1 // Copyright 2012 the V8 project authors. All rights reserved.7
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "src/crankshaft/mips/lithium-codegen-mips.h"
29 
30 #include "src/base/bits.h"
31 #include "src/code-factory.h"
32 #include "src/code-stubs.h"
33 #include "src/crankshaft/hydrogen-osr.h"
34 #include "src/crankshaft/mips/lithium-gap-resolver-mips.h"
35 #include "src/ic/ic.h"
36 #include "src/ic/stub-cache.h"
37 
38 namespace v8 {
39 namespace internal {
40 
41 
42 class SafepointGenerator final : public CallWrapper {
43  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)44   SafepointGenerator(LCodeGen* codegen,
45                      LPointerMap* pointers,
46                      Safepoint::DeoptMode mode)
47       : codegen_(codegen),
48         pointers_(pointers),
49         deopt_mode_(mode) { }
~SafepointGenerator()50   virtual ~SafepointGenerator() {}
51 
BeforeCall(int call_size) const52   void BeforeCall(int call_size) const override {}
53 
AfterCall() const54   void AfterCall() const override {
55     codegen_->RecordSafepoint(pointers_, deopt_mode_);
56   }
57 
58  private:
59   LCodeGen* codegen_;
60   LPointerMap* pointers_;
61   Safepoint::DeoptMode deopt_mode_;
62 };
63 
PushSafepointRegistersScope(LCodeGen * codegen)64 LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope(
65     LCodeGen* codegen)
66     : codegen_(codegen) {
67   DCHECK(codegen_->info()->is_calling());
68   DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
69   codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
70 
71   StoreRegistersStateStub stub(codegen_->isolate());
72   codegen_->masm_->push(ra);
73   codegen_->masm_->CallStub(&stub);
74 }
75 
~PushSafepointRegistersScope()76 LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() {
77   DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
78   RestoreRegistersStateStub stub(codegen_->isolate());
79   codegen_->masm_->push(ra);
80   codegen_->masm_->CallStub(&stub);
81   codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
82 }
83 
84 #define __ masm()->
85 
GenerateCode()86 bool LCodeGen::GenerateCode() {
87   LPhase phase("Z_Code generation", chunk());
88   DCHECK(is_unused());
89   status_ = GENERATING;
90 
91   // Open a frame scope to indicate that there is a frame on the stack.  The
92   // NONE indicates that the scope shouldn't actually generate code to set up
93   // the frame (that is done in GeneratePrologue).
94   FrameScope frame_scope(masm_, StackFrame::NONE);
95 
96   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
97          GenerateJumpTable() && GenerateSafepointTable();
98 }
99 
100 
FinishCode(Handle<Code> code)101 void LCodeGen::FinishCode(Handle<Code> code) {
102   DCHECK(is_done());
103   code->set_stack_slots(GetTotalFrameSlotCount());
104   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
105   PopulateDeoptimizationData(code);
106 }
107 
108 
SaveCallerDoubles()109 void LCodeGen::SaveCallerDoubles() {
110   DCHECK(info()->saves_caller_doubles());
111   DCHECK(NeedsEagerFrame());
112   Comment(";;; Save clobbered callee double registers");
113   int count = 0;
114   BitVector* doubles = chunk()->allocated_double_registers();
115   BitVector::Iterator save_iterator(doubles);
116   while (!save_iterator.Done()) {
117     __ sdc1(DoubleRegister::from_code(save_iterator.Current()),
118             MemOperand(sp, count * kDoubleSize));
119     save_iterator.Advance();
120     count++;
121   }
122 }
123 
124 
RestoreCallerDoubles()125 void LCodeGen::RestoreCallerDoubles() {
126   DCHECK(info()->saves_caller_doubles());
127   DCHECK(NeedsEagerFrame());
128   Comment(";;; Restore clobbered callee double registers");
129   BitVector* doubles = chunk()->allocated_double_registers();
130   BitVector::Iterator save_iterator(doubles);
131   int count = 0;
132   while (!save_iterator.Done()) {
133     __ ldc1(DoubleRegister::from_code(save_iterator.Current()),
134             MemOperand(sp, count * kDoubleSize));
135     save_iterator.Advance();
136     count++;
137   }
138 }
139 
140 
GeneratePrologue()141 bool LCodeGen::GeneratePrologue() {
142   DCHECK(is_generating());
143 
144   if (info()->IsOptimizing()) {
145     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
146 
147     // a1: Callee's JS function.
148     // cp: Callee's context.
149     // fp: Caller's frame pointer.
150     // lr: Caller's pc.
151   }
152 
153   info()->set_prologue_offset(masm_->pc_offset());
154   if (NeedsEagerFrame()) {
155     if (info()->IsStub()) {
156       __ StubPrologue(StackFrame::STUB);
157     } else {
158       __ Prologue(info()->GeneratePreagedPrologue());
159     }
160     frame_is_built_ = true;
161   }
162 
163   // Reserve space for the stack slots needed by the code.
164   int slots = GetStackSlotCount();
165   if (slots > 0) {
166     if (FLAG_debug_code) {
167       __ Subu(sp,  sp, Operand(slots * kPointerSize));
168       __ Push(a0, a1);
169       __ Addu(a0, sp, Operand(slots *  kPointerSize));
170       __ li(a1, Operand(kSlotsZapValue));
171       Label loop;
172       __ bind(&loop);
173       __ Subu(a0, a0, Operand(kPointerSize));
174       __ sw(a1, MemOperand(a0, 2 * kPointerSize));
175       __ Branch(&loop, ne, a0, Operand(sp));
176       __ Pop(a0, a1);
177     } else {
178       __ Subu(sp, sp, Operand(slots * kPointerSize));
179     }
180   }
181 
182   if (info()->saves_caller_doubles()) {
183     SaveCallerDoubles();
184   }
185   return !is_aborted();
186 }
187 
188 
DoPrologue(LPrologue * instr)189 void LCodeGen::DoPrologue(LPrologue* instr) {
190   Comment(";;; Prologue begin");
191 
192   // Possibly allocate a local context.
193   if (info()->scope()->NeedsContext()) {
194     Comment(";;; Allocate local context");
195     bool need_write_barrier = true;
196     // Argument to NewContext is the function, which is in a1.
197     int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
198     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
199     if (info()->scope()->is_script_scope()) {
200       __ push(a1);
201       __ Push(info()->scope()->scope_info());
202       __ CallRuntime(Runtime::kNewScriptContext);
203       deopt_mode = Safepoint::kLazyDeopt;
204     } else {
205       if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
206         FastNewFunctionContextStub stub(isolate());
207         __ li(FastNewFunctionContextDescriptor::SlotsRegister(),
208               Operand(slots));
209         __ CallStub(&stub);
210         // Result of FastNewFunctionContextStub is always in new space.
211         need_write_barrier = false;
212       } else {
213         __ push(a1);
214         __ CallRuntime(Runtime::kNewFunctionContext);
215       }
216     }
217     RecordSafepoint(deopt_mode);
218 
219     // Context is returned in both v0. It replaces the context passed to us.
220     // It's saved in the stack and kept live in cp.
221     __ mov(cp, v0);
222     __ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
223     // Copy any necessary parameters into the context.
224     int num_parameters = info()->scope()->num_parameters();
225     int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
226     for (int i = first_parameter; i < num_parameters; i++) {
227       Variable* var = (i == -1) ? info()->scope()->receiver()
228                                 : info()->scope()->parameter(i);
229       if (var->IsContextSlot()) {
230         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
231             (num_parameters - 1 - i) * kPointerSize;
232         // Load parameter from stack.
233         __ lw(a0, MemOperand(fp, parameter_offset));
234         // Store it in the context.
235         MemOperand target = ContextMemOperand(cp, var->index());
236         __ sw(a0, target);
237         // Update the write barrier. This clobbers a3 and a0.
238         if (need_write_barrier) {
239           __ RecordWriteContextSlot(
240               cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
241         } else if (FLAG_debug_code) {
242           Label done;
243           __ JumpIfInNewSpace(cp, a0, &done);
244           __ Abort(kExpectedNewSpaceObject);
245           __ bind(&done);
246         }
247       }
248     }
249     Comment(";;; End allocate local context");
250   }
251 
252   Comment(";;; Prologue end");
253 }
254 
255 
GenerateOsrPrologue()256 void LCodeGen::GenerateOsrPrologue() {
257   // Generate the OSR entry prologue at the first unknown OSR value, or if there
258   // are none, at the OSR entrypoint instruction.
259   if (osr_pc_offset_ >= 0) return;
260 
261   osr_pc_offset_ = masm()->pc_offset();
262 
263   // Adjust the frame size, subsuming the unoptimized frame into the
264   // optimized frame.
265   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
266   DCHECK(slots >= 0);
267   __ Subu(sp, sp, Operand(slots * kPointerSize));
268 }
269 
270 
GenerateBodyInstructionPre(LInstruction * instr)271 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
272   if (instr->IsCall()) {
273     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
274   }
275   if (!instr->IsLazyBailout() && !instr->IsGap()) {
276     safepoints_.BumpLastLazySafepointIndex();
277   }
278 }
279 
280 
GenerateDeferredCode()281 bool LCodeGen::GenerateDeferredCode() {
282   DCHECK(is_generating());
283   if (deferred_.length() > 0) {
284     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
285       LDeferredCode* code = deferred_[i];
286 
287       HValue* value =
288           instructions_->at(code->instruction_index())->hydrogen_value();
289       RecordAndWritePosition(value->position());
290 
291       Comment(";;; <@%d,#%d> "
292               "-------------------- Deferred %s --------------------",
293               code->instruction_index(),
294               code->instr()->hydrogen_value()->id(),
295               code->instr()->Mnemonic());
296       __ bind(code->entry());
297       if (NeedsDeferredFrame()) {
298         Comment(";;; Build frame");
299         DCHECK(!frame_is_built_);
300         DCHECK(info()->IsStub());
301         frame_is_built_ = true;
302         __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
303         __ PushCommonFrame(scratch0());
304         Comment(";;; Deferred code");
305       }
306       code->Generate();
307       if (NeedsDeferredFrame()) {
308         Comment(";;; Destroy frame");
309         DCHECK(frame_is_built_);
310         __ PopCommonFrame(scratch0());
311         frame_is_built_ = false;
312       }
313       __ jmp(code->exit());
314     }
315   }
316   // Deferred code is the last part of the instruction sequence. Mark
317   // the generated code as done unless we bailed out.
318   if (!is_aborted()) status_ = DONE;
319   return !is_aborted();
320 }
321 
322 
GenerateJumpTable()323 bool LCodeGen::GenerateJumpTable() {
324   if (jump_table_.length() > 0) {
325     Label needs_frame, call_deopt_entry;
326 
327     Comment(";;; -------------------- Jump table --------------------");
328     Address base = jump_table_[0].address;
329 
330     Register entry_offset = t9;
331 
332     int length = jump_table_.length();
333     for (int i = 0; i < length; i++) {
334       Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
335       __ bind(&table_entry->label);
336 
337       DCHECK(table_entry->bailout_type == jump_table_[0].bailout_type);
338       Address entry = table_entry->address;
339       DeoptComment(table_entry->deopt_info);
340 
341       // Second-level deopt table entries are contiguous and small, so instead
342       // of loading the full, absolute address of each one, load an immediate
343       // offset which will be added to the base address later.
344       __ li(entry_offset, Operand(entry - base));
345 
346       if (table_entry->needs_frame) {
347         DCHECK(!info()->saves_caller_doubles());
348         Comment(";;; call deopt with frame");
349         __ PushCommonFrame();
350         __ Call(&needs_frame);
351       } else {
352         __ Call(&call_deopt_entry);
353       }
354     }
355 
356     if (needs_frame.is_linked()) {
357       __ bind(&needs_frame);
358       // This variant of deopt can only be used with stubs. Since we don't
359       // have a function pointer to install in the stack frame that we're
360       // building, install a special marker there instead.
361       __ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
362       __ push(at);
363       DCHECK(info()->IsStub());
364     }
365 
366     Comment(";;; call deopt");
367     __ bind(&call_deopt_entry);
368 
369     if (info()->saves_caller_doubles()) {
370       DCHECK(info()->IsStub());
371       RestoreCallerDoubles();
372     }
373 
374     // Add the base address to the offset previously loaded in entry_offset.
375     __ Addu(entry_offset, entry_offset,
376             Operand(ExternalReference::ForDeoptEntry(base)));
377     __ Jump(entry_offset);
378   }
379   __ RecordComment("]");
380 
381   // The deoptimization jump table is the last part of the instruction
382   // sequence. Mark the generated code as done unless we bailed out.
383   if (!is_aborted()) status_ = DONE;
384   return !is_aborted();
385 }
386 
387 
GenerateSafepointTable()388 bool LCodeGen::GenerateSafepointTable() {
389   DCHECK(is_done());
390   safepoints_.Emit(masm(), GetTotalFrameSlotCount());
391   return !is_aborted();
392 }
393 
394 
ToRegister(int index) const395 Register LCodeGen::ToRegister(int index) const {
396   return Register::from_code(index);
397 }
398 
399 
ToDoubleRegister(int index) const400 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
401   return DoubleRegister::from_code(index);
402 }
403 
404 
ToRegister(LOperand * op) const405 Register LCodeGen::ToRegister(LOperand* op) const {
406   DCHECK(op->IsRegister());
407   return ToRegister(op->index());
408 }
409 
410 
EmitLoadRegister(LOperand * op,Register scratch)411 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
412   if (op->IsRegister()) {
413     return ToRegister(op->index());
414   } else if (op->IsConstantOperand()) {
415     LConstantOperand* const_op = LConstantOperand::cast(op);
416     HConstant* constant = chunk_->LookupConstant(const_op);
417     Handle<Object> literal = constant->handle(isolate());
418     Representation r = chunk_->LookupLiteralRepresentation(const_op);
419     if (r.IsInteger32()) {
420       AllowDeferredHandleDereference get_number;
421       DCHECK(literal->IsNumber());
422       __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
423     } else if (r.IsSmi()) {
424       DCHECK(constant->HasSmiValue());
425       __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
426     } else if (r.IsDouble()) {
427       Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
428     } else {
429       DCHECK(r.IsSmiOrTagged());
430       __ li(scratch, literal);
431     }
432     return scratch;
433   } else if (op->IsStackSlot()) {
434     __ lw(scratch, ToMemOperand(op));
435     return scratch;
436   }
437   UNREACHABLE();
438   return scratch;
439 }
440 
441 
ToDoubleRegister(LOperand * op) const442 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
443   DCHECK(op->IsDoubleRegister());
444   return ToDoubleRegister(op->index());
445 }
446 
447 
EmitLoadDoubleRegister(LOperand * op,FloatRegister flt_scratch,DoubleRegister dbl_scratch)448 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
449                                                 FloatRegister flt_scratch,
450                                                 DoubleRegister dbl_scratch) {
451   if (op->IsDoubleRegister()) {
452     return ToDoubleRegister(op->index());
453   } else if (op->IsConstantOperand()) {
454     LConstantOperand* const_op = LConstantOperand::cast(op);
455     HConstant* constant = chunk_->LookupConstant(const_op);
456     Handle<Object> literal = constant->handle(isolate());
457     Representation r = chunk_->LookupLiteralRepresentation(const_op);
458     if (r.IsInteger32()) {
459       DCHECK(literal->IsNumber());
460       __ li(at, Operand(static_cast<int32_t>(literal->Number())));
461       __ mtc1(at, flt_scratch);
462       __ cvt_d_w(dbl_scratch, flt_scratch);
463       return dbl_scratch;
464     } else if (r.IsDouble()) {
465       Abort(kUnsupportedDoubleImmediate);
466     } else if (r.IsTagged()) {
467       Abort(kUnsupportedTaggedImmediate);
468     }
469   } else if (op->IsStackSlot()) {
470     MemOperand mem_op = ToMemOperand(op);
471     __ ldc1(dbl_scratch, mem_op);
472     return dbl_scratch;
473   }
474   UNREACHABLE();
475   return dbl_scratch;
476 }
477 
478 
ToHandle(LConstantOperand * op) const479 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
480   HConstant* constant = chunk_->LookupConstant(op);
481   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
482   return constant->handle(isolate());
483 }
484 
485 
IsInteger32(LConstantOperand * op) const486 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
487   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
488 }
489 
490 
IsSmi(LConstantOperand * op) const491 bool LCodeGen::IsSmi(LConstantOperand* op) const {
492   return chunk_->LookupLiteralRepresentation(op).IsSmi();
493 }
494 
495 
ToInteger32(LConstantOperand * op) const496 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
497   return ToRepresentation(op, Representation::Integer32());
498 }
499 
500 
ToRepresentation(LConstantOperand * op,const Representation & r) const501 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
502                                    const Representation& r) const {
503   HConstant* constant = chunk_->LookupConstant(op);
504   int32_t value = constant->Integer32Value();
505   if (r.IsInteger32()) return value;
506   DCHECK(r.IsSmiOrTagged());
507   return reinterpret_cast<int32_t>(Smi::FromInt(value));
508 }
509 
510 
ToSmi(LConstantOperand * op) const511 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
512   HConstant* constant = chunk_->LookupConstant(op);
513   return Smi::FromInt(constant->Integer32Value());
514 }
515 
516 
ToDouble(LConstantOperand * op) const517 double LCodeGen::ToDouble(LConstantOperand* op) const {
518   HConstant* constant = chunk_->LookupConstant(op);
519   DCHECK(constant->HasDoubleValue());
520   return constant->DoubleValue();
521 }
522 
523 
ToOperand(LOperand * op)524 Operand LCodeGen::ToOperand(LOperand* op) {
525   if (op->IsConstantOperand()) {
526     LConstantOperand* const_op = LConstantOperand::cast(op);
527     HConstant* constant = chunk()->LookupConstant(const_op);
528     Representation r = chunk_->LookupLiteralRepresentation(const_op);
529     if (r.IsSmi()) {
530       DCHECK(constant->HasSmiValue());
531       return Operand(Smi::FromInt(constant->Integer32Value()));
532     } else if (r.IsInteger32()) {
533       DCHECK(constant->HasInteger32Value());
534       return Operand(constant->Integer32Value());
535     } else if (r.IsDouble()) {
536       Abort(kToOperandUnsupportedDoubleImmediate);
537     }
538     DCHECK(r.IsTagged());
539     return Operand(constant->handle(isolate()));
540   } else if (op->IsRegister()) {
541     return Operand(ToRegister(op));
542   } else if (op->IsDoubleRegister()) {
543     Abort(kToOperandIsDoubleRegisterUnimplemented);
544     return Operand(0);
545   }
546   // Stack slots not implemented, use ToMemOperand instead.
547   UNREACHABLE();
548   return Operand(0);
549 }
550 
551 
ArgumentsOffsetWithoutFrame(int index)552 static int ArgumentsOffsetWithoutFrame(int index) {
553   DCHECK(index < 0);
554   return -(index + 1) * kPointerSize;
555 }
556 
557 
ToMemOperand(LOperand * op) const558 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
559   DCHECK(!op->IsRegister());
560   DCHECK(!op->IsDoubleRegister());
561   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
562   if (NeedsEagerFrame()) {
563     return MemOperand(fp, FrameSlotToFPOffset(op->index()));
564   } else {
565     // Retrieve parameter without eager stack-frame relative to the
566     // stack-pointer.
567     return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
568   }
569 }
570 
571 
ToHighMemOperand(LOperand * op) const572 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
573   DCHECK(op->IsDoubleStackSlot());
574   if (NeedsEagerFrame()) {
575     return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
576   } else {
577     // Retrieve parameter without eager stack-frame relative to the
578     // stack-pointer.
579     return MemOperand(
580         sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
581   }
582 }
583 
584 
WriteTranslation(LEnvironment * environment,Translation * translation)585 void LCodeGen::WriteTranslation(LEnvironment* environment,
586                                 Translation* translation) {
587   if (environment == NULL) return;
588 
589   // The translation includes one command per value in the environment.
