995 	    break;
996 	if (data[0x11] != 0x00) {
997 	    dmi->ipmi.irq = data[0x11];
998 	}
999 	break;
1000     }
1001 }
1002 
parse_dmitable(s_dmi * dmi)1003 void parse_dmitable(s_dmi * dmi)
1004 {
1005     int i = 0;
1006     uint8_t *data = NULL;
1007     uint8_t buf[dmi->dmitable.len];
1008     memcpy(buf, (int *)dmi->dmitable.base, sizeof(uint8_t) * dmi->dmitable.len);
1009     data = buf;
1010     dmi->memory_count = 0;
1011     while (i < dmi->dmitable.num && data + 4 <= buf + dmi->dmitable.len) {	/* 4 is the length of an SMBIOS structure header */
1012 	uint8_t *next;
1013 	struct dmi_header h;
1014 	to_dmi_header(&h, data);
1015 	/*
1016 	 * If a short entry is found (less than 4 bytes), not only it
1017 	 * is invalid, but we cannot reliably locate the next entry.
1018 	 * Better stop at this point, and let the user know his/her
1019 	 * table is broken.
1020 	 */
1021 	if (h.length < 4) {
1022 	    printf
1023 		("Invalid entry length (%u). DMI table is broken! Stop.\n\n",
1024 		 (unsigned int)h.length);
1025 	    break;
1026 	}
1027 
1028 	/* loo for the next handle */
1029 	next = data + h.length;
1030 	while (next - buf + 1 < dmi->dmitable.len
1031 	       && (next[0] != 0 || next[1] != 0))
1032 	    next++;
1033 	next += 2;
1034 	if (next - buf <= dmi->dmitable.len) {
1035 	    dmi_decode(&h, dmi->dmitable.ver, dmi);
1036 	}
1037 	data = next;
1038 	i++;
1039     }
1040 }
1041