1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/global-handles.h"
6 
7 #include "src/api.h"
8 #include "src/v8.h"
9 #include "src/vm-state-inl.h"
10 
11 namespace v8 {
12 namespace internal {
13 
14 
~ObjectGroup()15 ObjectGroup::~ObjectGroup() {
16   if (info != NULL) info->Dispose();
17   delete[] objects;
18 }
19 
20 
~ImplicitRefGroup()21 ImplicitRefGroup::~ImplicitRefGroup() {
22   delete[] children;
23 }
24 
25 
26 class GlobalHandles::Node {
27  public:
28   // State transition diagram:
29   // FREE -> NORMAL <-> WEAK -> PENDING -> NEAR_DEATH -> { NORMAL, WEAK, FREE }
30   enum State {
31     FREE = 0,
32     NORMAL,      // Normal global handle.
33     WEAK,        // Flagged as weak but not yet finalized.
34     PENDING,     // Has been recognized as only reachable by weak handles.
35     NEAR_DEATH,  // Callback has informed the handle is near death.
36     NUMBER_OF_NODE_STATES
37   };
38 
39   // Maps handle location (slot) to the containing node.
FromLocation(Object ** location)40   static Node* FromLocation(Object** location) {
41     DCHECK(offsetof(Node, object_) == 0);
42     return reinterpret_cast<Node*>(location);
43   }
44 
Node()45   Node() {
46     DCHECK(offsetof(Node, class_id_) == Internals::kNodeClassIdOffset);
47     DCHECK(offsetof(Node, flags_) == Internals::kNodeFlagsOffset);
48     STATIC_ASSERT(static_cast<int>(NodeState::kMask) ==
49                   Internals::kNodeStateMask);
50     STATIC_ASSERT(WEAK == Internals::kNodeStateIsWeakValue);
51     STATIC_ASSERT(PENDING == Internals::kNodeStateIsPendingValue);
52     STATIC_ASSERT(NEAR_DEATH == Internals::kNodeStateIsNearDeathValue);
53     STATIC_ASSERT(static_cast<int>(IsIndependent::kShift) ==
54                   Internals::kNodeIsIndependentShift);
55     STATIC_ASSERT(static_cast<int>(IsActive::kShift) ==
56                   Internals::kNodeIsActiveShift);
57   }
58 
59 #ifdef ENABLE_HANDLE_ZAPPING
~Node()60   ~Node() {
61     // TODO(1428): if it's a weak handle we should have invoked its callback.
62     // Zap the values for eager trapping.
63     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
64     class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
65     index_ = 0;
66     set_independent(false);
67     set_active(false);
68     set_in_new_space_list(false);
69     parameter_or_next_free_.next_free = NULL;
70     weak_callback_ = NULL;
71   }
72 #endif
73 
Initialize(int index,Node ** first_free)74   void Initialize(int index, Node** first_free) {
75     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
76     index_ = static_cast<uint8_t>(index);
77     DCHECK(static_cast<int>(index_) == index);
78     set_state(FREE);
79     set_in_new_space_list(false);
80     parameter_or_next_free_.next_free = *first_free;
81     *first_free = this;
82   }
83 
Acquire(Object * object)84   void Acquire(Object* object) {
85     DCHECK(state() == FREE);
86     object_ = object;
87     class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
88     set_independent(false);
89     set_active(false);
90     set_state(NORMAL);
91     parameter_or_next_free_.parameter = NULL;
92     weak_callback_ = NULL;
93     IncreaseBlockUses();
94   }
95 
Zap()96   void Zap() {
97     DCHECK(IsInUse());
98     // Zap the values for eager trapping.
99     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
100   }
101 
Release()102   void Release() {
103     DCHECK(IsInUse());
104     set_state(FREE);
105     // Zap the values for eager trapping.
106     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
107     class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
108     set_independent(false);
109     set_active(false);
110     weak_callback_ = NULL;
111     DecreaseBlockUses();
112   }
113 
114   // Object slot accessors.
object() const115   Object* object() const { return object_; }
location()116   Object** location() { return &object_; }
handle()117   Handle<Object> handle() { return Handle<Object>(location()); }
118 
119   // Wrapper class ID accessors.
has_wrapper_class_id() const120   bool has_wrapper_class_id() const {
121     return class_id_ != v8::HeapProfiler::kPersistentHandleNoClassId;
122   }
123 
wrapper_class_id() const124   uint16_t wrapper_class_id() const { return class_id_; }
125 
126   // State and flag accessors.