590   int translation_size = environment->translation_size();
591 
592   WriteTranslation(environment->outer(), translation);
593   WriteTranslationFrame(environment, translation);
594 
595   int object_index = 0;
596   int dematerialized_index = 0;
597   for (int i = 0; i < translation_size; ++i) {
598     LOperand* value = environment->values()->at(i);
599     AddToTranslation(
600         environment, translation, value, environment->HasTaggedValueAt(i),
601         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
602   }
603 }
604 
605 
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)606 void LCodeGen::AddToTranslation(LEnvironment* environment,
607                                 Translation* translation,
608                                 LOperand* op,
609                                 bool is_tagged,
610                                 bool is_uint32,
611                                 int* object_index_pointer,
612                                 int* dematerialized_index_pointer) {
613   if (op == LEnvironment::materialization_marker()) {
614     int object_index = (*object_index_pointer)++;
615     if (environment->ObjectIsDuplicateAt(object_index)) {
616       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
617       translation->DuplicateObject(dupe_of);
618       return;
619     }
620     int object_length = environment->ObjectLengthAt(object_index);
621     if (environment->ObjectIsArgumentsAt(object_index)) {
622       translation->BeginArgumentsObject(object_length);
623     } else {
624       translation->BeginCapturedObject(object_length);
625     }
626     int dematerialized_index = *dematerialized_index_pointer;
627     int env_offset = environment->translation_size() + dematerialized_index;
628     *dematerialized_index_pointer += object_length;
629     for (int i = 0; i < object_length; ++i) {
630       LOperand* value = environment->values()->at(env_offset + i);
631       AddToTranslation(environment,
632                        translation,
633                        value,
634                        environment->HasTaggedValueAt(env_offset + i),
635                        environment->HasUint32ValueAt(env_offset + i),
636                        object_index_pointer,
637                        dematerialized_index_pointer);
638     }
639     return;
640   }
641 
642   if (op->IsStackSlot()) {
643     int index = op->index();
644     if (is_tagged) {
645       translation->StoreStackSlot(index);
646     } else if (is_uint32) {
647       translation->StoreUint32StackSlot(index);
648     } else {
649       translation->StoreInt32StackSlot(index);
650     }
651   } else if (op->IsDoubleStackSlot()) {
652     int index = op->index();
653     translation->StoreDoubleStackSlot(index);
654   } else if (op->IsRegister()) {
655     Register reg = ToRegister(op);
656     if (is_tagged) {
657       translation->StoreRegister(reg);
658     } else if (is_uint32) {
659       translation->StoreUint32Register(reg);
660     } else {
661       translation->StoreInt32Register(reg);
662     }
663   } else if (op->IsDoubleRegister()) {
664     DoubleRegister reg = ToDoubleRegister(op);
665     translation->StoreDoubleRegister(reg);
666   } else if (op->IsConstantOperand()) {
667     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
668     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
669     translation->StoreLiteral(src_index);
670   } else {
671     UNREACHABLE();
672   }
673 }
674 
675 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)676 void LCodeGen::CallCode(Handle<Code> code,
677                         RelocInfo::Mode mode,
678                         LInstruction* instr) {
679   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
680 }
681 
682 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)683 void LCodeGen::CallCodeGeneric(Handle<Code> code,
684                                RelocInfo::Mode mode,
685                                LInstruction* instr,
686                                SafepointMode safepoint_mode) {
687   DCHECK(instr != NULL);
688   __ Call(code, mode);
689   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
690 }
691 
692 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)693 void LCodeGen::CallRuntime(const Runtime::Function* function,
694                            int num_arguments,
695                            LInstruction* instr,
696                            SaveFPRegsMode save_doubles) {
697   DCHECK(instr != NULL);
698 
699   __ CallRuntime(function, num_arguments, save_doubles);
700 
701   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
702 }
703 
704 
LoadContextFromDeferred(LOperand * context)705 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
706   if (context->IsRegister()) {
707     __ Move(cp, ToRegister(context));
708   } else if (context->IsStackSlot()) {
709     __ lw(cp, ToMemOperand(context));
710   } else if (context->IsConstantOperand()) {
711     HConstant* constant =
712         chunk_->LookupConstant(LConstantOperand::cast(context));
713     __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
714   } else {
715     UNREACHABLE();
716   }
717 }
718 
719 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)720 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
721                                        int argc,
722                                        LInstruction* instr,
723                                        LOperand* context) {
724   LoadContextFromDeferred(context);
725   __ CallRuntimeSaveDoubles(id);
726   RecordSafepointWithRegisters(
727       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
728 }
729 
730 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)731 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
732                                                     Safepoint::DeoptMode mode) {
733   environment->set_has_been_used();
734   if (!environment->HasBeenRegistered()) {
735     // Physical stack frame layout:
736     // -x ............. -4  0 ..................................... y
737     // [incoming arguments] [spill slots] [pushed outgoing arguments]
738 
739     // Layout of the environment:
740     // 0 ..................................................... size-1
741     // [parameters] [locals] [expression stack including arguments]
742 
743     // Layout of the translation:
744     // 0 ........................................................ size - 1 + 4
745     // [expression stack including arguments] [locals] [4 words] [parameters]
746     // |>------------  translation_size ------------<|
747 
748     int frame_count = 0;
749     int jsframe_count = 0;
750     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
751       ++frame_count;
752       if (e->frame_type() == JS_FUNCTION) {
753         ++jsframe_count;
754       }
755     }
756     Translation translation(&translations_, frame_count, jsframe_count, zone());
757     WriteTranslation(environment, &translation);
758     int deoptimization_index = deoptimizations_.length();
759     int pc_offset = masm()->pc_offset();
760     environment->Register(deoptimization_index,
761                           translation.index(),
762                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
763     deoptimizations_.Add(environment, zone());
764   }
765 }
766 
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType bailout_type,Register src1,const Operand & src2)767 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
768                             DeoptimizeReason deopt_reason,
769                             Deoptimizer::BailoutType bailout_type,
770                             Register src1, const Operand& src2) {
771   LEnvironment* environment = instr->environment();
772   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
773   DCHECK(environment->HasBeenRegistered());
774   int id = environment->deoptimization_index();
775   Address entry =
776       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
777   if (entry == NULL) {
778     Abort(kBailoutWasNotPrepared);
779     return;
780   }
781 
782   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
783     Register scratch = scratch0();
784     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
785     Label no_deopt;
786     __ Push(a1, scratch);
787     __ li(scratch, Operand(count));
788     __ lw(a1, MemOperand(scratch));
789     __ Subu(a1, a1, Operand(1));
790     __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
791     __ li(a1, Operand(FLAG_deopt_every_n_times));
792     __ sw(a1, MemOperand(scratch));
793     __ Pop(a1, scratch);
794 
795     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
796     __ bind(&no_deopt);
797     __ sw(a1, MemOperand(scratch));
798     __ Pop(a1, scratch);
799   }
800 
801   if (info()->ShouldTrapOnDeopt()) {
802     Label skip;
803     if (condition != al) {
804       __ Branch(&skip, NegateCondition(condition), src1, src2);
805     }
806     __ stop("trap_on_deopt");
807     __ bind(&skip);
808   }
809 
810   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
811 
812   DCHECK(info()->IsStub() || frame_is_built_);
813   // Go through jump table if we need to handle condition, build frame, or
814   // restore caller doubles.
815   if (condition == al && frame_is_built_ &&
816       !info()->saves_caller_doubles()) {
817     DeoptComment(deopt_info);
818     __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
819   } else {
820     Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
821                                             !frame_is_built_);
822     // We often have several deopts to the same entry, reuse the last
823     // jump entry if this is the case.
824     if (FLAG_trace_deopt || isolate()->is_profiling() ||
825         jump_table_.is_empty() ||
826         !table_entry.IsEquivalentTo(jump_table_.last())) {
827       jump_table_.Add(table_entry, zone());
828     }
829     __ Branch(&jump_table_.last().label, condition, src1, src2);
830   }
831 }
832 
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason,Register src1,const Operand & src2)833 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
834                             DeoptimizeReason deopt_reason, Register src1,
835                             const Operand& src2) {
836   Deoptimizer::BailoutType bailout_type = info()->IsStub()
837       ? Deoptimizer::LAZY
838       : Deoptimizer::EAGER;
839   DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2);
840 }
841 
842 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)843 void LCodeGen::RecordSafepointWithLazyDeopt(
844     LInstruction* instr, SafepointMode safepoint_mode) {
845   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
846     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
847   } else {
848     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
849     RecordSafepointWithRegisters(
850         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
851   }
852 }
853 
854 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)855 void LCodeGen::RecordSafepoint(
856     LPointerMap* pointers,
857     Safepoint::Kind kind,
858     int arguments,
859     Safepoint::DeoptMode deopt_mode) {
860   DCHECK(expected_safepoint_kind_ == kind);
861 
862   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
863   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
864       kind, arguments, deopt_mode);
865   for (int i = 0; i < operands->length(); i++) {
866     LOperand* pointer = operands->at(i);
867     if (pointer->IsStackSlot()) {
868       safepoint.DefinePointerSlot(pointer->index(), zone());
869     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
870       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
871     }
872   }
873 }
874 
875 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)876 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
877                                Safepoint::DeoptMode deopt_mode) {
878   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
879 }
880 
881 
RecordSafepoint(Safepoint::DeoptMode deopt_mode)882 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
883   LPointerMap empty_pointers(zone());
884   RecordSafepoint(&empty_pointers, deopt_mode);
885 }
886 
887 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)888 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
889                                             int arguments,
890                                             Safepoint::DeoptMode deopt_mode) {
891   RecordSafepoint(
892       pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
893 }
894 
895 
LabelType(LLabel * label)896 static const char* LabelType(LLabel* label) {
897   if (label->is_loop_header()) return " (loop header)";
898   if (label->is_osr_entry()) return " (OSR entry)";
899   return "";
900 }
901 
902 
DoLabel(LLabel * label)903 void LCodeGen::DoLabel(LLabel* label) {
904   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
905           current_instruction_,
906           label->hydrogen_value()->id(),
907           label->block_id(),
908           LabelType(label));
909   __ bind(label->label());
910   current_block_ = label->block_id();
911   DoGap(label);
912 }
913 
914 
DoParallelMove(LParallelMove * move)915 void LCodeGen::DoParallelMove(LParallelMove* move) {
916   resolver_.Resolve(move);
917 }
918 
919 
DoGap(LGap * gap)920 void LCodeGen::DoGap(LGap* gap) {
921   for (int i = LGap::FIRST_INNER_POSITION;
922        i <= LGap::LAST_INNER_POSITION;
923        i++) {
924     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
925     LParallelMove* move = gap->GetParallelMove(inner_pos);
926     if (move != NULL) DoParallelMove(move);
927   }
928 }
929 
930 
DoInstructionGap(LInstructionGap * instr)931 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
932   DoGap(instr);
933 }
934 
935 
DoParameter(LParameter * instr)936 void LCodeGen::DoParameter(LParameter* instr) {
937   // Nothing to do.
938 }
939 
940 
DoUnknownOSRValue(LUnknownOSRValue * instr)941 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
942   GenerateOsrPrologue();
943 }
944 
945 
DoModByPowerOf2I(LModByPowerOf2I * instr)946 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
947   Register dividend = ToRegister(instr->dividend());
948   int32_t divisor = instr->divisor();
949   DCHECK(dividend.is(ToRegister(instr->result())));
950 
951   // Theoretically, a variation of the branch-free code for integer division by
952   // a power of 2 (calculating the remainder via an additional multiplication
953   // (which gets simplified to an 'and') and subtraction) should be faster, and
954   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
955   // indicate that positive dividends are heavily favored, so the branching
956   // version performs better.
957   HMod* hmod = instr->hydrogen();
958   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
959   Label dividend_is_not_negative, done;
960 
961   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
962     __ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
963     // Note: The code below even works when right contains kMinInt.
964     __ subu(dividend, zero_reg, dividend);
965     __ And(dividend, dividend, Operand(mask));
966     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
967       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
968                    Operand(zero_reg));
969     }
970     __ Branch(USE_DELAY_SLOT, &done);
971     __ subu(dividend, zero_reg, dividend);
972   }
973 
974   __ bind(&dividend_is_not_negative);
975   __ And(dividend, dividend, Operand(mask));
976   __ bind(&done);
977 }
978 
979 
DoModByConstI(LModByConstI * instr)980 void LCodeGen::DoModByConstI(LModByConstI* instr) {
981   Register dividend = ToRegister(instr->dividend());
982   int32_t divisor = instr->divisor();
983   Register result = ToRegister(instr->result());
984   DCHECK(!dividend.is(result));
985 
986   if (divisor == 0) {
987     DeoptimizeIf(al, instr);
988     return;
989   }
990 
991   __ TruncatingDiv(result, dividend, Abs(divisor));
992   __ Mul(result, result, Operand(Abs(divisor)));
993   __ Subu(result, dividend, Operand(result));
994 
995   // Check for negative zero.
996   HMod* hmod = instr->hydrogen();
997   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
998     Label remainder_not_zero;
999     __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
1000     DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, dividend,
1001                  Operand(zero_reg));
1002     __ bind(&remainder_not_zero);
1003   }
1004 }
1005 
1006 
DoModI(LModI * instr)1007 void LCodeGen::DoModI(LModI* instr) {
1008   HMod* hmod = instr->hydrogen();
1009   const Register left_reg = ToRegister(instr->left());
1010   const Register right_reg = ToRegister(instr->right());
1011   const Register result_reg = ToRegister(instr->result());
1012 
1013   // div runs in the background while we check for special cases.
1014   __ Mod(result_reg, left_reg, right_reg);
1015 
1016   Label done;
1017   // Check for x % 0, we have to deopt in this case because we can't return a
1018   // NaN.
1019   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1020     DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, right_reg,
1021                  Operand(zero_reg));
1022   }
1023 
1024   // Check for kMinInt % -1, div will return kMinInt, which is not what we
1025   // want. We have to deopt if we care about -0, because we can't return that.
1026   if (hmod->CheckFlag(HValue::kCanOverflow)) {
1027     Label no_overflow_possible;
1028     __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
1029     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1030       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, right_reg,
1031                    Operand(-1));
1032     } else {
1033       __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
1034       __ Branch(USE_DELAY_SLOT, &done);
1035       __ mov(result_reg, zero_reg);
1036     }
1037     __ bind(&no_overflow_possible);
1038   }
1039 
1040   // If we care about -0, test if the dividend is <0 and the result is 0.
1041   __ Branch(&done, ge, left_reg, Operand(zero_reg));
1042   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1043     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result_reg,
1044                  Operand(zero_reg));
1045   }
1046   __ bind(&done);
1047 }
1048 
1049 
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1050 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1051   Register dividend = ToRegister(instr->dividend());
1052   int32_t divisor = instr->divisor();
1053   Register result = ToRegister(instr->result());
1054   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1055   DCHECK(!result.is(dividend));
1056 
1057   // Check for (0 / -x) that will produce negative zero.
1058   HDiv* hdiv = instr->hydrogen();
1059   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1060     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
1061                  Operand(zero_reg));
1062   }
1063   // Check for (kMinInt / -1).
1064   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1065     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, dividend,
1066                  Operand(kMinInt));
1067   }
1068   // Deoptimize if remainder will not be 0.
1069   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1070       divisor != 1 && divisor != -1) {
1071     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1072     __ And(at, dividend, Operand(mask));
1073     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, at,
1074                  Operand(zero_reg));
1075   }
1076 
1077   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
1078     __ Subu(result, zero_reg, dividend);
1079     return;
1080   }
1081   uint16_t shift = WhichPowerOf2Abs(divisor);
1082   if (shift == 0) {
1083     __ Move(result, dividend);
1084   } else if (shift == 1) {
1085     __ srl(result, dividend, 31);
1086     __ Addu(result, dividend, Operand(result));
1087   } else {
1088     __ sra(result, dividend, 31);
1089     __ srl(result, result, 32 - shift);
1090     __ Addu(result, dividend, Operand(result));
1091   }
1092   if (shift > 0) __ sra(result, result, shift);
1093   if (divisor < 0) __ Subu(result, zero_reg, result);
1094 }
1095 
1096 
DoDivByConstI(LDivByConstI * instr)1097 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1098   Register dividend = ToRegister(instr->dividend());
1099   int32_t divisor = instr->divisor();
1100   Register result = ToRegister(instr->result());
1101   DCHECK(!dividend.is(result));
1102 
1103   if (divisor == 0) {
1104     DeoptimizeIf(al, instr);
1105     return;
1106   }
1107 
1108   // Check for (0 / -x) that will produce negative zero.
1109   HDiv* hdiv = instr->hydrogen();
1110   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1111     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
1112                  Operand(zero_reg));
1113   }
1114 
1115   __ TruncatingDiv(result, dividend, Abs(divisor));
1116   if (divisor < 0) __ Subu(result, zero_reg, result);
1117 
1118   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1119     __ Mul(scratch0(), result, Operand(divisor));
1120     __ Subu(scratch0(), scratch0(), dividend);
1121     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, scratch0(),
1122                  Operand(zero_reg));
1123   }
1124 }
1125 
1126 
1127 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1128 void LCodeGen::DoDivI(LDivI* instr) {
1129   HBinaryOperation* hdiv = instr->hydrogen();
1130   Register dividend = ToRegister(instr->dividend());
1131   Register divisor = ToRegister(instr->divisor());
1132   const Register result = ToRegister(instr->result());
1133   Register remainder = ToRegister(instr->temp());
1134 
1135   // On MIPS div is asynchronous - it will run in the background while we
1136   // check for special cases.
1137   __ Div(remainder, result, dividend, divisor);
1138 
1139   // Check for x / 0.
1140   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1141     DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor,
1142                  Operand(zero_reg));
1143   }
1144 
1145   // Check for (0 / -x) that will produce negative zero.
1146   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1147     Label left_not_zero;
1148     __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1149     DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor,
1150                  Operand(zero_reg));
1151     __ bind(&left_not_zero);
1152   }
1153 
1154   // Check for (kMinInt / -1).
1155   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1156       !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1157     Label left_not_min_int;
1158     __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1159     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1));
1160     __ bind(&left_not_min_int);
1161   }
1162 
1163   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1164     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, remainder,
1165                  Operand(zero_reg));
1166   }
1167 }
1168 
1169 
DoMultiplyAddD(LMultiplyAddD * instr)1170 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1171   DoubleRegister addend = ToDoubleRegister(instr->addend());
1172   DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1173   DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1174 
1175   // This is computed in-place.
1176   DCHECK(addend.is(ToDoubleRegister(instr->result())));
1177 
1178   __ madd_d(addend, addend, multiplier, multiplicand);
1179 }
1180 
1181 
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1182 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1183   Register dividend = ToRegister(instr->dividend());
1184   Register result = ToRegister(instr->result());
1185   int32_t divisor = instr->divisor();
1186   Register scratch = result.is(dividend) ? scratch0() : dividend;
1187   DCHECK(!result.is(dividend) || !scratch.is(dividend));
1188 
1189   // If the divisor is 1, return the dividend.
1190   if (divisor == 1) {
1191     __ Move(result, dividend);
1192     return;
1193   }
1194 
1195   // If the divisor is positive, things are easy: There can be no deopts and we
1196   // can simply do an arithmetic right shift.
1197   uint16_t shift = WhichPowerOf2Abs(divisor);
1198   if (divisor > 1) {
1199     __ sra(result, dividend, shift);
1200     return;
1201   }
1202 
1203   // If the divisor is negative, we have to negate and handle edge cases.
1204 
1205   // dividend can be the same register as result so save the value of it
1206   // for checking overflow.
1207   __ Move(scratch, dividend);
1208 
1209   __ Subu(result, zero_reg, dividend);
1210   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1211     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result,
1212                  Operand(zero_reg));
1213   }
1214 
1215   // Dividing by -1 is basically negation, unless we overflow.
1216   __ Xor(scratch, scratch, result);
1217   if (divisor == -1) {
1218     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1219       DeoptimizeIf(ge, instr, DeoptimizeReason::kOverflow, scratch,
1220                    Operand(zero_reg));
1221     }
1222     return;
1223   }
1224 
1225   // If the negation could not overflow, simply shifting is OK.
1226   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1227     __ sra(result, result, shift);
1228     return;
1229   }
1230 
1231   Label no_overflow, done;
1232   __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
1233   __ li(result, Operand(kMinInt / divisor));
1234   __ Branch(&done);
1235   __ bind(&no_overflow);
1236   __ sra(result, result, shift);
1237   __ bind(&done);
1238 }
1239 
1240 
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1241 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1242   Register dividend = ToRegister(instr->dividend());
1243   int32_t divisor = instr->divisor();
1244   Register result = ToRegister(instr->result());
1245   DCHECK(!dividend.is(result));
1246 
1247   if (divisor == 0) {
1248     DeoptimizeIf(al, instr);
1249     return;
1250   }
1251 
1252   // Check for (0 / -x) that will produce negative zero.
1253   HMathFloorOfDiv* hdiv = instr->hydrogen();
1254   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1255     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend,
1256                  Operand(zero_reg));
1257   }
1258 
1259   // Easy case: We need no dynamic check for the dividend and the flooring
1260   // division is the same as the truncating division.
1261   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1262       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1263     __ TruncatingDiv(result, dividend, Abs(divisor));
1264     if (divisor < 0) __ Subu(result, zero_reg, result);
1265     return;
1266   }
1267 
1268   // In the general case we may need to adjust before and after the truncating
1269   // division to get a flooring division.
1270   Register temp = ToRegister(instr->temp());
1271   DCHECK(!temp.is(dividend) && !temp.is(result));
1272   Label needs_adjustment, done;
1273   __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
1274             dividend, Operand(zero_reg));
1275   __ TruncatingDiv(result, dividend, Abs(divisor));
1276   if (divisor < 0) __ Subu(result, zero_reg, result);
1277   __ jmp(&done);
1278   __ bind(&needs_adjustment);
1279   __ Addu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1280   __ TruncatingDiv(result, temp, Abs(divisor));
1281   if (divisor < 0) __ Subu(result, zero_reg, result);
1282   __ Subu(result, result, Operand(1));
1283   __ bind(&done);
1284 }
1285 
1286 
1287 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1288 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1289   HBinaryOperation* hdiv = instr->hydrogen();
1290   Register dividend = ToRegister(instr->dividend());
1291   Register divisor = ToRegister(instr->divisor());
1292   const Register result = ToRegister(instr->result());
1293   Register remainder = scratch0();
1294   // On MIPS div is asynchronous - it will run in the background while we
1295   // check for special cases.
1296   __ Div(remainder, result, dividend, divisor);
1297 
1298   // Check for x / 0.
1299   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1300     DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor,
1301                  Operand(zero_reg));
1302   }
1303 
1304   // Check for (0 / -x) that will produce negative zero.
1305   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1306     Label left_not_zero;
1307     __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1308     DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor,
1309                  Operand(zero_reg));
1310     __ bind(&left_not_zero);
1311   }
1312 
1313   // Check for (kMinInt / -1).
1314   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1315       !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1316     Label left_not_min_int;
1317     __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1318     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1));
1319     __ bind(&left_not_min_int);
1320   }
1321 
1322   // We performed a truncating division. Correct the result if necessary.
1323   Label done;
1324   __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
1325   __ Xor(remainder, remainder, Operand(divisor));
1326   __ Branch(&done, ge, remainder, Operand(zero_reg));
1327   __ Subu(result, result, Operand(1));
1328   __ bind(&done);
1329 }
1330 
1331 
DoMulI(LMulI * instr)1332 void LCodeGen::DoMulI(LMulI* instr) {
1333   Register scratch = scratch0();
1334   Register result = ToRegister(instr->result());
1335   // Note that result may alias left.
1336   Register left = ToRegister(instr->left());
1337   LOperand* right_op = instr->right();
1338 
1339   bool bailout_on_minus_zero =
1340     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1341   bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1342 
1343   if (right_op->IsConstantOperand()) {
1344     int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1345 
1346     if (bailout_on_minus_zero && (constant < 0)) {
1347       // The case of a null constant will be handled separately.
1348       // If constant is negative and left is null, the result should be -0.
1349       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, left,
1350                    Operand(zero_reg));
1351     }
1352 
1353     switch (constant) {
1354       case -1:
1355         if (overflow) {
1356           Label no_overflow;
1357           __ SubBranchNoOvf(result, zero_reg, Operand(left), &no_overflow);
1358           DeoptimizeIf(al, instr);
1359           __ bind(&no_overflow);
1360         } else {
1361           __ Subu(result, zero_reg, left);
1362         }
1363         break;
1364       case 0:
1365         if (bailout_on_minus_zero) {
1366           // If left is strictly negative and the constant is null, the
1367           // result is -0. Deoptimize if required, otherwise return 0.
1368           DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, left,
1369                        Operand(zero_reg));
1370         }
1371         __ mov(result, zero_reg);
1372         break;
1373       case 1:
1374         // Nothing to do.
1375         __ Move(result, left);
1376         break;
1377       default:
1378         // Multiplying by powers of two and powers of two plus or minus
1379         // one can be done faster with shifted operands.
1380         // For other constants we emit standard code.
1381         int32_t mask = constant >> 31;
1382         uint32_t constant_abs = (constant + mask) ^ mask;
1383 
1384         if (base::bits::IsPowerOfTwo32(constant_abs)) {
1385           int32_t shift = WhichPowerOf2(constant_abs);
1386           __ sll(result, left, shift);
1387           // Correct the sign of the result if the constant is negative.
1388           if (constant < 0)  __ Subu(result, zero_reg, result);
1389         } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1390           int32_t shift = WhichPowerOf2(constant_abs - 1);
1391           __ Lsa(result, left, left, shift);
1392           // Correct the sign of the result if the constant is negative.
1393           if (constant < 0)  __ Subu(result, zero_reg, result);
1394         } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1395           int32_t shift = WhichPowerOf2(constant_abs + 1);
1396           __ sll(scratch, left, shift);
1397           __ Subu(result, scratch, left);
1398           // Correct the sign of the result if the constant is negative.
1399           if (constant < 0)  __ Subu(result, zero_reg, result);
1400         } else {
1401           // Generate standard code.
1402           __ li(at, constant);
1403           __ Mul(result, left, at);
1404         }
1405     }
1406 
1407   } else {
1408     DCHECK(right_op->IsRegister());
1409     Register right = ToRegister(right_op);
1410 
1411     if (overflow) {
1412       // hi:lo = left * right.
