1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
6 #define V8_COMPILER_CONTROL_EQUIVALENCE_H_
7 
8 #include "src/base/compiler-specific.h"
9 #include "src/compiler/graph.h"
10 #include "src/compiler/node.h"
11 #include "src/globals.h"
12 #include "src/zone/zone-containers.h"
13 
14 namespace v8 {
15 namespace internal {
16 namespace compiler {
17 
18 // Determines control dependence equivalence classes for control nodes. Any two
19 // nodes having the same set of control dependences land in one class. These
20 // classes can in turn be used to:
21 //  - Build a program structure tree (PST) for controls in the graph.
22 //  - Determine single-entry single-exit (SESE) regions within the graph.
23 //
24 // Note that this implementation actually uses cycle equivalence to establish
25 // class numbers. Any two nodes are cycle equivalent if they occur in the same
26 // set of cycles. It can be shown that control dependence equivalence reduces
27 // to undirected cycle equivalence for strongly connected control flow graphs.
28 //
29 // The algorithm is based on the paper, "The program structure tree: computing
30 // control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
31 // also contains proofs for the aforementioned equivalence. References to line
32 // numbers in the algorithm from figure 4 have been added [line:x].
33 class V8_EXPORT_PRIVATE ControlEquivalence final
NON_EXPORTED_BASE(ZoneObject)34     : public NON_EXPORTED_BASE(ZoneObject) {
35  public:
36   ControlEquivalence(Zone* zone, Graph* graph)
37       : zone_(zone),
38         graph_(graph),
39         dfs_number_(0),
40         class_number_(1),
41         node_data_(graph->NodeCount(), EmptyData(), zone) {}
42 
43   // Run the main algorithm starting from the {exit} control node. This causes
44   // the following iterations over control edges of the graph:
45   //  1) A breadth-first backwards traversal to determine the set of nodes that
46   //     participate in the next step. Takes O(E) time and O(N) space.
47   //  2) An undirected depth-first backwards traversal that determines class
48   //     numbers for all participating nodes. Takes O(E) time and O(N) space.
49   void Run(Node* exit);
50 
51   // Retrieves a previously computed class number.
52   size_t ClassOf(Node* node) {
53     DCHECK_NE(kInvalidClass, GetClass(node));
54     return GetClass(node);
55   }
56 
57  private:
58   static const size_t kInvalidClass = static_cast<size_t>(-1);
59   typedef enum { kInputDirection, kUseDirection } DFSDirection;
60 
61   struct Bracket {
62     DFSDirection direction;  // Direction in which this bracket was added.
63     size_t recent_class;     // Cached class when bracket was topmost.
64     size_t recent_size;      // Cached set-size when bracket was topmost.
65     Node* from;              // Node that this bracket originates from.
66     Node* to;                // Node that this bracket points to.
67   };
68 
69   // The set of brackets for each node during the DFS walk.
70   typedef ZoneLinkedList<Bracket> BracketList;
71 
72   struct DFSStackEntry {
73     DFSDirection direction;            // Direction currently used in DFS walk.
74     Node::InputEdges::iterator input;  // Iterator used for "input" direction.
75     Node::UseEdges::iterator use;      // Iterator used for "use" direction.
76     Node* parent_node;                 // Parent node of entry during DFS walk.
77     Node* node;                        // Node that this stack entry belongs to.
78   };
79 
80   // The stack is used during the undirected DFS walk.
81   typedef ZoneStack<DFSStackEntry> DFSStack;
82 
83   struct NodeData {
84     size_t class_number;  // Equivalence class number assigned to node.
85     size_t dfs_number;    // Pre-order DFS number assigned to node.
86     bool visited;         // Indicates node has already been visited.
87     bool on_stack;        // Indicates node is on DFS stack during walk.
88     bool participates;    // Indicates node participates in DFS walk.
89     BracketList blist;    // List of brackets per node.
90   };
91 
92   // The per-node data computed during the DFS walk.
93   typedef ZoneVector<NodeData> Data;
94 
95   // Called at pre-visit during DFS walk.
96   void VisitPre(Node* node);
97 
98   // Called at mid-visit during DFS walk.
99   void VisitMid(Node* node, DFSDirection direction);
100 
101   // Called at post-visit during DFS walk.
102   void VisitPost(Node* node, Node* parent_node, DFSDirection direction);
103 
104   // Called when hitting a back edge in the DFS walk.
105   void VisitBackedge(Node* from, Node* to, DFSDirection direction);
106 
107   // Performs and undirected DFS walk of the graph. Conceptually all nodes are
108   // expanded, splitting "input" and "use" out into separate nodes. During the
109   // traversal, edges towards the representative nodes are preferred.
110   //
111   //   \ /        - Pre-visit: When N1 is visited in direction D the preferred
112   //    x   N1      edge towards N is taken next, calling VisitPre(N).
113   //    |         - Mid-visit: After all edges out of N2 in direction D have
114   //    |   N       been visited, we switch the direction and start considering
115   //    |           edges out of N1 now, and we call VisitMid(N).
116   //    x   N2    - Post-visit: After all edges out of N1 in direction opposite
117   //   / \          to D have been visited, we pop N and call VisitPost(N).
118   //
119   // This will yield a true spanning tree (without cross or forward edges) and
120   // also discover proper back edges in both directions.
121   void RunUndirectedDFS(Node* exit);
122 
123   void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node);
124   void DetermineParticipation(Node* exit);
125 
126  private:
127   NodeData* GetData(Node* node) { return &node_data_[node->id()]; }
128   int NewClassNumber() { return class_number_++; }
129   int NewDFSNumber() { return dfs_number_++; }
130 
131   // Template used to initialize per-node data.
132   NodeData EmptyData() {
133     return {kInvalidClass, 0, false, false, false, BracketList(zone_)};
134   }
135 
136   // Accessors for the DFS number stored within the per-node data.
137   size_t GetNumber(Node* node) { return GetData(node)->dfs_number; }
138   void SetNumber(Node* node, size_t number) {
139     GetData(node)->dfs_number = number;
140   }
141 
142   // Accessors for the equivalence class stored within the per-node data.
143   size_t GetClass(Node* node) { return GetData(node)->class_number; }
144   void SetClass(Node* node, size_t number) {
145     GetData(node)->class_number = number;
146   }
147 
148   // Accessors for the bracket list stored within the per-node data.
149   BracketList& GetBracketList(Node* node) { return GetData(node)->blist; }
150   void SetBracketList(Node* node, BracketList& list) {
151     GetData(node)->blist = list;
152   }
153 
154   // Mutates the DFS stack by pushing an entry.
155   void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir);
156 
157   // Mutates the DFS stack by popping an entry.
158   void DFSPop(DFSStack& stack, Node* node);
159 
160   void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction);
161   void BracketListTRACE(BracketList& blist);
162 
163   Zone* const zone_;
164   Graph* const graph_;
165   int dfs_number_;    // Generates new DFS pre-order numbers on demand.
166   int class_number_;  // Generates new equivalence class numbers on demand.
167   Data node_data_;    // Per-node data stored as a side-table.
168 };
169 
170 }  // namespace compiler
171 }  // namespace internal
172 }  // namespace v8
173 
174 #endif  // V8_COMPILER_CONTROL_EQUIVALENCE_H_
175