127 
state() const128   State state() const {
129     return NodeState::decode(flags_);
130   }
set_state(State state)131   void set_state(State state) {
132     flags_ = NodeState::update(flags_, state);
133   }
134 
is_independent()135   bool is_independent() {
136     return IsIndependent::decode(flags_);
137   }
set_independent(bool v)138   void set_independent(bool v) {
139     flags_ = IsIndependent::update(flags_, v);
140   }
141 
is_active()142   bool is_active() {
143     return IsActive::decode(flags_);
144   }
set_active(bool v)145   void set_active(bool v) {
146     flags_ = IsActive::update(flags_, v);
147   }
148 
is_in_new_space_list()149   bool is_in_new_space_list() {
150     return IsInNewSpaceList::decode(flags_);
151   }
set_in_new_space_list(bool v)152   void set_in_new_space_list(bool v) {
153     flags_ = IsInNewSpaceList::update(flags_, v);
154   }
155 
weakness_type() const156   WeaknessType weakness_type() const {
157     return NodeWeaknessType::decode(flags_);
158   }
set_weakness_type(WeaknessType weakness_type)159   void set_weakness_type(WeaknessType weakness_type) {
160     flags_ = NodeWeaknessType::update(flags_, weakness_type);
161   }
162 
IsNearDeath() const163   bool IsNearDeath() const {
164     // Check for PENDING to ensure correct answer when processing callbacks.
165     return state() == PENDING || state() == NEAR_DEATH;
166   }
167 
IsWeak() const168   bool IsWeak() const { return state() == WEAK; }
169 
IsInUse() const170   bool IsInUse() const { return state() != FREE; }
171 
IsPendingPhantomCallback() const172   bool IsPendingPhantomCallback() const {
173     return state() == PENDING &&
174            (weakness_type() == PHANTOM_WEAK ||
175             weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
176   }
177 
IsPendingPhantomResetHandle() const178   bool IsPendingPhantomResetHandle() const {
179     return state() == PENDING && weakness_type() == PHANTOM_WEAK_RESET_HANDLE;
180   }
181 
IsRetainer() const182   bool IsRetainer() const {
183     return state() != FREE &&
184            !(state() == NEAR_DEATH && weakness_type() != FINALIZER_WEAK);
185   }
186 
IsStrongRetainer() const187   bool IsStrongRetainer() const { return state() == NORMAL; }
188 
IsWeakRetainer() const189   bool IsWeakRetainer() const {
190     return state() == WEAK || state() == PENDING ||
191            (state() == NEAR_DEATH && weakness_type() == FINALIZER_WEAK);
192   }
193 
MarkPending()194   void MarkPending() {
195     DCHECK(state() == WEAK);
196     set_state(PENDING);
197   }
198 
199   // Independent flag accessors.
MarkIndependent()200   void MarkIndependent() {
201     DCHECK(IsInUse());
202     set_independent(true);
203   }
204 
205   // Callback accessor.
206   // TODO(svenpanne) Re-enable or nuke later.
207   // WeakReferenceCallback callback() { return callback_; }
208 
209   // Callback parameter accessors.
set_parameter(void * parameter)210   void set_parameter(void* parameter) {
211     DCHECK(IsInUse());
212     parameter_or_next_free_.parameter = parameter;
213   }
parameter() const214   void* parameter() const {
215     DCHECK(IsInUse());
216     return parameter_or_next_free_.parameter;
217   }
218 
219   // Accessors for next free node in the free list.
next_free()220   Node* next_free() {
221     DCHECK(state() == FREE);
222     return parameter_or_next_free_.next_free;
223   }
set_next_free(Node * value)224   void set_next_free(Node* value) {
225     DCHECK(state() == FREE);
226     parameter_or_next_free_.next_free = value;
227   }
228 
MakeWeak(void * parameter,WeakCallbackInfo<void>::Callback phantom_callback,v8::WeakCallbackType type)229   void MakeWeak(void* parameter,
230                 WeakCallbackInfo<void>::Callback phantom_callback,
231                 v8::WeakCallbackType type) {
232     DCHECK(phantom_callback != nullptr);
233     DCHECK(IsInUse());
234     CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
235     set_state(WEAK);
236     switch (type) {
237       case v8::WeakCallbackType::kParameter:
238         set_weakness_type(PHANTOM_WEAK);
239         break;
240       case v8::WeakCallbackType::kInternalFields:
241         set_weakness_type(PHANTOM_WEAK_2_INTERNAL_FIELDS);
242         break;
243       case v8::WeakCallbackType::kFinalizer:
244         set_weakness_type(FINALIZER_WEAK);
245         break;
246     }
247     set_parameter(parameter);
248     weak_callback_ = phantom_callback;
249   }
250 
MakeWeak(Object *** location_addr)251   void MakeWeak(Object*** location_addr) {
252     DCHECK(IsInUse());
253     CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
254     set_state(WEAK);
255     set_weakness_type(PHANTOM_WEAK_RESET_HANDLE);
256     set_parameter(location_addr);
257     weak_callback_ = nullptr;
258   }
259 
ClearWeakness()260   void* ClearWeakness() {
261     DCHECK(IsInUse());
262     void* p = parameter();
263     set_state(NORMAL);
264     set_parameter(NULL);
265     return p;
266   }
267 
CollectPhantomCallbackData(Isolate * isolate,List<PendingPhantomCallback> * pending_phantom_callbacks)268   void CollectPhantomCallbackData(
269       Isolate* isolate,
270       List<PendingPhantomCallback>* pending_phantom_callbacks) {
271     DCHECK(weakness_type() == PHANTOM_WEAK ||
272            weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
273     DCHECK(state() == PENDING);
274     DCHECK(weak_callback_ != nullptr);
275 
276     void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
277                                                                 nullptr};
278     if (weakness_type() != PHANTOM_WEAK && object()->IsJSObject()) {
279       auto jsobject = JSObject::cast(object());
280       int field_count = jsobject->GetInternalFieldCount();
281       for (int i = 0; i < v8::kInternalFieldsInWeakCallback; ++i) {
282         if (field_count == i) break;
283         auto field = jsobject->GetInternalField(i);
284         if (field->IsSmi()) internal_fields[i] = field;
285       }
286     }
287 
288     // Zap with something dangerous.