1413       if (instr->hydrogen()->representation().IsSmi()) {
1414         __ SmiUntag(result, left);
1415         __ Mul(scratch, result, result, right);
1416       } else {
1417         __ Mul(scratch, result, left, right);
1418       }
1419       __ sra(at, result, 31);
1420       DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, scratch,
1421                    Operand(at));
1422     } else {
1423       if (instr->hydrogen()->representation().IsSmi()) {
1424         __ SmiUntag(result, left);
1425         __ Mul(result, result, right);
1426       } else {
1427         __ Mul(result, left, right);
1428       }
1429     }
1430 
1431     if (bailout_on_minus_zero) {
1432       Label done;
1433       __ Xor(at, left, right);
1434       __ Branch(&done, ge, at, Operand(zero_reg));
1435       // Bail out if the result is minus zero.
1436       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result,
1437                    Operand(zero_reg));
1438       __ bind(&done);
1439     }
1440   }
1441 }
1442 
1443 
DoBitI(LBitI * instr)1444 void LCodeGen::DoBitI(LBitI* instr) {
1445   LOperand* left_op = instr->left();
1446   LOperand* right_op = instr->right();
1447   DCHECK(left_op->IsRegister());
1448   Register left = ToRegister(left_op);
1449   Register result = ToRegister(instr->result());
1450   Operand right(no_reg);
1451 
1452   if (right_op->IsStackSlot()) {
1453     right = Operand(EmitLoadRegister(right_op, at));
1454   } else {
1455     DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1456     right = ToOperand(right_op);
1457   }
1458 
1459   switch (instr->op()) {
1460     case Token::BIT_AND:
1461       __ And(result, left, right);
1462       break;
1463     case Token::BIT_OR:
1464       __ Or(result, left, right);
1465       break;
1466     case Token::BIT_XOR:
1467       if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1468         __ Nor(result, zero_reg, left);
1469       } else {
1470         __ Xor(result, left, right);
1471       }
1472       break;
1473     default:
1474       UNREACHABLE();
1475       break;
1476   }
1477 }
1478 
1479 
DoShiftI(LShiftI * instr)1480 void LCodeGen::DoShiftI(LShiftI* instr) {
1481   // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1482   // result may alias either of them.
1483   LOperand* right_op = instr->right();
1484   Register left = ToRegister(instr->left());
1485   Register result = ToRegister(instr->result());
1486   Register scratch = scratch0();
1487 
1488   if (right_op->IsRegister()) {
1489     // No need to mask the right operand on MIPS, it is built into the variable
1490     // shift instructions.
1491     switch (instr->op()) {
1492       case Token::ROR:
1493         __ Ror(result, left, Operand(ToRegister(right_op)));
1494         break;
1495       case Token::SAR:
1496         __ srav(result, left, ToRegister(right_op));
1497         break;
1498       case Token::SHR:
1499         __ srlv(result, left, ToRegister(right_op));
1500         if (instr->can_deopt()) {
1501           DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, result,
1502                        Operand(zero_reg));
1503         }
1504         break;
1505       case Token::SHL:
1506         __ sllv(result, left, ToRegister(right_op));
1507         break;
1508       default:
1509         UNREACHABLE();
1510         break;
1511     }
1512   } else {
1513     // Mask the right_op operand.
1514     int value = ToInteger32(LConstantOperand::cast(right_op));
1515     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1516     switch (instr->op()) {
1517       case Token::ROR:
1518         if (shift_count != 0) {
1519           __ Ror(result, left, Operand(shift_count));
1520         } else {
1521           __ Move(result, left);
1522         }
1523         break;
1524       case Token::SAR:
1525         if (shift_count != 0) {
1526           __ sra(result, left, shift_count);
1527         } else {
1528           __ Move(result, left);
1529         }
1530         break;
1531       case Token::SHR:
1532         if (shift_count != 0) {
1533           __ srl(result, left, shift_count);
1534         } else {
1535           if (instr->can_deopt()) {
1536             __ And(at, left, Operand(0x80000000));
1537             DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue, at,
1538                          Operand(zero_reg));
1539           }
1540           __ Move(result, left);
1541         }
1542         break;
1543       case Token::SHL:
1544         if (shift_count != 0) {
1545           if (instr->hydrogen_value()->representation().IsSmi() &&
1546               instr->can_deopt()) {
1547             if (shift_count != 1) {
1548               __ sll(result, left, shift_count - 1);
1549               __ SmiTagCheckOverflow(result, result, scratch);
1550             } else {
1551               __ SmiTagCheckOverflow(result, left, scratch);
1552             }
1553             DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, scratch,
1554                          Operand(zero_reg));
1555           } else {
1556             __ sll(result, left, shift_count);
1557           }
1558         } else {
1559           __ Move(result, left);
1560         }
1561         break;
1562       default:
1563         UNREACHABLE();
1564         break;
1565     }
1566   }
1567 }
1568 
1569 
DoSubI(LSubI * instr)1570 void LCodeGen::DoSubI(LSubI* instr) {
1571   LOperand* left = instr->left();
1572   LOperand* right = instr->right();
1573   LOperand* result = instr->result();
1574   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1575 
1576   if (!can_overflow) {
1577     if (right->IsStackSlot()) {
1578       Register right_reg = EmitLoadRegister(right, at);
1579       __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
1580     } else {
1581       DCHECK(right->IsRegister() || right->IsConstantOperand());
1582       __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
1583     }
1584   } else {  // can_overflow.
1585     Register scratch = scratch0();
1586     Label no_overflow_label;
1587     if (right->IsStackSlot()) {
1588       Register right_reg = EmitLoadRegister(right, scratch);
1589       __ SubBranchNoOvf(ToRegister(result), ToRegister(left),
1590                         Operand(right_reg), &no_overflow_label);
1591     } else {
1592       DCHECK(right->IsRegister() || right->IsConstantOperand());
1593       __ SubBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1594                         &no_overflow_label, scratch);
1595     }
1596     DeoptimizeIf(al, instr);
1597     __ bind(&no_overflow_label);
1598   }
1599 }
1600 
1601 
DoConstantI(LConstantI * instr)1602 void LCodeGen::DoConstantI(LConstantI* instr) {
1603   __ li(ToRegister(instr->result()), Operand(instr->value()));
1604 }
1605 
1606 
DoConstantS(LConstantS * instr)1607 void LCodeGen::DoConstantS(LConstantS* instr) {
1608   __ li(ToRegister(instr->result()), Operand(instr->value()));
1609 }
1610 
1611 
DoConstantD(LConstantD * instr)1612 void LCodeGen::DoConstantD(LConstantD* instr) {
1613   DCHECK(instr->result()->IsDoubleRegister());
1614   DoubleRegister result = ToDoubleRegister(instr->result());
1615   double v = instr->value();
1616   __ Move(result, v);
1617 }
1618 
1619 
DoConstantE(LConstantE * instr)1620 void LCodeGen::DoConstantE(LConstantE* instr) {
1621   __ li(ToRegister(instr->result()), Operand(instr->value()));
1622 }
1623 
1624 
DoConstantT(LConstantT * instr)1625 void LCodeGen::DoConstantT(LConstantT* instr) {
1626   Handle<Object> object = instr->value(isolate());
1627   AllowDeferredHandleDereference smi_check;
1628   __ li(ToRegister(instr->result()), object);
1629 }
1630 
1631 
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1632 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1633                                            LOperand* index,
1634                                            String::Encoding encoding) {
1635   if (index->IsConstantOperand()) {
1636     int offset = ToInteger32(LConstantOperand::cast(index));
1637     if (encoding == String::TWO_BYTE_ENCODING) {
1638       offset *= kUC16Size;
1639     }
1640     STATIC_ASSERT(kCharSize == 1);
1641     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1642   }
1643   Register scratch = scratch0();
1644   DCHECK(!scratch.is(string));
1645   DCHECK(!scratch.is(ToRegister(index)));
1646   if (encoding == String::ONE_BYTE_ENCODING) {
1647     __ Addu(scratch, string, ToRegister(index));
1648   } else {
1649     STATIC_ASSERT(kUC16Size == 2);
1650     __ sll(scratch, ToRegister(index), 1);
1651     __ Addu(scratch, string, scratch);
1652   }
1653   return FieldMemOperand(scratch, SeqString::kHeaderSize);
1654 }
1655 
1656 
DoSeqStringGetChar(LSeqStringGetChar * instr)1657 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1658   String::Encoding encoding = instr->hydrogen()->encoding();
1659   Register string = ToRegister(instr->string());
1660   Register result = ToRegister(instr->result());
1661 
1662   if (FLAG_debug_code) {
1663     Register scratch = scratch0();
1664     __ lw(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1665     __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1666 
1667     __ And(scratch, scratch,
1668            Operand(kStringRepresentationMask | kStringEncodingMask));
1669     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1670     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1671     __ Subu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1672                                 ? one_byte_seq_type : two_byte_seq_type));
1673     __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
1674   }
1675 
1676   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1677   if (encoding == String::ONE_BYTE_ENCODING) {
1678     __ lbu(result, operand);
1679   } else {
1680     __ lhu(result, operand);
1681   }
1682 }
1683 
1684 
DoSeqStringSetChar(LSeqStringSetChar * instr)1685 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1686   String::Encoding encoding = instr->hydrogen()->encoding();
1687   Register string = ToRegister(instr->string());
1688   Register value = ToRegister(instr->value());
1689 
1690   if (FLAG_debug_code) {
1691     Register scratch = scratch0();
1692     Register index = ToRegister(instr->index());
1693     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1694     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1695     int encoding_mask =
1696         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1697         ? one_byte_seq_type : two_byte_seq_type;
1698     __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
1699   }
1700 
1701   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1702   if (encoding == String::ONE_BYTE_ENCODING) {
1703     __ sb(value, operand);
1704   } else {
1705     __ sh(value, operand);
1706   }
1707 }
1708 
1709 
DoAddI(LAddI * instr)1710 void LCodeGen::DoAddI(LAddI* instr) {
1711   LOperand* left = instr->left();
1712   LOperand* right = instr->right();
1713   LOperand* result = instr->result();
1714   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1715 
1716   if (!can_overflow) {
1717     if (right->IsStackSlot()) {
1718       Register right_reg = EmitLoadRegister(right, at);
1719       __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
1720     } else {
1721       DCHECK(right->IsRegister() || right->IsConstantOperand());
1722       __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
1723     }
1724   } else {  // can_overflow.
1725     Register scratch = scratch1();
1726     Label no_overflow_label;
1727     if (right->IsStackSlot()) {
1728       Register right_reg = EmitLoadRegister(right, scratch);
1729       __ AddBranchNoOvf(ToRegister(result), ToRegister(left),
1730                         Operand(right_reg), &no_overflow_label);
1731     } else {
1732       DCHECK(right->IsRegister() || right->IsConstantOperand());
1733       __ AddBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1734                         &no_overflow_label, scratch);
1735     }
1736     DeoptimizeIf(al, instr);
1737     __ bind(&no_overflow_label);
1738   }
1739 }
1740 
1741 
DoMathMinMax(LMathMinMax * instr)1742 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1743   LOperand* left = instr->left();
1744   LOperand* right = instr->right();
1745   HMathMinMax::Operation operation = instr->hydrogen()->operation();
1746   Register scratch = scratch1();
1747   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1748     Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1749     Register left_reg = ToRegister(left);
1750     Register right_reg = EmitLoadRegister(right, scratch0());
1751     Register result_reg = ToRegister(instr->result());
1752     Label return_right, done;
1753     __ Slt(scratch, left_reg, Operand(right_reg));
1754     if (condition == ge) {
1755      __  Movz(result_reg, left_reg, scratch);
1756      __  Movn(result_reg, right_reg, scratch);
1757     } else {
1758      DCHECK(condition == le);
1759      __  Movn(result_reg, left_reg, scratch);
1760      __  Movz(result_reg, right_reg, scratch);
1761     }
1762   } else {
1763     DCHECK(instr->hydrogen()->representation().IsDouble());
1764     FPURegister left_reg = ToDoubleRegister(left);
1765     FPURegister right_reg = ToDoubleRegister(right);
1766     FPURegister result_reg = ToDoubleRegister(instr->result());
1767     Label nan, done;
1768     if (operation == HMathMinMax::kMathMax) {
1769       __ MaxNaNCheck_d(result_reg, left_reg, right_reg, &nan);
1770     } else {
1771       DCHECK(operation == HMathMinMax::kMathMin);
1772       __ MinNaNCheck_d(result_reg, left_reg, right_reg, &nan);
1773     }
1774     __ Branch(&done);
1775 
1776     __ bind(&nan);
1777     __ LoadRoot(scratch, Heap::kNanValueRootIndex);
1778     __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
1779 
1780     __ bind(&done);
1781   }
1782 }
1783 
1784 
DoArithmeticD(LArithmeticD * instr)1785 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1786   DoubleRegister left = ToDoubleRegister(instr->left());
1787   DoubleRegister right = ToDoubleRegister(instr->right());
1788   DoubleRegister result = ToDoubleRegister(instr->result());
1789   switch (instr->op()) {
1790     case Token::ADD:
1791       __ add_d(result, left, right);
1792       break;
1793     case Token::SUB:
1794       __ sub_d(result, left, right);
1795       break;
1796     case Token::MUL:
1797       __ mul_d(result, left, right);
1798       break;
1799     case Token::DIV:
1800       __ div_d(result, left, right);
1801       break;
1802     case Token::MOD: {
1803       // Save a0-a3 on the stack.
1804       RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
1805       __ MultiPush(saved_regs);
1806 
1807       __ PrepareCallCFunction(0, 2, scratch0());
1808       __ MovToFloatParameters(left, right);
1809       __ CallCFunction(
1810           ExternalReference::mod_two_doubles_operation(isolate()),
1811           0, 2);
1812       // Move the result in the double result register.
1813       __ MovFromFloatResult(result);
1814 
1815       // Restore saved register.
1816       __ MultiPop(saved_regs);
1817       break;
1818     }
1819     default:
1820       UNREACHABLE();
1821       break;
1822   }
1823 }
1824 
1825 
DoArithmeticT(LArithmeticT * instr)1826 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1827   DCHECK(ToRegister(instr->context()).is(cp));
1828   DCHECK(ToRegister(instr->left()).is(a1));
1829   DCHECK(ToRegister(instr->right()).is(a0));
1830   DCHECK(ToRegister(instr->result()).is(v0));
1831 
1832   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1833   CallCode(code, RelocInfo::CODE_TARGET, instr);
1834   // Other arch use a nop here, to signal that there is no inlined
1835   // patchable code. Mips does not need the nop, since our marker
1836   // instruction (andi zero_reg) will never be used in normal code.
1837 }
1838 
1839 
1840 template<class InstrType>
EmitBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)1841 void LCodeGen::EmitBranch(InstrType instr,
1842                           Condition condition,
1843                           Register src1,
1844                           const Operand& src2) {
1845   int left_block = instr->TrueDestination(chunk_);
1846   int right_block = instr->FalseDestination(chunk_);
1847 
1848   int next_block = GetNextEmittedBlock();
1849   if (right_block == left_block || condition == al) {
1850     EmitGoto(left_block);
1851   } else if (left_block == next_block) {
1852     __ Branch(chunk_->GetAssemblyLabel(right_block),
1853               NegateCondition(condition), src1, src2);
1854   } else if (right_block == next_block) {
1855     __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
1856   } else {
1857     __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
1858     __ Branch(chunk_->GetAssemblyLabel(right_block));
1859   }
1860 }
1861 
1862 
1863 template<class InstrType>
EmitBranchF(InstrType instr,Condition condition,FPURegister src1,FPURegister src2)1864 void LCodeGen::EmitBranchF(InstrType instr,
1865                            Condition condition,
1866                            FPURegister src1,
1867                            FPURegister src2) {
1868   int right_block = instr->FalseDestination(chunk_);
1869   int left_block = instr->TrueDestination(chunk_);
1870 
1871   int next_block = GetNextEmittedBlock();
1872   if (right_block == left_block) {
1873     EmitGoto(left_block);
1874   } else if (left_block == next_block) {
1875     __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
1876                NegateFpuCondition(condition), src1, src2);
1877   } else if (right_block == next_block) {
1878     __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
1879                condition, src1, src2);
1880   } else {
1881     __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
1882                condition, src1, src2);
1883     __ Branch(chunk_->GetAssemblyLabel(right_block));
1884   }
1885 }
1886 
1887 
1888 template <class InstrType>
EmitTrueBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)1889 void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition,
1890                               Register src1, const Operand& src2) {
1891   int true_block = instr->TrueDestination(chunk_);
1892   __ Branch(chunk_->GetAssemblyLabel(true_block), condition, src1, src2);
1893 }
1894 
1895 
1896 template <class InstrType>
EmitFalseBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)1897 void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition,
1898                                Register src1, const Operand& src2) {
1899   int false_block = instr->FalseDestination(chunk_);
1900   __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
1901 }
1902 
1903 
1904 template<class InstrType>
EmitFalseBranchF(InstrType instr,Condition condition,FPURegister src1,FPURegister src2)1905 void LCodeGen::EmitFalseBranchF(InstrType instr,
1906                                 Condition condition,
1907                                 FPURegister src1,
1908                                 FPURegister src2) {
1909   int false_block = instr->FalseDestination(chunk_);
1910   __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
1911              condition, src1, src2);
1912 }
1913 
1914 
DoDebugBreak(LDebugBreak * instr)1915 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
1916   __ stop("LDebugBreak");
1917 }
1918 
1919 
DoBranch(LBranch * instr)1920 void LCodeGen::DoBranch(LBranch* instr) {
1921   Representation r = instr->hydrogen()->value()->representation();
1922   if (r.IsInteger32() || r.IsSmi()) {
1923     DCHECK(!info()->IsStub());
1924     Register reg = ToRegister(instr->value());
1925     EmitBranch(instr, ne, reg, Operand(zero_reg));
1926   } else if (r.IsDouble()) {
1927     DCHECK(!info()->IsStub());
1928     DoubleRegister reg = ToDoubleRegister(instr->value());
1929     // Test the double value. Zero and NaN are false.
1930     EmitBranchF(instr, ogl, reg, kDoubleRegZero);
1931   } else {
1932     DCHECK(r.IsTagged());
1933     Register reg = ToRegister(instr->value());
1934     HType type = instr->hydrogen()->value()->type();
1935     if (type.IsBoolean()) {
1936       DCHECK(!info()->IsStub());
1937       __ LoadRoot(at, Heap::kTrueValueRootIndex);
1938       EmitBranch(instr, eq, reg, Operand(at));
1939     } else if (type.IsSmi()) {
1940       DCHECK(!info()->IsStub());
1941       EmitBranch(instr, ne, reg, Operand(zero_reg));
1942     } else if (type.IsJSArray()) {
1943       DCHECK(!info()->IsStub());
1944       EmitBranch(instr, al, zero_reg, Operand(zero_reg));
1945     } else if (type.IsHeapNumber()) {
1946       DCHECK(!info()->IsStub());
1947       DoubleRegister dbl_scratch = double_scratch0();
1948       __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
1949       // Test the double value. Zero and NaN are false.
1950       EmitBranchF(instr, ogl, dbl_scratch, kDoubleRegZero);
1951     } else if (type.IsString()) {
1952       DCHECK(!info()->IsStub());
1953       __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
1954       EmitBranch(instr, ne, at, Operand(zero_reg));
1955     } else {
1956       ToBooleanHints expected = instr->hydrogen()->expected_input_types();
1957       // Avoid deopts in the case where we've never executed this path before.
1958       if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
1959 
1960       if (expected & ToBooleanHint::kUndefined) {
1961         // undefined -> false.
1962         __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1963         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
1964       }
1965       if (expected & ToBooleanHint::kBoolean) {
1966         // Boolean -> its value.
1967         __ LoadRoot(at, Heap::kTrueValueRootIndex);
1968         __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
1969         __ LoadRoot(at, Heap::kFalseValueRootIndex);
1970         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
1971       }
1972       if (expected & ToBooleanHint::kNull) {
1973         // 'null' -> false.
1974         __ LoadRoot(at, Heap::kNullValueRootIndex);
1975         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
1976       }
1977 
1978       if (expected & ToBooleanHint::kSmallInteger) {
1979         // Smis: 0 -> false, all other -> true.
1980         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
1981         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
1982       } else if (expected & ToBooleanHint::kNeedsMap) {
1983         // If we need a map later and have a Smi -> deopt.
1984         __ SmiTst(reg, at);
1985         DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg));
1986       }
1987 
1988       const Register map = scratch0();
1989       if (expected & ToBooleanHint::kNeedsMap) {
1990         __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
1991         if (expected & ToBooleanHint::kCanBeUndetectable) {
1992           // Undetectable -> false.
1993           __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
1994           __ And(at, at, Operand(1 << Map::kIsUndetectable));
1995           __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
1996         }
1997       }
1998 
1999       if (expected & ToBooleanHint::kReceiver) {
2000         // spec object -> true.
2001         __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2002         __ Branch(instr->TrueLabel(chunk_),
2003                   ge, at, Operand(FIRST_JS_RECEIVER_TYPE));
2004       }
2005 
2006       if (expected & ToBooleanHint::kString) {
2007         // String value -> false iff empty.
2008         Label not_string;
2009         __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2010         __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
2011         __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
2012         __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
2013         __ Branch(instr->FalseLabel(chunk_));
2014         __ bind(&not_string);
2015       }
2016 
2017       if (expected & ToBooleanHint::kSymbol) {
2018         // Symbol value -> true.
2019         const Register scratch = scratch1();
2020         __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2021         __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
2022       }
2023 
2024       if (expected & ToBooleanHint::kSimdValue) {
2025         // SIMD value -> true.
2026         const Register scratch = scratch1();
2027         __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2028         __ Branch(instr->TrueLabel(chunk_), eq, scratch,
2029                   Operand(SIMD128_VALUE_TYPE));
2030       }
2031 
2032       if (expected & ToBooleanHint::kHeapNumber) {
2033         // heap number -> false iff +0, -0, or NaN.
2034         DoubleRegister dbl_scratch = double_scratch0();
2035         Label not_heap_number;
2036         __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
2037         __ Branch(&not_heap_number, ne, map, Operand(at));
2038         __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2039         __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2040                    ne, dbl_scratch, kDoubleRegZero);
2041         // Falls through if dbl_scratch == 0.
2042         __ Branch(instr->FalseLabel(chunk_));
2043         __ bind(&not_heap_number);
2044       }
2045 
2046       if (expected != ToBooleanHint::kAny) {
2047         // We've seen something for the first time -> deopt.
2048         // This can only happen if we are not generic already.
2049         DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject, zero_reg,
2050                      Operand(zero_reg));
2051       }
2052     }
2053   }
2054 }
2055 
2056 
EmitGoto(int block)2057 void LCodeGen::EmitGoto(int block) {
2058   if (!IsNextEmittedBlock(block)) {
2059     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2060   }
2061 }
2062 
2063 
DoGoto(LGoto * instr)2064 void LCodeGen::DoGoto(LGoto* instr) {
2065   EmitGoto(instr->block_id());
2066 }
2067 
2068 
TokenToCondition(Token::Value op,bool is_unsigned)2069 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2070   Condition cond = kNoCondition;
2071   switch (op) {
2072     case Token::EQ:
2073     case Token::EQ_STRICT:
2074       cond = eq;
2075       break;
2076     case Token::NE:
2077     case Token::NE_STRICT:
2078       cond = ne;
2079       break;
2080     case Token::LT:
2081       cond = is_unsigned ? lo : lt;
2082       break;
2083     case Token::GT:
2084       cond = is_unsigned ? hi : gt;
2085       break;
2086     case Token::LTE:
2087       cond = is_unsigned ? ls : le;
2088       break;
2089     case Token::GTE:
2090       cond = is_unsigned ? hs : ge;
2091       break;
2092     case Token::IN:
2093     case Token::INSTANCEOF:
2094     default:
2095       UNREACHABLE();
2096   }
2097   return cond;
2098 }
2099 
2100 
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2101 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2102   LOperand* left = instr->left();
2103   LOperand* right = instr->right();
2104   bool is_unsigned =
2105       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2106       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2107   Condition cond = TokenToCondition(instr->op(), is_unsigned);
2108 
2109   if (left->IsConstantOperand() && right->IsConstantOperand()) {
2110     // We can statically evaluate the comparison.
2111     double left_val = ToDouble(LConstantOperand::cast(left));
2112     double right_val = ToDouble(LConstantOperand::cast(right));
2113     int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2114                          ? instr->TrueDestination(chunk_)
2115                          : instr->FalseDestination(chunk_);
2116     EmitGoto(next_block);
2117   } else {
2118     if (instr->is_double()) {
2119       // Compare left and right as doubles and load the
2120       // resulting flags into the normal status register.
2121       FPURegister left_reg = ToDoubleRegister(left);
2122       FPURegister right_reg = ToDoubleRegister(right);
2123 
2124       // If a NaN is involved, i.e. the result is unordered,
2125       // jump to false block label.
2126       __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
2127                  left_reg, right_reg);
2128 
2129       EmitBranchF(instr, cond, left_reg, right_reg);
2130     } else {
2131       Register cmp_left;
2132       Operand cmp_right = Operand(0);
2133 
2134       if (right->IsConstantOperand()) {
2135         int32_t value = ToInteger32(LConstantOperand::cast(right));
2136         if (instr->hydrogen_value()->representation().IsSmi()) {
2137           cmp_left = ToRegister(left);
2138           cmp_right = Operand(Smi::FromInt(value));
2139         } else {
2140           cmp_left = ToRegister(left);
2141           cmp_right = Operand(value);
2142         }
2143       } else if (left->IsConstantOperand()) {
2144         int32_t value = ToInteger32(LConstantOperand::cast(left));
2145         if (instr->hydrogen_value()->representation().IsSmi()) {
2146            cmp_left = ToRegister(right);
2147            cmp_right = Operand(Smi::FromInt(value));
2148         } else {
2149           cmp_left = ToRegister(right);
2150           cmp_right = Operand(value);
2151         }
2152         // We commuted the operands, so commute the condition.
2153         cond = CommuteCondition(cond);
2154       } else {
2155         cmp_left = ToRegister(left);
2156         cmp_right = Operand(ToRegister(right));
2157       }
2158 
2159       EmitBranch(instr, cond, cmp_left, cmp_right);
2160     }
2161   }
2162 }
2163 
2164 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2165 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2166   Register left = ToRegister(instr->left());
2167   Register right = ToRegister(instr->right());
2168 
2169   EmitBranch(instr, eq, left, Operand(right));
2170 }
2171 
2172 
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2173 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2174   if (instr->hydrogen()->representation().IsTagged()) {
2175     Register input_reg = ToRegister(instr->object());
2176     __ li(at, Operand(factory()->the_hole_value()));
2177     EmitBranch(instr, eq, input_reg, Operand(at));
2178     return;
2179   }
2180 
2181   DoubleRegister input_reg = ToDoubleRegister(instr->object());
2182   EmitFalseBranchF(instr, eq, input_reg, input_reg);
2183 
2184   Register scratch = scratch0();
2185   __ FmoveHigh(scratch, input_reg);
2186   EmitBranch(instr, eq, scratch, Operand(kHoleNanUpper32));
2187 }
2188 
2189 
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2190 Condition LCodeGen::EmitIsString(Register input,
2191                                  Register temp1,
2192                                  Label* is_not_string,
2193                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
2194   if (check_needed == INLINE_SMI_CHECK) {
2195     __ JumpIfSmi(input, is_not_string);
2196   }
2197   __ GetObjectType(input, temp1, temp1);
2198 
2199   return lt;
2200 }
2201 
2202 
DoIsStringAndBranch(LIsStringAndBranch * instr)2203 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2204   Register reg = ToRegister(instr->value());
2205   Register temp1 = ToRegister(instr->temp());
2206 
2207   SmiCheck check_needed =
2208       instr->hydrogen()->value()->type().IsHeapObject()
2209           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2210   Condition true_cond =
2211       EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2212 
2213   EmitBranch(instr, true_cond, temp1,
2214              Operand(FIRST_NONSTRING_TYPE));
2215 }
2216 
2217 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2218 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2219   Register input_reg = EmitLoadRegister(instr->value(), at);
2220   __ And(at, input_reg, kSmiTagMask);
2221   EmitBranch(instr, eq, at, Operand(zero_reg));
2222 }
2223 
2224 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2225 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2226   Register input = ToRegister(instr->value());
2227   Register temp = ToRegister(instr->temp());
2228 
2229   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2230     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2231   }
2232   __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2233   __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2234   __ And(at, temp, Operand(1 << Map::kIsUndetectable));
2235   EmitBranch(instr, ne, at, Operand(zero_reg));
2236 }
2237 
2238 
ComputeCompareCondition(Token::Value op)2239 static Condition ComputeCompareCondition(Token::Value op) {
2240   switch (op) {
2241     case Token::EQ_STRICT:
2242     case Token::EQ:
2243       return eq;
2244     case Token::LT:
2245       return lt;
2246     case Token::GT:
2247       return gt;
2248     case Token::LTE:
2249       return le;
2250     case Token::GTE:
2251       return ge;
2252     default:
2253       UNREACHABLE();
2254       return kNoCondition;
2255   }
2256 }
2257 
2258 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2259 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2260   DCHECK(ToRegister(instr->context()).is(cp));
2261   DCHECK(ToRegister(instr->left()).is(a1));
2262   DCHECK(ToRegister(instr->right()).is(a0));
2263 
2264   Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2265   CallCode(code, RelocInfo::CODE_TARGET, instr);
2266   __ LoadRoot(at, Heap::kTrueValueRootIndex);
2267   EmitBranch(instr, eq, v0, Operand(at));
2268 }
2269 
2270 
TestType(HHasInstanceTypeAndBranch * instr)2271 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2272   InstanceType from = instr->from();
2273   InstanceType to = instr->to();
2274   if (from == FIRST_TYPE) return to;
2275   DCHECK(from == to || to == LAST_TYPE);
2276   return from;
2277 }
2278 
2279 
BranchCondition(HHasInstanceTypeAndBranch * instr)2280 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2281   InstanceType from = instr->from();
2282   InstanceType to = instr->to();
2283   if (from == to) return eq;
2284   if (to == LAST_TYPE) return hs;
2285   if (from == FIRST_TYPE) return ls;
2286   UNREACHABLE();
2287   return eq;
2288 }
2289 
2290 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2291 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2292   Register scratch = scratch0();
2293   Register input = ToRegister(instr->value());
2294 
2295   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2296     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2297   }
2298 
2299   __ GetObjectType(input, scratch, scratch);
2300   EmitBranch(instr,
2301              BranchCondition(instr->hydrogen()),
2302              scratch,
2303              Operand(TestType(instr->hydrogen())));
2304 }
2305 
2306 // Branches to a label or falls through with the answer in flags.  Trashes
2307 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2308 void LCodeGen::EmitClassOfTest(Label* is_true,
2309                                Label* is_false,
2310                                Handle<String>class_name,
2311                                Register input,
2312                                Register temp,
2313                                Register temp2) {
2314   DCHECK(!input.is(temp));
2315   DCHECK(!input.is(temp2));
2316   DCHECK(!temp.is(temp2));
2317 
2318   __ JumpIfSmi(input, is_false);
2319   __ GetObjectType(input, temp, temp2);
2320   STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2321   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2322     __ Branch(is_true, hs, temp2, Operand(FIRST_FUNCTION_TYPE));
2323   } else {
2324     __ Branch(is_false, hs, temp2, Operand(FIRST_FUNCTION_TYPE));
2325   }
2326 
2327   // Check if the constructor in the map is a function.
2328   Register instance_type = scratch1();
2329   DCHECK(!instance_type.is(temp));
2330   __ GetMapConstructor(temp, temp, temp2, instance_type);
2331 
2332   // Objects with a non-function constructor have class 'Object'.
2333   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2334     __ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2335   } else {
2336     __ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2337   }
2338 
2339   // temp now contains the constructor function. Grab the
2340   // instance class name from there.
2341   __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2342   __ lw(temp, FieldMemOperand(temp,
2343                                SharedFunctionInfo::kInstanceClassNameOffset));
2344   // The class name we are testing against is internalized since it's a literal.
2345   // The name in the constructor is internalized because of the way the context
2346   // is booted.  This routine isn't expected to work for random API-created
2347   // classes and it doesn't have to because you can't access it with natives
2348   // syntax.  Since both sides are internalized it is sufficient to use an
2349   // identity comparison.
2350 
2351   // End with the address of this class_name instance in temp register.
2352   // On MIPS, the caller must do the comparison with Handle<String>class_name.
2353 }
2354 
2355 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2356 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2357   Register input = ToRegister(instr->value());
2358   Register temp = scratch0();
2359   Register temp2 = ToRegister(instr->temp());
2360   Handle<String> class_name = instr->hydrogen()->class_name();
2361 
2362   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2363                   class_name, input, temp, temp2);
2364 
2365   EmitBranch(instr, eq, temp, Operand(class_name));
2366 }
2367 
2368 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2369 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2370   Register reg = ToRegister(instr->value());
2371   Register temp = ToRegister(instr->temp());
2372 
2373   __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2374   EmitBranch(instr, eq, temp, Operand(instr->map()));
2375 }
2376 
2377 
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2378 void LCodeGen::DoHasInPrototypeChainAndBranch(
2379     LHasInPrototypeChainAndBranch* instr) {
2380   Register const object = ToRegister(instr->object());
2381   Register const object_map = scratch0();
2382   Register const object_instance_type = scratch1();
2383   Register const object_prototype = object_map;
2384   Register const prototype = ToRegister(instr->prototype());
2385 
2386   // The {object} must be a spec object.  It's sufficient to know that {object}
2387   // is not a smi, since all other non-spec objects have {null} prototypes and
2388   // will be ruled out below.
2389   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2390     __ SmiTst(object, at);
2391     EmitFalseBranch(instr, eq, at, Operand(zero_reg));
2392   }
2393 
2394   // Loop through the {object}s prototype chain looking for the {prototype}.
2395   __ lw(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2396   Label loop;
2397   __ bind(&loop);
2398 
2399   // Deoptimize if the object needs to be access checked.
2400   __ lbu(object_instance_type,
2401          FieldMemOperand(object_map, Map::kBitFieldOffset));
2402   __ And(object_instance_type, object_instance_type,
2403          Operand(1 << Map::kIsAccessCheckNeeded));
2404   DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, object_instance_type,
2405                Operand(zero_reg));
2406   // Deoptimize for proxies.
2407   __ lbu(object_instance_type,
2408          FieldMemOperand(object_map, Map::kInstanceTypeOffset));
2409   DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy, object_instance_type,
2410                Operand(JS_PROXY_TYPE));
2411 
2412   __ lw(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2413   __ LoadRoot(at, Heap::kNullValueRootIndex);
2414   EmitFalseBranch(instr, eq, object_prototype, Operand(at));
2415   EmitTrueBranch(instr, eq, object_prototype, Operand(prototype));
2416   __ Branch(USE_DELAY_SLOT, &loop);
2417   __ lw(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2418 }
2419 
2420 
DoCmpT(LCmpT * instr)2421 void LCodeGen::DoCmpT(LCmpT* instr) {
2422   DCHECK(ToRegister(instr->context()).is(cp));
2423   Token::Value op = instr->op();
2424 
2425   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2426   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2427   // On MIPS there is no need for a "no inlined smi code" marker (nop).
2428 
2429   Condition condition = ComputeCompareCondition(op);
2430   // A minor optimization that relies on LoadRoot always emitting one
2431   // instruction.
2432   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
2433   Label done, check;
2434   __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
2435   __ bind(&check);
2436   __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2437   DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
2438   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2439   __ bind(&done);
2440 }
2441 
2442 
DoReturn(LReturn * instr)2443 void LCodeGen::DoReturn(LReturn* instr) {
2444   if (FLAG_trace && info()->IsOptimizing()) {
2445     // Push the return value on the stack as the parameter.
2446     // Runtime::TraceExit returns its parameter in v0. We're leaving the code
2447     // managed by the register allocator and tearing down the frame, it's
2448     // safe to write to the context register.
2449     __ push(v0);
2450     __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2451     __ CallRuntime(Runtime::kTraceExit);
2452   }
2453   if (info()->saves_caller_doubles()) {
2454     RestoreCallerDoubles();
2455   }
2456   if (NeedsEagerFrame()) {
2457     __ mov(sp, fp);
2458     __ Pop(ra, fp);
2459   }
2460   if (instr->has_constant_parameter_count()) {
2461     int parameter_count = ToInteger32(instr->constant_parameter_count());
2462     int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2463     if (sp_delta != 0) {
2464       __ Addu(sp, sp, Operand(sp_delta));
2465     }
2466   } else {
2467     DCHECK(info()->IsStub());  // Functions would need to drop one more value.
2468     Register reg = ToRegister(instr->parameter_count());
2469     // The argument count parameter is a smi
2470     __ SmiUntag(reg);
2471     __ Lsa(sp, sp, reg, kPointerSizeLog2);
2472   }
2473 
2474   __ Jump(ra);
2475 }
2476 
2477 
DoLoadContextSlot(LLoadContextSlot * instr)2478 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2479   Register context = ToRegister(instr->context());
2480   Register result = ToRegister(instr->result());
2481 
2482   __ lw(result, ContextMemOperand(context, instr->slot_index()));
2483   if (instr->hydrogen()->RequiresHoleCheck()) {
2484     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2485 
2486     if (instr->hydrogen()->DeoptimizesOnHole()) {
2487       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(at));
2488     } else {
2489       Label is_not_hole;
2490       __ Branch(&is_not_hole, ne, result, Operand(at));
2491       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2492       __ bind(&is_not_hole);
2493     }
2494   }
2495 }
2496 
2497 
DoStoreContextSlot(LStoreContextSlot * instr)2498 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2499   Register context = ToRegister(instr->context());
2500   Register value = ToRegister(instr->value());
2501   Register scratch = scratch0();
2502   MemOperand target = ContextMemOperand(context, instr->slot_index());
2503 
2504   Label skip_assignment;
2505 
2506   if (instr->hydrogen()->RequiresHoleCheck()) {
2507     __ lw(scratch, target);
2508     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2509 
2510     if (instr->hydrogen()->DeoptimizesOnHole()) {
2511       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, scratch, Operand(at));
2512     } else {
2513       __ Branch(&skip_assignment, ne, scratch, Operand(at));
2514     }
2515   }
2516 
2517   __ sw(value, target);
2518   if (instr->hydrogen()->NeedsWriteBarrier()) {
2519     SmiCheck check_needed =
2520         instr->hydrogen()->value()->type().IsHeapObject()
2521             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2522     __ RecordWriteContextSlot(context,
2523                               target.offset(),
2524                               value,
2525                               scratch0(),
2526                               GetRAState(),
2527                               kSaveFPRegs,
2528                               EMIT_REMEMBERED_SET,
2529                               check_needed);
2530   }
2531 
2532   __ bind(&skip_assignment);
2533 }
2534 
2535 
DoLoadNamedField(LLoadNamedField * instr)2536 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2537   HObjectAccess access = instr->hydrogen()->access();
2538   int offset = access.offset();
2539   Register object = ToRegister(instr->object());
2540 
2541   if (access.IsExternalMemory()) {
2542     Register result = ToRegister(instr->result());
2543     MemOperand operand = MemOperand(object, offset);
2544     __ Load(result, operand, access.representation());
2545     return;
2546   }
2547 
2548   if (instr->hydrogen()->representation().IsDouble()) {
2549     DoubleRegister result = ToDoubleRegister(instr->result());
2550     __ ldc1(result, FieldMemOperand(object, offset));
2551     return;
2552   }
2553 
2554   Register result = ToRegister(instr->result());
2555   if (!access.IsInobject()) {
2556     __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2557     object = result;
2558   }
2559   MemOperand operand = FieldMemOperand(object, offset);
2560   __ Load(result, operand, access.representation());
2561 }
2562 
2563 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2564 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2565   Register scratch = scratch0();
2566   Register function = ToRegister(instr->function());
2567   Register result = ToRegister(instr->result());
2568 
2569   // Get the prototype or initial map from the function.
2570   __ lw(result,
2571          FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2572 
2573   // Check that the function has a prototype or an initial map.
2574   __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2575   DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(at));
2576 
2577   // If the function does not have an initial map, we're done.
2578   Label done;
2579   __ GetObjectType(result, scratch, scratch);
2580   __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
2581 
2582   // Get the prototype from the initial map.
2583   __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
2584 
2585   // All done.
2586   __ bind(&done);
2587 }
2588 
2589 
DoLoadRoot(LLoadRoot * instr)2590 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2591   Register result = ToRegister(instr->result());
2592   __ LoadRoot(result, instr->index());
2593 }
2594 
2595 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2596 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2597   Register arguments = ToRegister(instr->arguments());
2598   Register result = ToRegister(instr->result());
2599   // There are two words between the frame pointer and the last argument.
2600   // Subtracting from length accounts for one of them add one more.
2601   if (instr->length()->IsConstantOperand()) {
2602     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2603     if (instr->index()->IsConstantOperand()) {
2604       int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2605       int index = (const_length - const_index) + 1;
2606       __ lw(result, MemOperand(arguments, index * kPointerSize));
2607     } else {
2608       Register index = ToRegister(instr->index());
2609       __ li(at, Operand(const_length + 1));
2610       __ Subu(result, at, index);
2611       __ Lsa(at, arguments, result, kPointerSizeLog2);
2612       __ lw(result, MemOperand(at));
2613     }
2614   } else if (instr->index()->IsConstantOperand()) {
2615     Register length = ToRegister(instr->length());
2616     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2617     int loc = const_index - 1;
2618     if (loc != 0) {
2619       __ Subu(result, length, Operand(loc));
2620       __ Lsa(at, arguments, result, kPointerSizeLog2);
2621       __ lw(result, MemOperand(at));
2622     } else {
2623       __ Lsa(at, arguments, length, kPointerSizeLog2);
2624       __ lw(result, MemOperand(at));
2625     }
2626   } else {
2627     Register length = ToRegister(instr->length());
2628     Register index = ToRegister(instr->index());
2629     __ Subu(result, length, index);
2630     __ Addu(result, result, 1);
2631     __ Lsa(at, arguments, result, kPointerSizeLog2);
2632     __ lw(result, MemOperand(at));
2633   }
2634 }
2635 
2636 
DoLoadKeyedExternalArray(LLoadKeyed * instr)2637 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2638   Register external_pointer = ToRegister(instr->elements());
2639   Register key = no_reg;
2640   ElementsKind elements_kind = instr->elements_kind();
2641   bool key_is_constant = instr->key()->IsConstantOperand();
2642   int constant_key = 0;
2643   if (key_is_constant) {
2644     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2645     if (constant_key & 0xF0000000) {
2646       Abort(kArrayIndexConstantValueTooBig);
2647     }
2648   } else {
2649     key = ToRegister(instr->key());
2650   }
2651   int element_size_shift = ElementsKindToShiftSize(elements_kind);
2652   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2653       ? (element_size_shift - kSmiTagSize) : element_size_shift;
2654   int base_offset = instr->base_offset();
2655 
2656   if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2657     FPURegister result = ToDoubleRegister(instr->result());
2658     if (key_is_constant) {
2659       __ Addu(scratch0(), external_pointer, constant_key << element_size_shift);
2660     } else {
2661       __ sll(scratch0(), key, shift_size);
2662       __ Addu(scratch0(), scratch0(), external_pointer);
2663     }
2664     if (elements_kind == FLOAT32_ELEMENTS) {
2665       __ lwc1(result, MemOperand(scratch0(), base_offset));
2666       __ cvt_d_s(result, result);
2667     } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2668       __ ldc1(result, MemOperand(scratch0(), base_offset));
2669     }
2670   } else {
2671     Register result = ToRegister(instr->result());
2672     MemOperand mem_operand = PrepareKeyedOperand(
2673         key, external_pointer, key_is_constant, constant_key,
2674         element_size_shift, shift_size, base_offset);
2675     switch (elements_kind) {
2676       case INT8_ELEMENTS:
2677         __ lb(result, mem_operand);
2678         break;
2679       case UINT8_ELEMENTS:
2680       case UINT8_CLAMPED_ELEMENTS:
2681         __ lbu(result, mem_operand);
2682         break;
2683       case INT16_ELEMENTS:
2684         __ lh(result, mem_operand);
2685         break;
2686       case UINT16_ELEMENTS:
2687         __ lhu(result, mem_operand);
2688         break;
2689       case INT32_ELEMENTS:
2690         __ lw(result, mem_operand);
2691         break;
2692       case UINT32_ELEMENTS:
2693         __ lw(result, mem_operand);
2694         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2695           DeoptimizeIf(Ugreater_equal, instr, DeoptimizeReason::kNegativeValue,
2696                        result, Operand(0x80000000));
2697         }
2698         break;
2699       case FLOAT32_ELEMENTS:
2700       case FLOAT64_ELEMENTS:
2701       case FAST_DOUBLE_ELEMENTS:
2702       case FAST_ELEMENTS:
2703       case FAST_SMI_ELEMENTS:
2704       case FAST_HOLEY_DOUBLE_ELEMENTS:
2705       case FAST_HOLEY_ELEMENTS:
2706       case FAST_HOLEY_SMI_ELEMENTS:
2707       case DICTIONARY_ELEMENTS:
2708       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2709       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2710       case FAST_STRING_WRAPPER_ELEMENTS:
2711       case SLOW_STRING_WRAPPER_ELEMENTS:
2712       case NO_ELEMENTS:
2713         UNREACHABLE();
2714         break;
2715     }
2716   }
2717 }
2718 
2719 
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)2720 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2721   Register elements = ToRegister(instr->elements());
2722   bool key_is_constant = instr->key()->IsConstantOperand();
2723   Register key = no_reg;
2724   DoubleRegister result = ToDoubleRegister(instr->result());
2725   Register scratch = scratch0();
2726 
2727   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2728 
2729   int base_offset = instr->base_offset();
2730   if (key_is_constant) {
2731     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2732     if (constant_key & 0xF0000000) {
2733       Abort(kArrayIndexConstantValueTooBig);
2734     }
2735     base_offset += constant_key * kDoubleSize;
2736   }
2737   __ Addu(scratch, elements, Operand(base_offset));
2738 
2739   if (!key_is_constant) {
2740     key = ToRegister(instr->key());
2741     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2742         ? (element_size_shift - kSmiTagSize) : element_size_shift;
2743     __ Lsa(scratch, scratch, key, shift_size);
2744   }
2745 
2746   __ ldc1(result, MemOperand(scratch));
2747 
2748   if (instr->hydrogen()->RequiresHoleCheck()) {
2749     __ lw(scratch, MemOperand(scratch, kHoleNanUpper32Offset));
2750     DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, scratch,
2751                  Operand(kHoleNanUpper32));
2752   }
2753 }
2754 
2755 
DoLoadKeyedFixedArray(LLoadKeyed * instr)2756 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2757   Register elements = ToRegister(instr->elements());
2758   Register result = ToRegister(instr->result());
2759   Register scratch = scratch0();
2760   Register store_base = scratch;
2761   int offset = instr->base_offset();
2762 
2763   if (instr->key()->IsConstantOperand()) {
2764     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
2765     offset += ToInteger32(const_operand) * kPointerSize;
2766     store_base = elements;
2767   } else {
2768     Register key = ToRegister(instr->key());
2769     // Even though the HLoadKeyed instruction forces the input
2770     // representation for the key to be an integer, the input gets replaced
2771     // during bound check elimination with the index argument to the bounds
2772     // check, which can be tagged, so that case must be handled here, too.