289     *location() = reinterpret_cast<Object*>(0x6057ca11);
290 
291     typedef v8::WeakCallbackInfo<void> Data;
292     auto callback = reinterpret_cast<Data::Callback>(weak_callback_);
293     pending_phantom_callbacks->Add(
294         PendingPhantomCallback(this, callback, parameter(), internal_fields));
295     DCHECK(IsInUse());
296     set_state(NEAR_DEATH);
297   }
298 
ResetPhantomHandle()299   void ResetPhantomHandle() {
300     DCHECK(weakness_type() == PHANTOM_WEAK_RESET_HANDLE);
301     DCHECK(state() == PENDING);
302     DCHECK(weak_callback_ == nullptr);
303     Object*** handle = reinterpret_cast<Object***>(parameter());
304     *handle = nullptr;
305     Release();
306   }
307 
PostGarbageCollectionProcessing(Isolate * isolate)308   bool PostGarbageCollectionProcessing(Isolate* isolate) {
309     // Handles only weak handles (not phantom) that are dying.
310     if (state() != Node::PENDING) return false;
311     if (weak_callback_ == NULL) {
312       Release();
313       return false;
314     }
315     set_state(NEAR_DEATH);
316 
317     // Check that we are not passing a finalized external string to
318     // the callback.
319     DCHECK(!object_->IsExternalOneByteString() ||
320            ExternalOneByteString::cast(object_)->resource() != NULL);
321     DCHECK(!object_->IsExternalTwoByteString() ||
322            ExternalTwoByteString::cast(object_)->resource() != NULL);
323     if (weakness_type() != FINALIZER_WEAK) {
324       return false;
325     }
326 
327     // Leaving V8.
328     VMState<EXTERNAL> vmstate(isolate);
329     HandleScope handle_scope(isolate);
330     void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
331                                                                 nullptr};
332     v8::WeakCallbackInfo<void> data(reinterpret_cast<v8::Isolate*>(isolate),
333                                     parameter(), internal_fields, nullptr);
334     weak_callback_(data);
335 
336     // Absence of explicit cleanup or revival of weak handle
337     // in most of the cases would lead to memory leak.
338     CHECK(state() != NEAR_DEATH);
339     return true;
340   }
341 
342   inline GlobalHandles* GetGlobalHandles();
343 
344  private:
345   inline NodeBlock* FindBlock();
346   inline void IncreaseBlockUses();
347   inline void DecreaseBlockUses();
348 
349   // Storage for object pointer.
350   // Placed first to avoid offset computation.
351   Object* object_;
352 
353   // Next word stores class_id, index, state, and independent.
354   // Note: the most aligned fields should go first.
355 
356   // Wrapper class ID.
357   uint16_t class_id_;
358 
359   // Index in the containing handle block.
360   uint8_t index_;
361 
362   // This stores three flags (independent, partially_dependent and
363   // in_new_space_list) and a State.
364   class NodeState : public BitField<State, 0, 3> {};
365   class IsIndependent : public BitField<bool, 3, 1> {};
366   // The following two fields are mutually exclusive
367   class IsActive : public BitField<bool, 4, 1> {};
368   class IsInNewSpaceList : public BitField<bool, 5, 1> {};
369   class NodeWeaknessType : public BitField<WeaknessType, 6, 2> {};
370 
371   uint8_t flags_;
372 
373   // Handle specific callback - might be a weak reference in disguise.