2773     if (instr->hydrogen()->key()->representation().IsSmi()) {
2774       __ Lsa(scratch, elements, key, kPointerSizeLog2 - kSmiTagSize);
2775     } else {
2776       __ Lsa(scratch, elements, key, kPointerSizeLog2);
2777     }
2778   }
2779   __ lw(result, MemOperand(store_base, offset));
2780 
2781   // Check for the hole value.
2782   if (instr->hydrogen()->RequiresHoleCheck()) {
2783     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
2784       __ SmiTst(result, scratch);
2785       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, scratch,
2786                    Operand(zero_reg));
2787     } else {
2788       __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2789       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result,
2790                    Operand(scratch));
2791     }
2792   } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2793     DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
2794     Label done;
2795     __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2796     __ Branch(&done, ne, result, Operand(scratch));
2797     if (info()->IsStub()) {
2798       // A stub can safely convert the hole to undefined only if the array
2799       // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
2800       // it needs to bail out.
2801       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2802       __ lw(result, FieldMemOperand(result, Cell::kValueOffset));
2803       DeoptimizeIf(ne, instr, DeoptimizeReason::kHole, result,
2804                    Operand(Smi::FromInt(Isolate::kProtectorValid)));
2805     }
2806     __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2807     __ bind(&done);
2808   }
2809 }
2810 
2811 
DoLoadKeyed(LLoadKeyed * instr)2812 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2813   if (instr->is_fixed_typed_array()) {
2814     DoLoadKeyedExternalArray(instr);
2815   } else if (instr->hydrogen()->representation().IsDouble()) {
2816     DoLoadKeyedFixedDoubleArray(instr);
2817   } else {
2818     DoLoadKeyedFixedArray(instr);
2819   }
2820 }
2821 
2822 
PrepareKeyedOperand(Register key,Register base,bool key_is_constant,int constant_key,int element_size,int shift_size,int base_offset)2823 MemOperand LCodeGen::PrepareKeyedOperand(Register key,
2824                                          Register base,
2825                                          bool key_is_constant,
2826                                          int constant_key,
2827                                          int element_size,
2828                                          int shift_size,
2829                                          int base_offset) {
2830   if (key_is_constant) {
2831     return MemOperand(base, (constant_key << element_size) + base_offset);
2832   }
2833 
2834   if (base_offset == 0) {
2835     if (shift_size >= 0) {
2836       __ sll(scratch0(), key, shift_size);
2837       __ Addu(scratch0(), base, scratch0());
2838       return MemOperand(scratch0());
2839     } else {
2840       DCHECK_EQ(-1, shift_size);
2841       __ srl(scratch0(), key, 1);
2842       __ Addu(scratch0(), base, scratch0());
2843       return MemOperand(scratch0());
2844     }
2845   }
2846 
2847   if (shift_size >= 0) {
2848     __ sll(scratch0(), key, shift_size);
2849     __ Addu(scratch0(), base, scratch0());
2850     return MemOperand(scratch0(), base_offset);
2851   } else {
2852     DCHECK_EQ(-1, shift_size);
2853     __ sra(scratch0(), key, 1);
2854     __ Addu(scratch0(), base, scratch0());
2855     return MemOperand(scratch0(), base_offset);
2856   }
2857 }
2858 
2859 
DoArgumentsElements(LArgumentsElements * instr)2860 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2861   Register scratch = scratch0();
2862   Register temp = scratch1();
2863   Register result = ToRegister(instr->result());
2864 
2865   if (instr->hydrogen()->from_inlined()) {
2866     __ Subu(result, sp, 2 * kPointerSize);
2867   } else if (instr->hydrogen()->arguments_adaptor()) {
2868     // Check if the calling frame is an arguments adaptor frame.
2869     Label done, adapted;
2870     __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2871     __ lw(result,
2872           MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
2873     __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2874 
2875     // Result is the frame pointer for the frame if not adapted and for the real
2876     // frame below the adaptor frame if adapted.
2877     __ Movn(result, fp, temp);  // Move only if temp is not equal to zero (ne).
2878     __ Movz(result, scratch, temp);  // Move only if temp is equal to zero (eq).
2879   } else {
2880     __ mov(result, fp);
2881   }
2882 }
2883 
2884 
DoArgumentsLength(LArgumentsLength * instr)2885 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2886   Register elem = ToRegister(instr->elements());
2887   Register result = ToRegister(instr->result());
2888 
2889   Label done;
2890 
2891   // If no arguments adaptor frame the number of arguments is fixed.
2892   __ Addu(result, zero_reg, Operand(scope()->num_parameters()));
2893   __ Branch(&done, eq, fp, Operand(elem));
2894 
2895   // Arguments adaptor frame present. Get argument length from there.
2896   __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2897   __ lw(result,
2898         MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
2899   __ SmiUntag(result);
2900 
2901   // Argument length is in result register.
2902   __ bind(&done);
2903 }
2904 
2905 
DoWrapReceiver(LWrapReceiver * instr)2906 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
2907   Register receiver = ToRegister(instr->receiver());
2908   Register function = ToRegister(instr->function());
2909   Register result = ToRegister(instr->result());
2910   Register scratch = scratch0();
2911 
2912   // If the receiver is null or undefined, we have to pass the global
2913   // object as a receiver to normal functions. Values have to be
2914   // passed unchanged to builtins and strict-mode functions.
2915   Label global_object, result_in_receiver;
2916 
2917   if (!instr->hydrogen()->known_function()) {
2918     // Do not transform the receiver to object for strict mode
2919     // functions.
2920     __ lw(scratch,
2921            FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2922     __ lw(scratch,
2923            FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2924 
2925     // Do not transform the receiver to object for builtins.
2926     int32_t strict_mode_function_mask =
2927         1 <<  (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
2928     int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
2929     __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask));
2930     __ Branch(&result_in_receiver, ne, scratch, Operand(zero_reg));
2931   }
2932 
2933   // Normal function. Replace undefined or null with global receiver.
2934   __ LoadRoot(scratch, Heap::kNullValueRootIndex);
2935   __ Branch(&global_object, eq, receiver, Operand(scratch));
2936   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
2937   __ Branch(&global_object, eq, receiver, Operand(scratch));
2938 
2939   // Deoptimize if the receiver is not a JS object.
2940   __ SmiTst(receiver, scratch);
2941   DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, scratch, Operand(zero_reg));
2942 
2943   __ GetObjectType(receiver, scratch, scratch);
2944   DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject, scratch,
2945                Operand(FIRST_JS_RECEIVER_TYPE));
2946 
2947   __ Branch(&result_in_receiver);
2948   __ bind(&global_object);
2949   __ lw(result, FieldMemOperand(function, JSFunction::kContextOffset));
2950   __ lw(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
2951   __ lw(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
2952 
2953   if (result.is(receiver)) {
2954     __ bind(&result_in_receiver);
2955   } else {
2956     Label result_ok;
2957     __ Branch(&result_ok);
2958     __ bind(&result_in_receiver);
2959     __ mov(result, receiver);
2960     __ bind(&result_ok);
2961   }
2962 }
2963 
2964 
DoApplyArguments(LApplyArguments * instr)2965 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2966   Register receiver = ToRegister(instr->receiver());
2967   Register function = ToRegister(instr->function());
2968   Register length = ToRegister(instr->length());
2969   Register elements = ToRegister(instr->elements());
2970   Register scratch = scratch0();
2971   DCHECK(receiver.is(a0));  // Used for parameter count.
2972   DCHECK(function.is(a1));  // Required by InvokeFunction.
2973   DCHECK(ToRegister(instr->result()).is(v0));
2974 
2975   // Copy the arguments to this function possibly from the
2976   // adaptor frame below it.
2977   const uint32_t kArgumentsLimit = 1 * KB;
2978   DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments, length,
2979                Operand(kArgumentsLimit));
2980 
2981   // Push the receiver and use the register to keep the original
2982   // number of arguments.
2983   __ push(receiver);
2984   __ Move(receiver, length);
2985   // The arguments are at a one pointer size offset from elements.
2986   __ Addu(elements, elements, Operand(1 * kPointerSize));
2987 
2988   // Loop through the arguments pushing them onto the execution
2989   // stack.
2990   Label invoke, loop;
2991   // length is a small non-negative integer, due to the test above.
2992   __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
2993   __ sll(scratch, length, 2);
2994   __ bind(&loop);
2995   __ Addu(scratch, elements, scratch);
2996   __ lw(scratch, MemOperand(scratch));
2997   __ push(scratch);
2998   __ Subu(length, length, Operand(1));
2999   __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
3000   __ sll(scratch, length, 2);
3001 
3002   __ bind(&invoke);
3003 
3004   InvokeFlag flag = CALL_FUNCTION;
3005   if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3006     DCHECK(!info()->saves_caller_doubles());
3007     // TODO(ishell): drop current frame before pushing arguments to the stack.
3008     flag = JUMP_FUNCTION;
3009     ParameterCount actual(a0);
3010     // It is safe to use t0, t1 and t2 as scratch registers here given that
3011     // we are not going to return to caller function anyway.
3012     PrepareForTailCall(actual, t0, t1, t2);
3013   }
3014 
3015   DCHECK(instr->HasPointerMap());
3016   LPointerMap* pointers = instr->pointer_map();
3017   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3018   // The number of arguments is stored in receiver which is a0, as expected
3019   // by InvokeFunction.
3020   ParameterCount actual(receiver);
3021   __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3022 }
3023 
3024 
DoPushArgument(LPushArgument * instr)3025 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3026   LOperand* argument = instr->value();
3027   if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3028     Abort(kDoPushArgumentNotImplementedForDoubleType);
3029   } else {
3030     Register argument_reg = EmitLoadRegister(argument, at);
3031     __ push(argument_reg);
3032   }
3033 }
3034 
3035 
DoDrop(LDrop * instr)3036 void LCodeGen::DoDrop(LDrop* instr) {
3037   __ Drop(instr->count());
3038 }
3039 
3040 
DoThisFunction(LThisFunction * instr)3041 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3042   Register result = ToRegister(instr->result());
3043   __ lw(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3044 }
3045 
3046 
DoContext(LContext * instr)3047 void LCodeGen::DoContext(LContext* instr) {
3048   // If there is a non-return use, the context must be moved to a register.
3049   Register result = ToRegister(instr->result());
3050   if (info()->IsOptimizing()) {
3051     __ lw(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3052   } else {
3053     // If there is no frame, the context must be in cp.
3054     DCHECK(result.is(cp));
3055   }
3056 }
3057 
3058 
DoDeclareGlobals(LDeclareGlobals * instr)3059 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3060   DCHECK(ToRegister(instr->context()).is(cp));
3061   __ li(scratch0(), instr->hydrogen()->pairs());
3062   __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3063   __ Push(scratch0(), scratch1());
3064   __ li(scratch0(), instr->hydrogen()->feedback_vector());
3065   __ Push(scratch0());
3066   CallRuntime(Runtime::kDeclareGlobals, instr);
3067 }
3068 
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)3069 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3070                                  int formal_parameter_count, int arity,
3071                                  bool is_tail_call, LInstruction* instr) {
3072   bool dont_adapt_arguments =
3073       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3074   bool can_invoke_directly =
3075       dont_adapt_arguments || formal_parameter_count == arity;
3076 
3077   Register function_reg = a1;
3078   LPointerMap* pointers = instr->pointer_map();
3079 
3080   if (can_invoke_directly) {
3081     // Change context.
3082     __ lw(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3083 
3084     // Always initialize new target and number of actual arguments.
3085     __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
3086     __ li(a0, Operand(arity));
3087 
3088     bool is_self_call = function.is_identical_to(info()->closure());
3089 
3090     // Invoke function.
3091     if (is_self_call) {
3092       Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3093       if (is_tail_call) {
3094         __ Jump(self, RelocInfo::CODE_TARGET);
3095       } else {
3096         __ Call(self, RelocInfo::CODE_TARGET);
3097       }
3098     } else {
3099       __ lw(at, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3100       if (is_tail_call) {
3101         __ Jump(at);
3102       } else {
3103         __ Call(at);
3104       }
3105     }
3106 
3107     if (!is_tail_call) {
3108       // Set up deoptimization.
3109       RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3110     }
3111   } else {
3112     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3113     ParameterCount actual(arity);
3114     ParameterCount expected(formal_parameter_count);
3115     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3116     __ InvokeFunction(function_reg, expected, actual, flag, generator);
3117   }
3118 }
3119 
3120 
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3121 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3122   DCHECK(instr->context() != NULL);
3123   DCHECK(ToRegister(instr->context()).is(cp));
3124   Register input = ToRegister(instr->value());
3125   Register result = ToRegister(instr->result());
3126   Register scratch = scratch0();
3127 
3128   // Deoptimize if not a heap number.
3129   __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3130   __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3131   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch,
3132                Operand(at));
3133 
3134   Label done;
3135   Register exponent = scratch0();
3136   scratch = no_reg;
3137   __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3138   // Check the sign of the argument. If the argument is positive, just
3139   // return it.
3140   __ Move(result, input);
3141   __ And(at, exponent, Operand(HeapNumber::kSignMask));
3142   __ Branch(&done, eq, at, Operand(zero_reg));
3143 
3144   // Input is negative. Reverse its sign.
3145   // Preserve the value of all registers.
3146   {
3147     PushSafepointRegistersScope scope(this);
3148 
3149     // Registers were saved at the safepoint, so we can use
3150     // many scratch registers.
3151     Register tmp1 = input.is(a1) ? a0 : a1;
3152     Register tmp2 = input.is(a2) ? a0 : a2;
3153     Register tmp3 = input.is(a3) ? a0 : a3;
3154     Register tmp4 = input.is(t0) ? a0 : t0;
3155 
3156     // exponent: floating point exponent value.
3157 
3158     Label allocated, slow;
3159     __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3160     __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3161     __ Branch(&allocated);
3162 
3163     // Slow case: Call the runtime system to do the number allocation.
3164     __ bind(&slow);
3165 
3166     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3167                             instr->context());
3168     // Set the pointer to the new heap number in tmp.
3169     if (!tmp1.is(v0))
3170       __ mov(tmp1, v0);
3171     // Restore input_reg after call to runtime.
3172     __ LoadFromSafepointRegisterSlot(input, input);
3173     __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3174 
3175     __ bind(&allocated);
3176     // exponent: floating point exponent value.
3177     // tmp1: allocated heap number.
3178     __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
3179     __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3180     __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3181     __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3182 
3183     __ StoreToSafepointRegisterSlot(tmp1, result);
3184   }
3185 
3186   __ bind(&done);
3187 }
3188 
3189 
EmitIntegerMathAbs(LMathAbs * instr)3190 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3191   Register input = ToRegister(instr->value());
3192   Register result = ToRegister(instr->result());
3193   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
3194   Label done;
3195   __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
3196   __ mov(result, input);
3197   __ subu(result, zero_reg, input);
3198   // Overflow if result is still negative, i.e. 0x80000000.
3199   DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, result,
3200                Operand(zero_reg));
3201   __ bind(&done);
3202 }
3203 
3204 
DoMathAbs(LMathAbs * instr)3205 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3206   // Class for deferred case.
3207   class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3208    public:
3209     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3210         : LDeferredCode(codegen), instr_(instr) { }
3211     void Generate() override {
3212       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3213     }
3214     LInstruction* instr() override { return instr_; }
3215 
3216    private:
3217     LMathAbs* instr_;
3218   };
3219 
3220   Representation r = instr->hydrogen()->value()->representation();
3221   if (r.IsDouble()) {
3222     FPURegister input = ToDoubleRegister(instr->value());
3223     FPURegister result = ToDoubleRegister(instr->result());
3224     __ abs_d(result, input);
3225   } else if (r.IsSmiOrInteger32()) {
3226     EmitIntegerMathAbs(instr);
3227   } else {
3228     // Representation is tagged.
3229     DeferredMathAbsTaggedHeapNumber* deferred =
3230         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3231     Register input = ToRegister(instr->value());
3232     // Smi check.
3233     __ JumpIfNotSmi(input, deferred->entry());
3234     // If smi, handle it directly.
3235     EmitIntegerMathAbs(instr);
3236     __ bind(deferred->exit());
3237   }
3238 }
3239 
3240 
DoMathFloor(LMathFloor * instr)3241 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3242   DoubleRegister input = ToDoubleRegister(instr->value());
3243   Register result = ToRegister(instr->result());
3244   Register scratch1 = scratch0();
3245   Register except_flag = ToRegister(instr->temp());
3246 
3247   __ EmitFPUTruncate(kRoundToMinusInf,
3248                      result,
3249                      input,
3250                      scratch1,
3251                      double_scratch0(),
3252                      except_flag);
3253 
3254   // Deopt if the operation did not succeed.
3255   DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
3256                Operand(zero_reg));
3257 
3258   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3259     // Test for -0.
3260     Label done;
3261     __ Branch(&done, ne, result, Operand(zero_reg));
3262     __ Mfhc1(scratch1, input);
3263     __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3264     DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
3265                  Operand(zero_reg));
3266     __ bind(&done);
3267   }
3268 }
3269 
3270 
DoMathRound(LMathRound * instr)3271 void LCodeGen::DoMathRound(LMathRound* instr) {
3272   DoubleRegister input = ToDoubleRegister(instr->value());
3273   Register result = ToRegister(instr->result());
3274   DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3275   Register scratch = scratch0();
3276   Label done, check_sign_on_zero;
3277 
3278   // Extract exponent bits.
3279   __ Mfhc1(result, input);
3280   __ Ext(scratch,
3281          result,
3282          HeapNumber::kExponentShift,
3283          HeapNumber::kExponentBits);
3284 
3285   // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3286   Label skip1;
3287   __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
3288   __ mov(result, zero_reg);
3289   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3290     __ Branch(&check_sign_on_zero);
3291   } else {
3292     __ Branch(&done);
3293   }
3294   __ bind(&skip1);
3295 
3296   // The following conversion will not work with numbers
3297   // outside of ]-2^32, 2^32[.
3298   DeoptimizeIf(ge, instr, DeoptimizeReason::kOverflow, scratch,
3299                Operand(HeapNumber::kExponentBias + 32));
3300 
3301   // Save the original sign for later comparison.
3302   __ And(scratch, result, Operand(HeapNumber::kSignMask));
3303 
3304   __ Move(double_scratch0(), 0.5);
3305   __ add_d(double_scratch0(), input, double_scratch0());
3306 
3307   // Check sign of the result: if the sign changed, the input
3308   // value was in ]0.5, 0[ and the result should be -0.
3309   __ Mfhc1(result, double_scratch0());
3310   __ Xor(result, result, Operand(scratch));
3311   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3312     // ARM uses 'mi' here, which is 'lt'
3313     DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, result,
3314                  Operand(zero_reg));
3315   } else {
3316     Label skip2;
3317     // ARM uses 'mi' here, which is 'lt'
3318     // Negating it results in 'ge'
3319     __ Branch(&skip2, ge, result, Operand(zero_reg));
3320     __ mov(result, zero_reg);
3321     __ Branch(&done);
3322     __ bind(&skip2);
3323   }
3324 
3325   Register except_flag = scratch;
3326   __ EmitFPUTruncate(kRoundToMinusInf,
3327                      result,
3328                      double_scratch0(),
3329                      at,
3330                      double_scratch1,
3331                      except_flag);
3332 
3333   DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
3334                Operand(zero_reg));
3335 
3336   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3337     // Test for -0.
3338     __ Branch(&done, ne, result, Operand(zero_reg));
3339     __ bind(&check_sign_on_zero);
3340     __ Mfhc1(scratch, input);
3341     __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3342     DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch,
3343                  Operand(zero_reg));
3344   }
3345   __ bind(&done);
3346 }
3347 
3348 
DoMathFround(LMathFround * instr)3349 void LCodeGen::DoMathFround(LMathFround* instr) {
3350   DoubleRegister input = ToDoubleRegister(instr->value());
3351   DoubleRegister result = ToDoubleRegister(instr->result());
3352   __ cvt_s_d(result.low(), input);
3353   __ cvt_d_s(result, result.low());
3354 }
3355 
3356 
DoMathSqrt(LMathSqrt * instr)3357 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3358   DoubleRegister input = ToDoubleRegister(instr->value());
3359   DoubleRegister result = ToDoubleRegister(instr->result());
3360   __ sqrt_d(result, input);
3361 }
3362 
3363 
DoMathPowHalf(LMathPowHalf * instr)3364 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3365   DoubleRegister input = ToDoubleRegister(instr->value());
3366   DoubleRegister result = ToDoubleRegister(instr->result());
3367   DoubleRegister temp = ToDoubleRegister(instr->temp());
3368 
3369   DCHECK(!input.is(result));
3370 
3371   // Note that according to ECMA-262 15.8.2.13:
3372   // Math.pow(-Infinity, 0.5) == Infinity
3373   // Math.sqrt(-Infinity) == NaN
3374   Label done;
3375   __ Move(temp, static_cast<double>(-V8_INFINITY));
3376   // Set up Infinity.
3377   __ Neg_d(result, temp);
3378   // result is overwritten if the branch is not taken.
3379   __ BranchF(&done, NULL, eq, temp, input);
3380 
3381   // Add +0 to convert -0 to +0.
3382   __ add_d(result, input, kDoubleRegZero);
3383   __ sqrt_d(result, result);
3384   __ bind(&done);
3385 }
3386 
3387 
DoPower(LPower * instr)3388 void LCodeGen::DoPower(LPower* instr) {
3389   Representation exponent_type = instr->hydrogen()->right()->representation();
3390   // Having marked this as a call, we can use any registers.
3391   // Just make sure that the input/output registers are the expected ones.
3392   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3393   DCHECK(!instr->right()->IsDoubleRegister() ||
3394          ToDoubleRegister(instr->right()).is(f4));
3395   DCHECK(!instr->right()->IsRegister() ||
3396          ToRegister(instr->right()).is(tagged_exponent));
3397   DCHECK(ToDoubleRegister(instr->left()).is(f2));
3398   DCHECK(ToDoubleRegister(instr->result()).is(f0));
3399 
3400   if (exponent_type.IsSmi()) {
3401     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3402     __ CallStub(&stub);
3403   } else if (exponent_type.IsTagged()) {
3404     Label no_deopt;
3405     __ JumpIfSmi(tagged_exponent, &no_deopt);
3406     DCHECK(!t3.is(tagged_exponent));
3407     __ lw(t3, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3408     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3409     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, t3, Operand(at));
3410     __ bind(&no_deopt);
3411     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3412     __ CallStub(&stub);
3413   } else if (exponent_type.IsInteger32()) {
3414     MathPowStub stub(isolate(), MathPowStub::INTEGER);
3415     __ CallStub(&stub);
3416   } else {
3417     DCHECK(exponent_type.IsDouble());
3418     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3419     __ CallStub(&stub);
3420   }
3421 }
3422 
DoMathCos(LMathCos * instr)3423 void LCodeGen::DoMathCos(LMathCos* instr) {
3424   __ PrepareCallCFunction(0, 1, scratch0());
3425   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3426   __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3427   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3428 }
3429 
DoMathSin(LMathSin * instr)3430 void LCodeGen::DoMathSin(LMathSin* instr) {
3431   __ PrepareCallCFunction(0, 1, scratch0());
3432   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3433   __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3434   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3435 }
3436 
DoMathExp(LMathExp * instr)3437 void LCodeGen::DoMathExp(LMathExp* instr) {
3438   __ PrepareCallCFunction(0, 1, scratch0());
3439   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3440   __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3441   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3442 }
3443 
3444 
DoMathLog(LMathLog * instr)3445 void LCodeGen::DoMathLog(LMathLog* instr) {
3446   __ PrepareCallCFunction(0, 1, scratch0());
3447   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3448   __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3449   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3450 }
3451 
3452 
DoMathClz32(LMathClz32 * instr)3453 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3454   Register input = ToRegister(instr->value());
3455   Register result = ToRegister(instr->result());
3456   __ Clz(result, input);
3457 }
3458 
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)3459 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3460                                   Register scratch1, Register scratch2,
3461                                   Register scratch3) {
3462 #if DEBUG
3463   if (actual.is_reg()) {
3464     DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3465   } else {
3466     DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3467   }
3468 #endif
3469   if (FLAG_code_comments) {
3470     if (actual.is_reg()) {
3471       Comment(";;; PrepareForTailCall, actual: %s {",
3472               RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3473                   actual.reg().code()));
3474     } else {
3475       Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3476     }
3477   }
3478 
3479   // Check if next frame is an arguments adaptor frame.
3480   Register caller_args_count_reg = scratch1;
3481   Label no_arguments_adaptor, formal_parameter_count_loaded;
3482   __ lw(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3483   __ lw(scratch3, MemOperand(scratch2, StandardFrameConstants::kContextOffset));
3484   __ Branch(&no_arguments_adaptor, ne, scratch3,
3485             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3486 
3487   // Drop current frame and load arguments count from arguments adaptor frame.
3488   __ mov(fp, scratch2);
3489   __ lw(caller_args_count_reg,
3490         MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3491   __ SmiUntag(caller_args_count_reg);
3492   __ Branch(&formal_parameter_count_loaded);
3493 
3494   __ bind(&no_arguments_adaptor);
3495   // Load caller's formal parameter count
3496   __ lw(scratch1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3497   __ lw(scratch1,
3498         FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
3499   __ li(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
3500 
3501   __ bind(&formal_parameter_count_loaded);
3502   __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
3503 
3504   Comment(";;; }");
3505 }
3506 
DoInvokeFunction(LInvokeFunction * instr)3507 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3508   HInvokeFunction* hinstr = instr->hydrogen();
3509   DCHECK(ToRegister(instr->context()).is(cp));
3510   DCHECK(ToRegister(instr->function()).is(a1));
3511   DCHECK(instr->HasPointerMap());
3512 
3513   bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3514 
3515   if (is_tail_call) {
3516     DCHECK(!info()->saves_caller_doubles());
3517     ParameterCount actual(instr->arity());
3518     // It is safe to use t0, t1 and t2 as scratch registers here given that
3519     // we are not going to return to caller function anyway.
3520     PrepareForTailCall(actual, t0, t1, t2);
3521   }
3522 
3523   Handle<JSFunction> known_function = hinstr->known_function();
3524   if (known_function.is_null()) {
3525     LPointerMap* pointers = instr->pointer_map();
3526     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3527     ParameterCount actual(instr->arity());
3528     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3529     __ InvokeFunction(a1, no_reg, actual, flag, generator);
3530   } else {
3531     CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3532                       instr->arity(), is_tail_call, instr);
3533   }
3534 }
3535 
3536 
DoCallWithDescriptor(LCallWithDescriptor * instr)3537 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3538   DCHECK(ToRegister(instr->result()).is(v0));
3539 
3540   if (instr->hydrogen()->IsTailCall()) {
3541     if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3542 
3543     if (instr->target()->IsConstantOperand()) {
3544       LConstantOperand* target = LConstantOperand::cast(instr->target());
3545       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3546       __ Jump(code, RelocInfo::CODE_TARGET);
3547     } else {
3548       DCHECK(instr->target()->IsRegister());
3549       Register target = ToRegister(instr->target());
3550       __ Addu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3551       __ Jump(target);
3552     }
3553   } else {
3554     LPointerMap* pointers = instr->pointer_map();
3555     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3556 
3557     if (instr->target()->IsConstantOperand()) {
3558       LConstantOperand* target = LConstantOperand::cast(instr->target());
3559       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3560       generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3561       __ Call(code, RelocInfo::CODE_TARGET);
3562     } else {
3563       DCHECK(instr->target()->IsRegister());
3564       Register target = ToRegister(instr->target());
3565       generator.BeforeCall(__ CallSize(target));
3566       __ Addu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3567       __ Call(target);
3568     }
3569     generator.AfterCall();
3570   }
3571 }
3572 
3573 
DoCallNewArray(LCallNewArray * instr)3574 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3575   DCHECK(ToRegister(instr->context()).is(cp));
3576   DCHECK(ToRegister(instr->constructor()).is(a1));
3577   DCHECK(ToRegister(instr->result()).is(v0));
3578 
3579   __ li(a0, Operand(instr->arity()));
3580   __ li(a2, instr->hydrogen()->site());
3581 
3582   ElementsKind kind = instr->hydrogen()->elements_kind();
3583   AllocationSiteOverrideMode override_mode =
3584       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3585           ? DISABLE_ALLOCATION_SITES
3586           : DONT_OVERRIDE;
3587 
3588   if (instr->arity() == 0) {
3589     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3590     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3591   } else if (instr->arity() == 1) {
3592     Label done;
3593     if (IsFastPackedElementsKind(kind)) {
3594       Label packed_case;
3595       // We might need a change here,
3596       // look at the first argument.
3597       __ lw(t1, MemOperand(sp, 0));
3598       __ Branch(&packed_case, eq, t1, Operand(zero_reg));
3599 
3600       ElementsKind holey_kind = GetHoleyElementsKind(kind);
3601       ArraySingleArgumentConstructorStub stub(isolate(),
3602                                               holey_kind,
3603                                               override_mode);
3604       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3605       __ jmp(&done);
3606       __ bind(&packed_case);
3607     }
3608 
3609     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3610     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3611     __ bind(&done);
3612   } else {
3613     ArrayNArgumentsConstructorStub stub(isolate());
3614     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3615   }
3616 }
3617 
3618 
DoCallRuntime(LCallRuntime * instr)3619 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3620   CallRuntime(instr->function(), instr->arity(), instr);
3621 }
3622 
3623 
DoStoreCodeEntry(LStoreCodeEntry * instr)3624 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3625   Register function = ToRegister(instr->function());
3626   Register code_object = ToRegister(instr->code_object());
3627   __ Addu(code_object, code_object,
3628           Operand(Code::kHeaderSize - kHeapObjectTag));
3629   __ sw(code_object,
3630         FieldMemOperand(function, JSFunction::kCodeEntryOffset));
3631 }
3632 
3633 
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3634 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3635   Register result = ToRegister(instr->result());
3636   Register base = ToRegister(instr->base_object());
3637   if (instr->offset()->IsConstantOperand()) {
3638     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3639     __ Addu(result, base, Operand(ToInteger32(offset)));
3640   } else {
3641     Register offset = ToRegister(instr->offset());
3642     __ Addu(result, base, offset);
3643   }
3644 }
3645 
3646 
DoStoreNamedField(LStoreNamedField * instr)3647 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3648   Representation representation = instr->representation();
3649 
3650   Register object = ToRegister(instr->object());
3651   Register scratch = scratch0();
3652   HObjectAccess access = instr->hydrogen()->access();
3653   int offset = access.offset();
3654 
3655   if (access.IsExternalMemory()) {
3656     Register value = ToRegister(instr->value());
3657     MemOperand operand = MemOperand(object, offset);
3658     __ Store(value, operand, representation);
3659     return;
3660   }
3661 
3662   __ AssertNotSmi(object);
3663 
3664   DCHECK(!representation.IsSmi() ||
3665          !instr->value()->IsConstantOperand() ||
3666          IsSmi(LConstantOperand::cast(instr->value())));
3667   if (representation.IsDouble()) {
3668     DCHECK(access.IsInobject());
3669     DCHECK(!instr->hydrogen()->has_transition());
3670     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3671     DoubleRegister value = ToDoubleRegister(instr->value());
3672     __ sdc1(value, FieldMemOperand(object, offset));
3673     return;
3674   }
3675 
3676   if (instr->hydrogen()->has_transition()) {
3677     Handle<Map> transition = instr->hydrogen()->transition_map();
3678     AddDeprecationDependency(transition);
3679     __ li(scratch, Operand(transition));
3680     __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3681     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3682       Register temp = ToRegister(instr->temp());
3683       // Update the write barrier for the map field.
3684       __ RecordWriteForMap(object,
3685                            scratch,
3686                            temp,
3687                            GetRAState(),
3688                            kSaveFPRegs);
3689     }
3690   }
3691 
3692   // Do the store.
3693   Register value = ToRegister(instr->value());
3694   if (access.IsInobject()) {
3695     MemOperand operand = FieldMemOperand(object, offset);
3696     __ Store(value, operand, representation);
3697     if (instr->hydrogen()->NeedsWriteBarrier()) {
3698       // Update the write barrier for the object for in-object properties.
3699       __ RecordWriteField(object,
3700                           offset,
3701                           value,
3702                           scratch,
3703                           GetRAState(),
3704                           kSaveFPRegs,
3705                           EMIT_REMEMBERED_SET,
3706                           instr->hydrogen()->SmiCheckForWriteBarrier(),
3707                           instr->hydrogen()->PointersToHereCheckForValue());
3708     }
3709   } else {
3710     __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3711     MemOperand operand = FieldMemOperand(scratch, offset);
3712     __ Store(value, operand, representation);
3713     if (instr->hydrogen()->NeedsWriteBarrier()) {
3714       // Update the write barrier for the properties array.
3715       // object is used as a scratch register.
3716       __ RecordWriteField(scratch,
3717                           offset,
3718                           value,
3719                           object,
3720                           GetRAState(),
3721                           kSaveFPRegs,
3722                           EMIT_REMEMBERED_SET,
3723                           instr->hydrogen()->SmiCheckForWriteBarrier(),
3724                           instr->hydrogen()->PointersToHereCheckForValue());
3725     }
3726   }
3727 }
3728 
3729 
DoBoundsCheck(LBoundsCheck * instr)3730 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3731   Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
3732   Operand operand(0);
3733   Register reg;
3734   if (instr->index()->IsConstantOperand()) {
3735     operand = ToOperand(instr->index());
3736     reg = ToRegister(instr->length());
3737     cc = CommuteCondition(cc);
3738   } else {
3739     reg = ToRegister(instr->index());
3740     operand = ToOperand(instr->length());
3741   }
3742   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3743     Label done;
3744     __ Branch(&done, NegateCondition(cc), reg, operand);
3745     __ stop("eliminated bounds check failed");
3746     __ bind(&done);
3747   } else {
3748     DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds, reg, operand);
3749   }
3750 }
3751 
3752 
DoStoreKeyedExternalArray(LStoreKeyed * instr)3753 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3754   Register external_pointer = ToRegister(instr->elements());
3755   Register key = no_reg;
3756   ElementsKind elements_kind = instr->elements_kind();
3757   bool key_is_constant = instr->key()->IsConstantOperand();
3758   int constant_key = 0;
3759   if (key_is_constant) {
3760     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3761     if (constant_key & 0xF0000000) {
3762       Abort(kArrayIndexConstantValueTooBig);
3763     }
3764   } else {
3765     key = ToRegister(instr->key());
3766   }
3767   int element_size_shift = ElementsKindToShiftSize(elements_kind);
3768   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3769       ? (element_size_shift - kSmiTagSize) : element_size_shift;
3770   int base_offset = instr->base_offset();
3771 
3772   if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3773     Register address = scratch0();
3774     FPURegister value(ToDoubleRegister(instr->value()));
3775     if (key_is_constant) {
3776       if (constant_key != 0) {
3777         __ Addu(address, external_pointer,
3778                 Operand(constant_key << element_size_shift));
3779       } else {
3780         address = external_pointer;
3781       }
3782     } else {
3783       __ Lsa(address, external_pointer, key, shift_size);
3784     }
3785 
3786     if (elements_kind == FLOAT32_ELEMENTS) {
3787       __ cvt_s_d(double_scratch0(), value);
3788       __ swc1(double_scratch0(), MemOperand(address, base_offset));
3789     } else {  // Storing doubles, not floats.
3790       __ sdc1(value, MemOperand(address, base_offset));
3791     }
3792   } else {
3793     Register value(ToRegister(instr->value()));
3794     MemOperand mem_operand = PrepareKeyedOperand(
3795         key, external_pointer, key_is_constant, constant_key,
3796         element_size_shift, shift_size,
3797         base_offset);
3798     switch (elements_kind) {
3799       case UINT8_ELEMENTS:
3800       case UINT8_CLAMPED_ELEMENTS:
3801       case INT8_ELEMENTS:
3802         __ sb(value, mem_operand);
3803         break;
3804       case INT16_ELEMENTS:
3805       case UINT16_ELEMENTS:
3806         __ sh(value, mem_operand);
3807         break;
3808       case INT32_ELEMENTS:
3809       case UINT32_ELEMENTS:
3810         __ sw(value, mem_operand);
3811         break;
3812       case FLOAT32_ELEMENTS:
3813       case FLOAT64_ELEMENTS:
3814       case FAST_DOUBLE_ELEMENTS:
3815       case FAST_ELEMENTS:
3816       case FAST_SMI_ELEMENTS:
3817       case FAST_HOLEY_DOUBLE_ELEMENTS:
3818       case FAST_HOLEY_ELEMENTS:
3819       case FAST_HOLEY_SMI_ELEMENTS:
3820       case DICTIONARY_ELEMENTS:
3821       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3822       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3823       case FAST_STRING_WRAPPER_ELEMENTS:
3824       case SLOW_STRING_WRAPPER_ELEMENTS:
3825       case NO_ELEMENTS:
3826         UNREACHABLE();
3827         break;
3828     }
3829   }
3830 }
3831 
3832 
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)3833 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
3834   DoubleRegister value = ToDoubleRegister(instr->value());
3835   Register elements = ToRegister(instr->elements());
3836   Register scratch = scratch0();
3837   Register scratch_1 = scratch1();
3838   DoubleRegister double_scratch = double_scratch0();
3839   bool key_is_constant = instr->key()->IsConstantOperand();
3840   int base_offset = instr->base_offset();
3841   Label not_nan, done;
3842 
3843   // Calculate the effective address of the slot in the array to store the
3844   // double value.
3845   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3846   if (key_is_constant) {
3847     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3848     if (constant_key & 0xF0000000) {
3849       Abort(kArrayIndexConstantValueTooBig);
3850     }
3851     __ Addu(scratch, elements,
3852            Operand((constant_key << element_size_shift) + base_offset));
3853   } else {
3854     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3855         ? (element_size_shift - kSmiTagSize) : element_size_shift;
3856     __ Addu(scratch, elements, Operand(base_offset));
3857     __ sll(at, ToRegister(instr->key()), shift_size);
3858     __ Addu(scratch, scratch, at);
3859   }
3860 
3861   if (instr->NeedsCanonicalization()) {
3862     Label is_nan;
3863     // Check for NaN. All NaNs must be canonicalized.
3864     __ BranchF(NULL, &is_nan, eq, value, value);
3865     __ Branch(&not_nan);
3866 
3867     // Only load canonical NaN if the comparison above set the overflow.
3868     __ bind(&is_nan);
3869     __ LoadRoot(scratch_1, Heap::kNanValueRootIndex);
3870     __ ldc1(double_scratch,
3871             FieldMemOperand(scratch_1, HeapNumber::kValueOffset));
3872     __ sdc1(double_scratch, MemOperand(scratch, 0));
3873     __ Branch(&done);
3874   }
3875 
3876   __ bind(&not_nan);
3877   __ sdc1(value, MemOperand(scratch, 0));
3878   __ bind(&done);
3879 }
3880 
3881 
DoStoreKeyedFixedArray(LStoreKeyed * instr)3882 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
3883   Register value = ToRegister(instr->value());
3884   Register elements = ToRegister(instr->elements());
3885   Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
3886       : no_reg;
3887   Register scratch = scratch0();
3888   Register store_base = scratch;
3889   int offset = instr->base_offset();
3890 
3891   // Do the store.
3892   if (instr->key()->IsConstantOperand()) {
3893     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3894     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3895     offset += ToInteger32(const_operand) * kPointerSize;
3896     store_base = elements;
3897   } else {
3898     // Even though the HLoadKeyed instruction forces the input
3899     // representation for the key to be an integer, the input gets replaced
3900     // during bound check elimination with the index argument to the bounds
3901     // check, which can be tagged, so that case must be handled here, too.
3902     if (instr->hydrogen()->key()->representation().IsSmi()) {
3903       __ Lsa(scratch, elements, key, kPointerSizeLog2 - kSmiTagSize);
3904     } else {
3905       __ Lsa(scratch, elements, key, kPointerSizeLog2);
3906     }
3907   }
3908   __ sw(value, MemOperand(store_base, offset));
3909 
3910   if (instr->hydrogen()->NeedsWriteBarrier()) {
3911     SmiCheck check_needed =
3912         instr->hydrogen()->value()->type().IsHeapObject()
3913             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3914     // Compute address of modified element and store it into key register.
3915     __ Addu(key, store_base, Operand(offset));
3916     __ RecordWrite(elements,
3917                    key,
3918                    value,
3919                    GetRAState(),
3920                    kSaveFPRegs,
3921                    EMIT_REMEMBERED_SET,
3922                    check_needed,
3923                    instr->hydrogen()->PointersToHereCheckForValue());
3924   }
3925 }
3926 
3927 
DoStoreKeyed(LStoreKeyed * instr)3928 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
3929   // By cases: external, fast double
3930   if (instr->is_fixed_typed_array()) {
3931     DoStoreKeyedExternalArray(instr);
3932   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
3933     DoStoreKeyedFixedDoubleArray(instr);
3934   } else {
3935     DoStoreKeyedFixedArray(instr);
3936   }
3937 }
3938 
3939 
DoMaybeGrowElements(LMaybeGrowElements * instr)3940 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
3941   class DeferredMaybeGrowElements final : public LDeferredCode {
3942    public:
3943     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
3944         : LDeferredCode(codegen), instr_(instr) {}
3945     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
3946     LInstruction* instr() override { return instr_; }
3947 
3948    private:
3949     LMaybeGrowElements* instr_;
3950   };
3951 
3952   Register result = v0;
3953   DeferredMaybeGrowElements* deferred =
3954       new (zone()) DeferredMaybeGrowElements(this, instr);
3955   LOperand* key = instr->key();
3956   LOperand* current_capacity = instr->current_capacity();
3957 
3958   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
3959   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
3960   DCHECK(key->IsConstantOperand() || key->IsRegister());
3961   DCHECK(current_capacity->IsConstantOperand() ||
3962          current_capacity->IsRegister());
3963 
3964   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
3965     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
3966     int32_t constant_capacity =
3967         ToInteger32(LConstantOperand::cast(current_capacity));
3968     if (constant_key >= constant_capacity) {
3969       // Deferred case.
3970       __ jmp(deferred->entry());
3971     }
3972   } else if (key->IsConstantOperand()) {
3973     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
3974     __ Branch(deferred->entry(), le, ToRegister(current_capacity),
3975               Operand(constant_key));
3976   } else if (current_capacity->IsConstantOperand()) {
3977     int32_t constant_capacity =
3978         ToInteger32(LConstantOperand::cast(current_capacity));
3979     __ Branch(deferred->entry(), ge, ToRegister(key),
3980               Operand(constant_capacity));
3981   } else {
3982     __ Branch(deferred->entry(), ge, ToRegister(key),
3983               Operand(ToRegister(current_capacity)));
3984   }
3985 
3986   if (instr->elements()->IsRegister()) {
3987     __ mov(result, ToRegister(instr->elements()));
3988   } else {
3989     __ lw(result, ToMemOperand(instr->elements()));
3990   }
3991 
3992   __ bind(deferred->exit());
3993 }
3994 
3995 
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)3996 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
3997   // TODO(3095996): Get rid of this. For now, we need to make the
3998   // result register contain a valid pointer because it is already
3999   // contained in the register pointer map.
4000   Register result = v0;
4001   __ mov(result, zero_reg);
4002 
4003   // We have to call a stub.
4004   {
4005     PushSafepointRegistersScope scope(this);
4006     if (instr->object()->IsRegister()) {
4007       __ mov(result, ToRegister(instr->object()));
4008     } else {
4009       __ lw(result, ToMemOperand(instr->object()));
4010     }
4011 
4012     LOperand* key = instr->key();
4013     if (key->IsConstantOperand()) {
4014       LConstantOperand* constant_key = LConstantOperand::cast(key);
4015       int32_t int_key = ToInteger32(constant_key);
4016       if (Smi::IsValid(int_key)) {
4017         __ li(a3, Operand(Smi::FromInt(int_key)));
4018       } else {
4019         // We should never get here at runtime because there is a smi check on
4020         // the key before this point.
4021         __ stop("expected smi");
4022       }
4023     } else {
4024       __ mov(a3, ToRegister(key));
4025       __ SmiTag(a3);
4026     }
4027 
4028     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4029     __ mov(a0, result);
4030     __ CallStub(&stub);
4031     RecordSafepointWithLazyDeopt(
4032         instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4033     __ StoreToSafepointRegisterSlot(result, result);
4034   }
4035 
4036   // Deopt on smi, which means the elements array changed to dictionary mode.
4037   __ SmiTst(result, at);
4038   DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg));
4039 }
4040 
4041 
DoTransitionElementsKind(LTransitionElementsKind * instr)4042 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4043   Register object_reg = ToRegister(instr->object());
4044   Register scratch = scratch0();
4045 
4046   Handle<Map> from_map = instr->original_map();
4047   Handle<Map> to_map = instr->transitioned_map();
4048   ElementsKind from_kind = instr->from_kind();
4049   ElementsKind to_kind = instr->to_kind();
4050 
4051   Label not_applicable;
4052   __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4053   __ Branch(&not_applicable, ne, scratch, Operand(from_map));
4054 
4055   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4056     Register new_map_reg = ToRegister(instr->new_map_temp());
4057     __ li(new_map_reg, Operand(to_map));
4058     __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4059     // Write barrier.
4060     __ RecordWriteForMap(object_reg,
4061                          new_map_reg,
4062                          scratch,
4063                          GetRAState(),
4064                          kDontSaveFPRegs);
4065   } else {
4066     DCHECK(object_reg.is(a0));
4067     DCHECK(ToRegister(instr->context()).is(cp));
4068     PushSafepointRegistersScope scope(this);
4069     __ li(a1, Operand(to_map));
4070     TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4071     __ CallStub(&stub);
4072     RecordSafepointWithRegisters(
4073         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4074   }
4075   __ bind(&not_applicable);
4076 }
4077 
4078 
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4079 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4080   Register object = ToRegister(instr->object());
4081   Register temp = ToRegister(instr->temp());
4082   Label no_memento_found;
4083   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4084   DeoptimizeIf(al, instr);
4085   __ bind(&no_memento_found);
4086 }
4087 
4088 
DoStringAdd(LStringAdd * instr)4089 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4090   DCHECK(ToRegister(instr->context()).is(cp));
4091   DCHECK(ToRegister(instr->left()).is(a1));
4092   DCHECK(ToRegister(instr->right()).is(a0));
4093   StringAddStub stub(isolate(),
4094                      instr->hydrogen()->flags(),
4095                      instr->hydrogen()->pretenure_flag());
4096   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4097 }
4098 
4099 
DoStringCharCodeAt(LStringCharCodeAt * instr)4100 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4101   class DeferredStringCharCodeAt final : public LDeferredCode {
4102    public:
4103     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4104         : LDeferredCode(codegen), instr_(instr) { }
4105     void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4106     LInstruction* instr() override { return instr_; }
4107 
4108    private:
4109     LStringCharCodeAt* instr_;
4110   };
4111 
4112   DeferredStringCharCodeAt* deferred =
4113       new(zone()) DeferredStringCharCodeAt(this, instr);
4114   StringCharLoadGenerator::Generate(masm(),
4115                                     ToRegister(instr->string()),
4116                                     ToRegister(instr->index()),
4117                                     ToRegister(instr->result()),
4118                                     deferred->entry());
4119   __ bind(deferred->exit());
4120 }
4121 
4122 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4123 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4124   Register string = ToRegister(instr->string());
4125   Register result = ToRegister(instr->result());
4126   Register scratch = scratch0();
4127 
4128   // TODO(3095996): Get rid of this. For now, we need to make the
4129   // result register contain a valid pointer because it is already
4130   // contained in the register pointer map.
4131   __ mov(result, zero_reg);
4132 
4133   PushSafepointRegistersScope scope(this);
4134   __ push(string);
4135   // Push the index as a smi. This is safe because of the checks in
4136   // DoStringCharCodeAt above.
4137   if (instr->index()->IsConstantOperand()) {
4138     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4139     __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
4140     __ push(scratch);
4141   } else {
4142     Register index = ToRegister(instr->index());
4143     __ SmiTag(index);
4144     __ push(index);
4145   }
4146   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4147                           instr->context());
4148   __ AssertSmi(v0);
4149   __ SmiUntag(v0);
4150   __ StoreToSafepointRegisterSlot(v0, result);
4151 }
4152 
4153 
DoStringCharFromCode(LStringCharFromCode * instr)4154 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4155   class DeferredStringCharFromCode final : public LDeferredCode {
4156    public:
4157     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4158         : LDeferredCode(codegen), instr_(instr) { }
4159     void Generate() override {
4160       codegen()->DoDeferredStringCharFromCode(instr_);
4161     }
4162     LInstruction* instr() override { return instr_; }
4163 
4164    private:
4165     LStringCharFromCode* instr_;
4166   };
4167 
4168   DeferredStringCharFromCode* deferred =
4169       new(zone()) DeferredStringCharFromCode(this, instr);
4170 
4171   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4172   Register char_code = ToRegister(instr->char_code());
4173   Register result = ToRegister(instr->result());
4174   Register scratch = scratch0();
4175   DCHECK(!char_code.is(result));
4176 
4177   __ Branch(deferred->entry(), hi,
4178             char_code, Operand(String::kMaxOneByteCharCode));
4179   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4180   __ Lsa(result, result, char_code, kPointerSizeLog2);
4181   __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4182   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4183   __ Branch(deferred->entry(), eq, result, Operand(scratch));
4184   __ bind(deferred->exit());
4185 }
4186 
4187 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4188 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4189   Register char_code = ToRegister(instr->char_code());
4190   Register result = ToRegister(instr->result());
4191 
4192   // TODO(3095996): Get rid of this. For now, we need to make the
4193   // result register contain a valid pointer because it is already
4194   // contained in the register pointer map.
4195   __ mov(result, zero_reg);
4196 
4197   PushSafepointRegistersScope scope(this);
4198   __ SmiTag(char_code);
4199   __ push(char_code);
4200   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4201                           instr->context());
4202   __ StoreToSafepointRegisterSlot(v0, result);
4203 }
4204 
4205 
DoInteger32ToDouble(LInteger32ToDouble * instr)4206 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4207   LOperand* input = instr->value();
4208   DCHECK(input->IsRegister() || input->IsStackSlot());
4209   LOperand* output = instr->result();
4210   DCHECK(output->IsDoubleRegister());
4211   FPURegister single_scratch = double_scratch0().low();
4212   if (input->IsStackSlot()) {
4213     Register scratch = scratch0();
4214     __ lw(scratch, ToMemOperand(input));
4215     __ mtc1(scratch, single_scratch);
4216   } else {
4217     __ mtc1(ToRegister(input), single_scratch);
4218   }
4219   __ cvt_d_w(ToDoubleRegister(output), single_scratch);
4220 }
4221 
4222 
DoUint32ToDouble(LUint32ToDouble * instr)4223 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4224   LOperand* input = instr->value();
4225   LOperand* output = instr->result();
4226 
4227   __ Cvt_d_uw(ToDoubleRegister(output), ToRegister(input), f22);
4228 }
4229 
4230 
DoNumberTagI(LNumberTagI * instr)4231 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4232   class DeferredNumberTagI final : public LDeferredCode {
4233    public:
4234     DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4235         : LDeferredCode(codegen), instr_(instr) { }
4236     void Generate() override {
4237       codegen()->DoDeferredNumberTagIU(instr_,
4238                                        instr_->value(),
4239                                        instr_->temp1(),
4240                                        instr_->temp2(),
4241                                        SIGNED_INT32);
4242     }
4243     LInstruction* instr() override { return instr_; }
4244 
4245    private:
4246     LNumberTagI* instr_;
4247   };
4248 
4249   Register src = ToRegister(instr->value());
4250   Register dst = ToRegister(instr->result());
4251   Register overflow = scratch0();
4252 
4253   DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4254   __ SmiTagCheckOverflow(dst, src, overflow);
4255   __ BranchOnOverflow(deferred->entry(), overflow);
4256   __ bind(deferred->exit());
4257 }
4258 
4259 
DoNumberTagU(LNumberTagU * instr)4260 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4261   class DeferredNumberTagU final : public LDeferredCode {
4262    public:
4263     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4264         : LDeferredCode(codegen), instr_(instr) { }
4265     void Generate() override {
4266       codegen()->DoDeferredNumberTagIU(instr_,
4267                                        instr_->value(),
4268                                        instr_->temp1(),
4269                                        instr_->temp2(),
4270                                        UNSIGNED_INT32);
4271     }
4272     LInstruction* instr() override { return instr_; }
4273 
4274    private:
4275     LNumberTagU* instr_;
4276   };
4277 
4278   Register input = ToRegister(instr->value());
4279   Register result = ToRegister(instr->result());
4280 
4281   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4282   __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
4283   __ SmiTag(result, input);
4284   __ bind(deferred->exit());
4285 }
4286 
4287 
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2,IntegerSignedness signedness)4288 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4289                                      LOperand* value,
4290                                      LOperand* temp1,
4291                                      LOperand* temp2,
4292                                      IntegerSignedness signedness) {
4293   Label done, slow;
4294   Register src = ToRegister(value);
4295   Register dst = ToRegister(instr->result());
4296   Register tmp1 = scratch0();
4297   Register tmp2 = ToRegister(temp1);
4298   Register tmp3 = ToRegister(temp2);
4299   DoubleRegister dbl_scratch = double_scratch0();
4300 
4301   if (signedness == SIGNED_INT32) {
4302     // There was overflow, so bits 30 and 31 of the original integer
4303     // disagree. Try to allocate a heap number in new space and store
4304     // the value in there. If that fails, call the runtime system.
4305     if (dst.is(src)) {
4306       __ SmiUntag(src, dst);
4307       __ Xor(src, src, Operand(0x80000000));
4308     }
4309     __ mtc1(src, dbl_scratch);
4310     __ cvt_d_w(dbl_scratch, dbl_scratch);
4311   } else {
4312     __ Cvt_d_uw(dbl_scratch, src, f22);
4313   }
4314 
4315   if (FLAG_inline_new) {
4316     __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4317     __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4318     __ Branch(&done);
4319   }
4320 
4321   // Slow case: Call the runtime system to do the number allocation.
4322   __ bind(&slow);
4323   {
4324     // TODO(3095996): Put a valid pointer value in the stack slot where the
4325     // result register is stored, as this register is in the pointer map, but
4326     // contains an integer value.
4327     __ mov(dst, zero_reg);
4328 
4329     // Preserve the value of all registers.
4330     PushSafepointRegistersScope scope(this);
4331     // Reset the context register.
4332     if (!dst.is(cp)) {
4333       __ mov(cp, zero_reg);
4334     }
4335     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4336     RecordSafepointWithRegisters(
4337         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4338     __ StoreToSafepointRegisterSlot(v0, dst);
4339   }
4340 
4341   // Done. Put the value in dbl_scratch into the value of the allocated heap
4342   // number.
4343   __ bind(&done);
4344   __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4345 }
4346 
4347 
DoNumberTagD(LNumberTagD * instr)4348 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4349   class DeferredNumberTagD final : public LDeferredCode {
4350    public:
4351     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4352         : LDeferredCode(codegen), instr_(instr) { }
4353     void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4354     LInstruction* instr() override { return instr_; }
4355 
4356    private:
4357     LNumberTagD* instr_;
4358   };
4359 
4360   DoubleRegister input_reg = ToDoubleRegister(instr->value());
4361   Register scratch = scratch0();
4362   Register reg = ToRegister(instr->result());
4363   Register temp1 = ToRegister(instr->temp());
4364   Register temp2 = ToRegister(instr->temp2());
4365 
4366   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4367   if (FLAG_inline_new) {
4368     __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4369     __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4370   } else {
4371     __ Branch(deferred->entry());
4372   }
4373   __ bind(deferred->exit());
4374   __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4375   // Now that we have finished with the object's real address tag it
4376 }
4377 
4378 
DoDeferredNumberTagD(LNumberTagD * instr)4379 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4380   // TODO(3095996): Get rid of this. For now, we need to make the
4381   // result register contain a valid pointer because it is already
4382   // contained in the register pointer map.
4383   Register reg = ToRegister(instr->result());
4384   __ mov(reg, zero_reg);
4385 
4386   PushSafepointRegistersScope scope(this);
4387   // Reset the context register.
4388   if (!reg.is(cp)) {
4389     __ mov(cp, zero_reg);
4390   }
4391   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4392   RecordSafepointWithRegisters(
4393       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4394   __ StoreToSafepointRegisterSlot(v0, reg);
4395 }
4396 
4397 
DoSmiTag(LSmiTag * instr)4398 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4399   HChange* hchange = instr->hydrogen();
4400   Register input = ToRegister(instr->value());
4401   Register output = ToRegister(instr->result());
4402   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4403       hchange->value()->CheckFlag(HValue::kUint32)) {
4404     __ And(at, input, Operand(0xc0000000));
4405     DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, at, Operand(zero_reg));
4406   }
4407   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4408       !hchange->value()->CheckFlag(HValue::kUint32)) {
4409     __ SmiTagCheckOverflow(output, input, at);
4410     DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, at, Operand(zero_reg));
4411   } else {
4412     __ SmiTag(output, input);
4413   }
4414 }
4415 
4416 
DoSmiUntag(LSmiUntag * instr)4417 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4418   Register scratch = scratch0();
4419   Register input = ToRegister(instr->value());
4420   Register result = ToRegister(instr->result());
4421   if (instr->needs_check()) {
4422     STATIC_ASSERT(kHeapObjectTag == 1);
4423     // If the input is a HeapObject, value of scratch won't be zero.
4424     __ And(scratch, input, Operand(kHeapObjectTag));
4425     __ SmiUntag(result, input);
4426     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, scratch,
4427                  Operand(zero_reg));
4428   } else {
4429     __ SmiUntag(result, input);
4430   }
4431 }
4432 
4433 
EmitNumberUntagD(LNumberUntagD * instr,Register input_reg,DoubleRegister result_reg,NumberUntagDMode mode)4434 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4435                                 DoubleRegister result_reg,
4436                                 NumberUntagDMode mode) {
4437   bool can_convert_undefined_to_nan = instr->truncating();
4438   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4439 
4440   Register scratch = scratch0();
4441   Label convert, load_smi, done;
4442   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4443     // Smi check.
4444     __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4445     // Heap number map check.
4446     __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4447     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4448     if (can_convert_undefined_to_nan) {
4449       __ Branch(&convert, ne, scratch, Operand(at));
4450     } else {
4451       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch,
4452                    Operand(at));
4453     }
4454     // Load heap number.
4455     __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4456     if (deoptimize_on_minus_zero) {
4457       __ mfc1(at, result_reg.low());
4458       __ Branch(&done, ne, at, Operand(zero_reg));
4459       __ Mfhc1(scratch, result_reg);
4460       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, scratch,
4461                    Operand(HeapNumber::kSignMask));
4462     }
4463     __ Branch(&done);
4464     if (can_convert_undefined_to_nan) {
4465       __ bind(&convert);
4466       // Convert undefined (and hole) to NaN.
4467       __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4468       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined,
4469                    input_reg, Operand(at));
4470       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4471       __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4472       __ Branch(&done);
4473     }
4474   } else {
4475     __ SmiUntag(scratch, input_reg);
4476     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4477   }
4478   // Smi to double register conversion
4479   __ bind(&load_smi);
4480   // scratch: untagged value of input_reg
4481   __ mtc1(scratch, result_reg);
4482   __ cvt_d_w(result_reg, result_reg);
4483   __ bind(&done);
4484 }
4485 
4486 
DoDeferredTaggedToI(LTaggedToI * instr)4487 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4488   Register input_reg = ToRegister(instr->value());
4489   Register scratch1 = scratch0();
4490   Register scratch2 = ToRegister(instr->temp());
4491   DoubleRegister double_scratch = double_scratch0();
4492   DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4493 
4494   DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4495   DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4496 
4497   Label done;
4498 
4499   // The input is a tagged HeapObject.
4500   // Heap number map check.
4501   __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4502   __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4503   // This 'at' value and scratch1 map value are used for tests in both clauses
4504   // of the if.
4505 
4506   if (instr->truncating()) {
4507     Label truncate;
4508     __ Branch(USE_DELAY_SLOT, &truncate, eq, scratch1, Operand(at));
4509     __ mov(scratch2, input_reg);  // In delay slot.
4510     __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
4511     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball, scratch1,
4512                  Operand(ODDBALL_TYPE));
4513     __ bind(&truncate);
4514     __ TruncateHeapNumberToI(input_reg, scratch2);
4515   } else {
4516     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch1,
4517                  Operand(at));
4518 
4519     // Load the double value.
4520     __ ldc1(double_scratch,
4521             FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4522 
4523     Register except_flag = scratch2;
4524     __ EmitFPUTruncate(kRoundToZero,
4525                        input_reg,
4526                        double_scratch,
4527                        scratch1,
4528                        double_scratch2,
4529                        except_flag,
4530                        kCheckForInexactConversion);
4531 
4532     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
4533                  Operand(zero_reg));
4534 
4535     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4536       __ Branch(&done, ne, input_reg, Operand(zero_reg));
4537 
4538       __ Mfhc1(scratch1, double_scratch);
4539       __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4540       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
4541                    Operand(zero_reg));
4542     }
4543   }
4544   __ bind(&done);
4545 }
4546 
4547 
DoTaggedToI(LTaggedToI * instr)4548 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4549   class DeferredTaggedToI final : public LDeferredCode {
4550    public:
4551     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4552         : LDeferredCode(codegen), instr_(instr) { }
4553     void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4554     LInstruction* instr() override { return instr_; }
4555 
4556    private:
4557     LTaggedToI* instr_;
4558   };
4559 
4560   LOperand* input = instr->value();
4561   DCHECK(input->IsRegister());
4562   DCHECK(input->Equals(instr->result()));
4563 
4564   Register input_reg = ToRegister(input);
4565 
4566   if (instr->hydrogen()->value()->representation().IsSmi()) {
4567     __ SmiUntag(input_reg);
4568   } else {
4569     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4570 
4571     // Let the deferred code handle the HeapObject case.
4572     __ JumpIfNotSmi(input_reg, deferred->entry());
4573 
4574     // Smi to int32 conversion.
4575     __ SmiUntag(input_reg);
4576     __ bind(deferred->exit());
4577   }
4578 }
4579 
4580 
DoNumberUntagD(LNumberUntagD * instr)4581 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4582   LOperand* input = instr->value();
4583   DCHECK(input->IsRegister());
4584   LOperand* result = instr->result();
4585   DCHECK(result->IsDoubleRegister());
4586 
4587   Register input_reg = ToRegister(input);
4588   DoubleRegister result_reg = ToDoubleRegister(result);
4589 
4590   HValue* value = instr->hydrogen()->value();
4591   NumberUntagDMode mode = value->representation().IsSmi()
4592       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4593 
4594   EmitNumberUntagD(instr, input_reg, result_reg, mode);
4595 }
4596 
4597 
DoDoubleToI(LDoubleToI * instr)4598 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4599   Register result_reg = ToRegister(instr->result());
4600   Register scratch1 = scratch0();
4601   DoubleRegister double_input = ToDoubleRegister(instr->value());
4602 
4603   if (instr->truncating()) {
4604     __ TruncateDoubleToI(result_reg, double_input);
4605   } else {
4606     Register except_flag = LCodeGen::scratch1();
4607 
4608     __ EmitFPUTruncate(kRoundToMinusInf,
4609                        result_reg,
4610                        double_input,
4611                        scratch1,
4612                        double_scratch0(),
4613                        except_flag,
4614                        kCheckForInexactConversion);
4615 
4616     // Deopt if the operation did not succeed (except_flag != 0).
4617     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
4618                  Operand(zero_reg));
4619 
4620     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4621       Label done;
4622       __ Branch(&done, ne, result_reg, Operand(zero_reg));
4623       __ Mfhc1(scratch1, double_input);
4624       __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4625       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
4626                    Operand(zero_reg));
4627       __ bind(&done);
4628     }
4629   }
4630 }
4631 
4632 
DoDoubleToSmi(LDoubleToSmi * instr)4633 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4634   Register result_reg = ToRegister(instr->result());
4635   Register scratch1 = LCodeGen::scratch0();
4636   DoubleRegister double_input = ToDoubleRegister(instr->value());
4637 
4638   if (instr->truncating()) {
4639     __ TruncateDoubleToI(result_reg, double_input);
4640   } else {
4641     Register except_flag = LCodeGen::scratch1();
4642 
4643     __ EmitFPUTruncate(kRoundToMinusInf,
4644                        result_reg,
4645                        double_input,
4646                        scratch1,
4647                        double_scratch0(),
4648                        except_flag,
4649                        kCheckForInexactConversion);
4650 
4651     // Deopt if the operation did not succeed (except_flag != 0).
4652     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag,
4653                  Operand(zero_reg));
4654 
4655     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4656       Label done;
4657       __ Branch(&done, ne, result_reg, Operand(zero_reg));
4658       __ Mfhc1(scratch1, double_input);
4659       __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4660       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1,
4661                    Operand(zero_reg));
4662       __ bind(&done);
4663     }
4664   }
4665   __ SmiTagCheckOverflow(result_reg, result_reg, scratch1);
4666   DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, scratch1,
4667                Operand(zero_reg));
4668 }
4669 
4670 
DoCheckSmi(LCheckSmi * instr)4671 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4672   LOperand* input = instr->value();
4673   __ SmiTst(ToRegister(input), at);
4674   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, at, Operand(zero_reg));
4675 }
4676 
4677 
DoCheckNonSmi(LCheckNonSmi * instr)4678 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4679   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4680     LOperand* input = instr->value();
4681     __ SmiTst(ToRegister(input), at);
4682     DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg));
4683   }
4684 }
4685 
4686 
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)4687 void LCodeGen::DoCheckArrayBufferNotNeutered(
4688     LCheckArrayBufferNotNeutered* instr) {
4689   Register view = ToRegister(instr->view());
4690   Register scratch = scratch0();
4691 
4692   __ lw(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
4693   __ lw(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
4694   __ And(at, scratch, 1 << JSArrayBuffer::WasNeutered::kShift);
4695   DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds, at,
4696                Operand(zero_reg));
4697 }
4698 
4699 
DoCheckInstanceType(LCheckInstanceType * instr)4700 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4701   Register input = ToRegister(instr->value());
4702   Register scratch = scratch0();
4703 
4704   __ GetObjectType(input, scratch, scratch);
4705 
4706   if (instr->hydrogen()->is_interval_check()) {
4707     InstanceType first;
4708     InstanceType last;
4709     instr->hydrogen()->GetCheckInterval(&first, &last);
4710 
4711     // If there is only one type in the interval check for equality.
4712     if (first == last) {
4713       DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4714                    Operand(first));
4715     } else {
4716       DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4717                    Operand(first));
4718       // Omit check for the last type.
4719       if (last != LAST_TYPE) {
4720         DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4721                      Operand(last));
4722       }
4723     }
4724   } else {
4725     uint8_t mask;
4726     uint8_t tag;
4727     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4728 
4729     if (base::bits::IsPowerOfTwo32(mask)) {
4730       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4731       __ And(at, scratch, mask);
4732       DeoptimizeIf(tag == 0 ? ne : eq, instr,
4733                    DeoptimizeReason::kWrongInstanceType, at, Operand(zero_reg));
4734     } else {
4735       __ And(scratch, scratch, Operand(mask));
4736       DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType, scratch,
4737                    Operand(tag));
4738     }
4739   }
4740 }
4741 
4742 
DoCheckValue(LCheckValue * instr)4743 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4744   Register reg = ToRegister(instr->value());
4745   Handle<HeapObject> object = instr->hydrogen()->object().handle();
4746   AllowDeferredHandleDereference smi_check;
4747   if (isolate()->heap()->InNewSpace(*object)) {
4748     Register reg = ToRegister(instr->value());
4749     Handle<Cell> cell = isolate()->factory()->NewCell(object);
4750     __ li(at, Operand(cell));
4751     __ lw(at, FieldMemOperand(at, Cell::kValueOffset));
4752     DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch, reg, Operand(at));
4753   } else {
4754     DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch, reg,
4755                  Operand(object));
4756   }
4757 }
4758 
4759 
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)4760 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4761   {
4762     PushSafepointRegistersScope scope(this);
4763     __ push(object);
4764     __ mov(cp, zero_reg);
4765     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4766     RecordSafepointWithRegisters(
4767         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4768     __ StoreToSafepointRegisterSlot(v0, scratch0());
4769   }
4770   __ SmiTst(scratch0(), at);
4771   DeoptimizeIf(eq, instr, DeoptimizeReason::kInstanceMigrationFailed, at,
4772                Operand(zero_reg));
4773 }
4774 
4775 
DoCheckMaps(LCheckMaps * instr)4776 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4777   class DeferredCheckMaps final : public LDeferredCode {
4778    public:
4779     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4780         : LDeferredCode(codegen), instr_(instr), object_(object) {
4781       SetExit(check_maps());
4782     }
4783     void Generate() override {
4784       codegen()->DoDeferredInstanceMigration(instr_, object_);
4785     }
4786     Label* check_maps() { return &check_maps_; }
4787     LInstruction* instr() override { return instr_; }
4788 
4789    private:
4790     LCheckMaps* instr_;
4791     Label check_maps_;
4792     Register object_;
4793   };
4794 
4795   if (instr->hydrogen()->IsStabilityCheck()) {
4796     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4797     for (int i = 0; i < maps->size(); ++i) {
4798       AddStabilityDependency(maps->at(i).handle());
4799     }
4800     return;
4801   }
4802 
4803   Register map_reg = scratch0();
4804   LOperand* input = instr->value();
4805   DCHECK(input->IsRegister());
4806   Register reg = ToRegister(input);
4807   __ lw(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
4808 
4809   DeferredCheckMaps* deferred = NULL;
4810   if (instr->hydrogen()->HasMigrationTarget()) {
4811     deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
4812     __ bind(deferred->check_maps());
4813   }
4814 
4815   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4816   Label success;
4817   for (int i = 0; i < maps->size() - 1; i++) {
4818     Handle<Map> map = maps->at(i).handle();
4819     __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
4820   }
4821   Handle<Map> map = maps->at(maps->size() - 1).handle();
4822   // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
4823   if (instr->hydrogen()->HasMigrationTarget()) {
4824     __ Branch(deferred->entry(), ne, map_reg, Operand(map));
4825   } else {
4826     DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap, map_reg, Operand(map));
4827   }
4828 
4829   __ bind(&success);
4830 }
4831 
4832 
DoClampDToUint8(LClampDToUint8 * instr)4833 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4834   DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
4835   Register result_reg = ToRegister(instr->result());
4836   DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
4837   __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
4838 }
4839 
4840 
DoClampIToUint8(LClampIToUint8 * instr)4841 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4842   Register unclamped_reg = ToRegister(instr->unclamped());
4843   Register result_reg = ToRegister(instr->result());
4844   __ ClampUint8(result_reg, unclamped_reg);
4845 }
4846 
4847 
DoClampTToUint8(LClampTToUint8 * instr)4848 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
4849   Register scratch = scratch0();
4850   Register input_reg = ToRegister(instr->unclamped());
4851   Register result_reg = ToRegister(instr->result());
4852   DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
4853   Label is_smi, done, heap_number;
4854 
4855   // Both smi and heap number cases are handled.
4856   __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
4857 
4858   // Check for heap number
4859   __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4860   __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
4861 
4862   // Check for undefined. Undefined is converted to zero for clamping
4863   // conversions.
4864   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined, input_reg,
4865                Operand(factory()->undefined_value()));
4866   __ mov(result_reg, zero_reg);
4867   __ jmp(&done);
4868 
4869   // Heap number
4870   __ bind(&heap_number);
4871   __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
4872                                              HeapNumber::kValueOffset));
4873   __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
4874   __ jmp(&done);
4875 
4876   __ bind(&is_smi);
4877   __ ClampUint8(result_reg, scratch);
4878 
4879   __ bind(&done);
4880 }
4881 
4882 
DoAllocate(LAllocate * instr)4883 void LCodeGen::DoAllocate(LAllocate* instr) {
4884   class DeferredAllocate final : public LDeferredCode {
4885    public:
4886     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
4887         : LDeferredCode(codegen), instr_(instr) { }
4888     void Generate() override { codegen()->DoDeferredAllocate(instr_); }
4889     LInstruction* instr() override { return instr_; }
4890 
4891    private:
4892     LAllocate* instr_;
4893   };
4894 
4895   DeferredAllocate* deferred =
4896       new(zone()) DeferredAllocate(this, instr);
4897 
4898   Register result = ToRegister(instr->result());
4899   Register scratch = ToRegister(instr->temp1());
4900   Register scratch2 = ToRegister(instr->temp2());
4901 
4902   // Allocate memory for the object.
4903   AllocationFlags flags = NO_ALLOCATION_FLAGS;
4904   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
4905     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
4906   }
4907   if (instr->hydrogen()->IsOldSpaceAllocation()) {
4908     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4909     flags = static_cast<AllocationFlags>(flags | PRETENURE);
4910   }
4911 
4912   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
4913     flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
4914   }
4915   DCHECK(!instr->hydrogen()->IsAllocationFolded());
4916 
4917   if (instr->size()->IsConstantOperand()) {
4918     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4919     CHECK(size <= kMaxRegularHeapObjectSize);
4920     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
4921   } else {
4922     Register size = ToRegister(instr->size());
4923     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
4924   }
4925 
4926   __ bind(deferred->exit());
4927 
4928   if (instr->hydrogen()->MustPrefillWithFiller()) {
4929     STATIC_ASSERT(kHeapObjectTag == 1);
4930     if (instr->size()->IsConstantOperand()) {
4931       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4932       __ li(scratch, Operand(size - kHeapObjectTag));
4933     } else {
4934       __ Subu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
4935     }
4936     __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
4937     Label loop;
4938     __ bind(&loop);
4939     __ Subu(scratch, scratch, Operand(kPointerSize));
4940     __ Addu(at, result, Operand(scratch));
4941     __ sw(scratch2, MemOperand(at));
4942     __ Branch(&loop, ge, scratch, Operand(zero_reg));
4943   }
4944 }
4945 
4946 
DoDeferredAllocate(LAllocate * instr)4947 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
4948   Register result = ToRegister(instr->result());
4949 
4950   // TODO(3095996): Get rid of this. For now, we need to make the
4951   // result register contain a valid pointer because it is already
4952   // contained in the register pointer map.
4953   __ mov(result, zero_reg);
4954 
4955   PushSafepointRegistersScope scope(this);
4956   if (instr->size()->IsRegister()) {
4957     Register size = ToRegister(instr->size());
4958     DCHECK(!size.is(result));
4959     __ SmiTag(size);
4960     __ push(size);
4961   } else {
4962     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4963     if (size >= 0 && size <= Smi::kMaxValue) {
4964       __ Push(Smi::FromInt(size));
4965     } else {
4966       // We should never get here at runtime => abort
4967       __ stop("invalid allocation size");
4968       return;
4969     }
4970   }
4971 
4972   int flags = AllocateDoubleAlignFlag::encode(
4973       instr->hydrogen()->MustAllocateDoubleAligned());
4974   if (instr->hydrogen()->IsOldSpaceAllocation()) {
4975     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4976     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
4977   } else {
4978     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
4979   }
4980   __ Push(Smi::FromInt(flags));
4981 
4982   CallRuntimeFromDeferred(
4983       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
4984   __ StoreToSafepointRegisterSlot(v0, result);
4985 
4986   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
4987     AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
4988     if (instr->hydrogen()->IsOldSpaceAllocation()) {
4989       DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4990       allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
4991     }
4992     // If the allocation folding dominator allocate triggered a GC, allocation
4993     // happend in the runtime. We have to reset the top pointer to virtually
4994     // undo the allocation.
4995     ExternalReference allocation_top =
4996         AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
4997     Register top_address = scratch0();
4998     __ Subu(v0, v0, Operand(kHeapObjectTag));
4999     __ li(top_address, Operand(allocation_top));
5000     __ sw(v0, MemOperand(top_address));
5001     __ Addu(v0, v0, Operand(kHeapObjectTag));
5002   }
5003 }
5004 
DoFastAllocate(LFastAllocate * instr)5005 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5006   DCHECK(instr->hydrogen()->IsAllocationFolded());
5007   DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5008   Register result = ToRegister(instr->result());
5009   Register scratch1 = ToRegister(instr->temp1());
5010   Register scratch2 = ToRegister(instr->temp2());
5011 
5012   AllocationFlags flags = ALLOCATION_FOLDED;
5013   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5014     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5015   }
5016   if (instr->hydrogen()->IsOldSpaceAllocation()) {
5017     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5018     flags = static_cast<AllocationFlags>(flags | PRETENURE);
5019   }
5020   if (instr->size()->IsConstantOperand()) {
5021     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5022     CHECK(size <= kMaxRegularHeapObjectSize);
5023     __ FastAllocate(size, result, scratch1, scratch2, flags);
5024   } else {
5025     Register size = ToRegister(instr->size());
5026     __ FastAllocate(size, result, scratch1, scratch2, flags);
5027   }
5028 }
5029 
5030 
DoTypeof(LTypeof * instr)5031 void LCodeGen::DoTypeof(LTypeof* instr) {
5032   DCHECK(ToRegister(instr->value()).is(a3));
5033   DCHECK(ToRegister(instr->result()).is(v0));
5034   Label end, do_call;
5035   Register value_register = ToRegister(instr->value());
5036   __ JumpIfNotSmi(value_register, &do_call);
5037   __ li(v0, Operand(isolate()->factory()->number_string()));
5038   __ jmp(&end);
5039   __ bind(&do_call);
5040   Callable callable = CodeFactory::Typeof(isolate());
5041   CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5042   __ bind(&end);
5043 }
5044 
5045 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5046 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5047   Register input = ToRegister(instr->value());
5048 
5049   Register cmp1 = no_reg;
5050   Operand cmp2 = Operand(no_reg);
5051 
5052   Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5053                                                   instr->FalseLabel(chunk_),
5054                                                   input,
5055                                                   instr->type_literal(),
5056                                                   &cmp1,
5057                                                   &cmp2);
5058 
5059   DCHECK(cmp1.is_valid());
5060   DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
5061 
5062   if (final_branch_condition != kNoCondition) {
5063     EmitBranch(instr, final_branch_condition, cmp1, cmp2);
5064   }
5065 }
5066 
5067 
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name,Register * cmp1,Operand * cmp2)5068 Condition LCodeGen::EmitTypeofIs(Label* true_label,
5069                                  Label* false_label,
5070                                  Register input,
5071                                  Handle<String> type_name,
5072                                  Register* cmp1,
5073                                  Operand* cmp2) {
5074   // This function utilizes the delay slot heavily. This is used to load
5075   // values that are always usable without depending on the type of the input
5076   // register.
5077   Condition final_branch_condition = kNoCondition;
5078   Register scratch = scratch0();
5079   Factory* factory = isolate()->factory();
5080   if (String::Equals(type_name, factory->number_string())) {
5081     __ JumpIfSmi(input, true_label);
5082     __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
5083     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
5084     *cmp1 = input;
5085     *cmp2 = Operand(at);
5086     final_branch_condition = eq;
5087 
5088   } else if (String::Equals(type_name, factory->string_string())) {
5089     __ JumpIfSmi(input, false_label);
5090     __ GetObjectType(input, input, scratch);
5091     *cmp1 = scratch;
5092     *cmp2 = Operand(FIRST_NONSTRING_TYPE);
5093     final_branch_condition = lt;
5094 
5095   } else if (String::Equals(type_name, factory->symbol_string())) {
5096     __ JumpIfSmi(input, false_label);
5097     __ GetObjectType(input, input, scratch);
5098     *cmp1 = scratch;
5099     *cmp2 = Operand(SYMBOL_TYPE);
5100     final_branch_condition = eq;
5101 
5102   } else if (String::Equals(type_name, factory->boolean_string())) {
5103     __ LoadRoot(at, Heap::kTrueValueRootIndex);
5104     __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5105     __ LoadRoot(at, Heap::kFalseValueRootIndex);
5106     *cmp1 = at;
5107     *cmp2 = Operand(input);
5108     final_branch_condition = eq;
5109 
5110   } else if (String::Equals(type_name, factory->undefined_string())) {
5111     __ LoadRoot(at, Heap::kNullValueRootIndex);
5112     __ Branch(USE_DELAY_SLOT, false_label, eq, at, Operand(input));
5113     // The first instruction of JumpIfSmi is an And - it is safe in the delay
5114     // slot.
5115     __ JumpIfSmi(input, false_label);
5116     // Check for undetectable objects => true.
5117     __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
5118     __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
5119     __ And(at, at, 1 << Map::kIsUndetectable);
5120     *cmp1 = at;
5121     *cmp2 = Operand(zero_reg);
5122     final_branch_condition = ne;
5123 
5124   } else if (String::Equals(type_name, factory->function_string())) {
5125     __ JumpIfSmi(input, false_label);
5126     __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5127     __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5128     __ And(scratch, scratch,
5129            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5130     *cmp1 = scratch;
5131     *cmp2 = Operand(1 << Map::kIsCallable);
5132     final_branch_condition = eq;
5133 
5134   } else if (String::Equals(type_name, factory->object_string())) {
5135     __ JumpIfSmi(input, false_label);
5136     __ LoadRoot(at, Heap::kNullValueRootIndex);
5137     __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5138     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5139     __ GetObjectType(input, scratch, scratch1());
5140     __ Branch(false_label, lt, scratch1(), Operand(FIRST_JS_RECEIVER_TYPE));
5141     // Check for callable or undetectable objects => false.
5142     __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5143     __ And(at, scratch,
5144            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5145     *cmp1 = at;
5146     *cmp2 = Operand(zero_reg);
5147     final_branch_condition = eq;
5148 
5149 // clang-format off
5150 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)        \
5151   } else if (String::Equals(type_name, factory->type##_string())) {  \
5152     __ JumpIfSmi(input, false_label);                                \
5153     __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));    \
5154     __ LoadRoot(at, Heap::k##Type##MapRootIndex);                    \
5155     *cmp1 = input;                                                   \
5156     *cmp2 = Operand(at);                                             \
5157     final_branch_condition = eq;
5158   SIMD128_TYPES(SIMD128_TYPE)
5159 #undef SIMD128_TYPE
5160     // clang-format on
5161 
5162   } else {
5163     *cmp1 = at;
5164     *cmp2 = Operand(zero_reg);  // Set to valid regs, to avoid caller assertion.
5165     __ Branch(false_label);
5166   }
5167 
5168   return final_branch_condition;
5169 }
5170 
5171 
EnsureSpaceForLazyDeopt(int space_needed)5172 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5173   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5174     // Ensure that we have enough space after the previous lazy-bailout
5175     // instruction for patching the code here.
5176     int current_pc = masm()->pc_offset();
5177     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5178       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5179       DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5180       while (padding_size > 0) {
5181         __ nop();
5182         padding_size -= Assembler::kInstrSize;
5183       }
5184     }
5185   }
5186   last_lazy_deopt_pc_ = masm()->pc_offset();
5187 }
5188 
5189 
DoLazyBailout(LLazyBailout * instr)5190 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5191   last_lazy_deopt_pc_ = masm()->pc_offset();
5192   DCHECK(instr->HasEnvironment());
5193   LEnvironment* env = instr->environment();
5194   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5195   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5196 }
5197 
5198 
DoDeoptimize(LDeoptimize * instr)5199 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5200   Deoptimizer::BailoutType type = instr->hydrogen()->type();
5201   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5202   // needed return address), even though the implementation of LAZY and EAGER is
5203   // now identical. When LAZY is eventually completely folded into EAGER, remove
5204   // the special case below.
5205   if (info()->IsStub() && type == Deoptimizer::EAGER) {
5206     type = Deoptimizer::LAZY;
5207   }
5208 
5209   DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type, zero_reg,
5210                Operand(zero_reg));
5211 }
5212 
5213 
DoDummy(LDummy * instr)5214 void LCodeGen::DoDummy(LDummy* instr) {
5215   // Nothing to see here, move on!
5216 }
5217 
5218 
DoDummyUse(LDummyUse * instr)5219 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5220   // Nothing to see here, move on!
5221 }
5222 
5223 
DoDeferredStackCheck(LStackCheck * instr)5224 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5225   PushSafepointRegistersScope scope(this);
5226   LoadContextFromDeferred(instr->context());
5227   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5228   RecordSafepointWithLazyDeopt(
5229       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5230   DCHECK(instr->HasEnvironment());
5231   LEnvironment* env = instr->environment();
5232   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5233 }
5234 
5235 
DoStackCheck(LStackCheck * instr)5236 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5237   class DeferredStackCheck final : public LDeferredCode {
5238    public:
5239     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5240         : LDeferredCode(codegen), instr_(instr) { }
5241     void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5242     LInstruction* instr() override { return instr_; }
5243 
5244    private:
5245     LStackCheck* instr_;
5246   };
5247 
5248   DCHECK(instr->HasEnvironment());
5249   LEnvironment* env = instr->environment();
5250   // There is no LLazyBailout instruction for stack-checks. We have to
5251   // prepare for lazy deoptimization explicitly here.
5252   if (instr->hydrogen()->is_function_entry()) {
5253     // Perform stack overflow check.
5254     Label done;
5255     __ LoadRoot(at, Heap::kStackLimitRootIndex);
5256     __ Branch(&done, hs, sp, Operand(at));
5257     DCHECK(instr->context()->IsRegister());
5258     DCHECK(ToRegister(instr->context()).is(cp));
5259     CallCode(isolate()->builtins()->StackCheck(),
5260              RelocInfo::CODE_TARGET,
5261              instr);
5262     __ bind(&done);
5263   } else {
5264     DCHECK(instr->hydrogen()->is_backwards_branch());
5265     // Perform stack overflow check if this goto needs it before jumping.
5266     DeferredStackCheck* deferred_stack_check =
5267         new(zone()) DeferredStackCheck(this, instr);
5268     __ LoadRoot(at, Heap::kStackLimitRootIndex);
5269     __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
5270     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5271     __ bind(instr->done_label());
5272     deferred_stack_check->SetExit(instr->done_label());
5273     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5274     // Don't record a deoptimization index for the safepoint here.
5275     // This will be done explicitly when emitting call and the safepoint in
5276     // the deferred code.
5277   }
5278 }
5279 
5280 
DoOsrEntry(LOsrEntry * instr)5281 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5282   // This is a pseudo-instruction that ensures that the environment here is
5283   // properly registered for deoptimization and records the assembler's PC
5284   // offset.
5285   LEnvironment* environment = instr->environment();
5286 
5287   // If the environment were already registered, we would have no way of
5288   // backpatching it with the spill slot operands.
5289   DCHECK(!environment->HasBeenRegistered());
5290   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5291 
5292   GenerateOsrPrologue();
5293 }
5294 
5295 
DoForInPrepareMap(LForInPrepareMap * instr)5296 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5297   Register result = ToRegister(instr->result());
5298   Register object = ToRegister(instr->object());
5299 
5300   Label use_cache, call_runtime;
5301   DCHECK(object.is(a0));
5302   __ CheckEnumCache(&call_runtime);
5303 
5304   __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset));
5305   __ Branch(&use_cache);
5306 
5307   // Get the set of properties to enumerate.
5308   __ bind(&call_runtime);
5309   __ push(object);
5310   CallRuntime(Runtime::kForInEnumerate, instr);
5311   __ bind(&use_cache);
5312 }
5313 
5314 
DoForInCacheArray(LForInCacheArray * instr)5315 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5316   Register map = ToRegister(instr->map());
5317   Register result = ToRegister(instr->result());
5318   Label load_cache, done;
5319   __ EnumLength(result, map);
5320   __ Branch(&load_cache, ne, result, Operand(Smi::kZero));
5321   __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
5322   __ jmp(&done);
5323 
5324   __ bind(&load_cache);
5325   __ LoadInstanceDescriptors(map, result);
5326   __ lw(result,
5327         FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5328   __ lw(result,
5329         FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5330   DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache, result,
5331                Operand(zero_reg));
5332 
5333   __ bind(&done);
5334 }
5335 
5336 
DoCheckMapValue(LCheckMapValue * instr)5337 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5338   Register object = ToRegister(instr->value());
5339   Register map = ToRegister(instr->map());
5340   __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5341   DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap, map,
5342                Operand(scratch0()));
5343 }
5344 
5345 
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5346 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5347                                            Register result,
5348                                            Register object,
5349                                            Register index) {
5350   PushSafepointRegistersScope scope(this);
5351   __ Push(object, index);
5352   __ mov(cp, zero_reg);
5353   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5354   RecordSafepointWithRegisters(
5355      instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5356   __ StoreToSafepointRegisterSlot(v0, result);
5357 }
5358 
5359 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5360 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5361   class DeferredLoadMutableDouble final : public LDeferredCode {
5362    public:
5363     DeferredLoadMutableDouble(LCodeGen* codegen,
5364                               LLoadFieldByIndex* instr,
5365                               Register result,
5366                               Register object,
5367                               Register index)
5368         : LDeferredCode(codegen),
5369           instr_(instr),
5370           result_(result),
5371           object_(object),
5372           index_(index) {
5373     }
5374     void Generate() override {
5375       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5376     }
5377     LInstruction* instr() override { return instr_; }
5378 
5379    private:
5380     LLoadFieldByIndex* instr_;
5381     Register result_;
5382     Register object_;
5383     Register index_;
5384   };
5385 
5386   Register object = ToRegister(instr->object());
5387   Register index = ToRegister(instr->index());
5388   Register result = ToRegister(instr->result());
5389   Register scratch = scratch0();
5390 
5391   DeferredLoadMutableDouble* deferred;
5392   deferred = new(zone()) DeferredLoadMutableDouble(
5393       this, instr, result, object, index);
5394 
5395   Label out_of_object, done;
5396 
5397   __ And(scratch, index, Operand(Smi::FromInt(1)));
5398   __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
5399   __ sra(index, index, 1);
5400 
5401   __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
5402   __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize);  // In delay slot.
5403 
5404   STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5405   __ Addu(scratch, object, scratch);
5406   __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5407 
5408   __ Branch(&done);
5409 
5410   __ bind(&out_of_object);
5411   __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5412   // Index is equal to negated out of object property index plus 1.
5413   __ Subu(scratch, result, scratch);
5414   __ lw(result, FieldMemOperand(scratch,
5415                                 FixedArray::kHeaderSize - kPointerSize));
5416   __ bind(deferred->exit());
5417   __ bind(&done);
5418 }
5419 
5420 #undef __
5421 
5422 }  // namespace internal
5423 }  // namespace v8
5424