374   WeakCallbackInfo<void>::Callback weak_callback_;
375 
376   // Provided data for callback.  In FREE state, this is used for
377   // the free list link.
378   union {
379     void* parameter;
380     Node* next_free;
381   } parameter_or_next_free_;
382 
383   DISALLOW_COPY_AND_ASSIGN(Node);
384 };
385 
386 
387 class GlobalHandles::NodeBlock {
388  public:
389   static const int kSize = 256;
390 
NodeBlock(GlobalHandles * global_handles,NodeBlock * next)391   explicit NodeBlock(GlobalHandles* global_handles, NodeBlock* next)
392       : next_(next),
393         used_nodes_(0),
394         next_used_(NULL),
395         prev_used_(NULL),
396         global_handles_(global_handles) {}
397 
PutNodesOnFreeList(Node ** first_free)398   void PutNodesOnFreeList(Node** first_free) {
399     for (int i = kSize - 1; i >= 0; --i) {
400       nodes_[i].Initialize(i, first_free);
401     }
402   }
403 
node_at(int index)404   Node* node_at(int index) {
405     DCHECK(0 <= index && index < kSize);
406     return &nodes_[index];
407   }
408 
IncreaseUses()409   void IncreaseUses() {
410     DCHECK(used_nodes_ < kSize);
411     if (used_nodes_++ == 0) {
412       NodeBlock* old_first = global_handles_->first_used_block_;
413       global_handles_->first_used_block_ = this;
414       next_used_ = old_first;
415       prev_used_ = NULL;
416       if (old_first == NULL) return;
417       old_first->prev_used_ = this;
418     }
419   }
420 
DecreaseUses()421   void DecreaseUses() {
422     DCHECK(used_nodes_ > 0);
423     if (--used_nodes_ == 0) {
424       if (next_used_ != NULL) next_used_->prev_used_ = prev_used_;
425       if (prev_used_ != NULL) prev_used_->next_used_ = next_used_;
426       if (this == global_handles_->first_used_block_) {
427         global_handles_->first_used_block_ = next_used_;
428       }
429     }
430   }
431 
global_handles()432   GlobalHandles* global_handles() { return global_handles_; }
433 
434   // Next block in the list of all blocks.
next() const435   NodeBlock* next() const { return next_; }
436 
437   // Next/previous block in the list of blocks with used nodes.
next_used() const438   NodeBlock* next_used() const { return next_used_; }
prev_used() const439   NodeBlock* prev_used() const { return prev_used_; }
440 
441  private:
442   Node nodes_[kSize];
443   NodeBlock* const next_;
444   int used_nodes_;
445   NodeBlock* next_used_;
446   NodeBlock* prev_used_;
447   GlobalHandles* global_handles_;
448 };
449 
450 
GetGlobalHandles()451 GlobalHandles* GlobalHandles::Node::GetGlobalHandles() {
452   return FindBlock()->global_handles();
453 }
454 
455 
FindBlock()456 GlobalHandles::NodeBlock* GlobalHandles::Node::FindBlock() {
457   intptr_t ptr = reinterpret_cast<intptr_t>(this);
458   ptr = ptr - index_ * sizeof(Node);
459   NodeBlock* block = reinterpret_cast<NodeBlock*>(ptr);
460   DCHECK(block->node_at(index_) == this);
461   return block;
462 }
463 
464 
IncreaseBlockUses()465 void GlobalHandles::Node::IncreaseBlockUses() {
466   NodeBlock* node_block = FindBlock();
467   node_block->IncreaseUses();
468   GlobalHandles* global_handles = node_block->global_handles();
469   global_handles->isolate()->counters()->global_handles()->Increment();
470   global_handles->number_of_global_handles_++;
471 }
472 
473 
DecreaseBlockUses()474 void GlobalHandles::Node::DecreaseBlockUses() {
475   NodeBlock* node_block = FindBlock();
476   GlobalHandles* global_handles = node_block->global_handles();
477   parameter_or_next_free_.next_free = global_handles->first_free_;
478   global_handles->first_free_ = this;
479   node_block->DecreaseUses();
480   global_handles->isolate()->counters()->global_handles()->Decrement();
481   global_handles->number_of_global_handles_--;
482 }
483 
484 
485 class GlobalHandles::NodeIterator {
486  public:
NodeIterator(GlobalHandles * global_handles)487   explicit NodeIterator(GlobalHandles* global_handles)
488       : block_(global_handles->first_used_block_),
489         index_(0) {}
490 
done() const491   bool done() const { return block_ == NULL; }
492 
node() const493   Node* node() const {
494     DCHECK(!done());
495     return block_->node_at(index_);
496   }
497 
Advance()498   void Advance() {
499     DCHECK(!done());
500     if (++index_ < NodeBlock::kSize) return;
501     index_ = 0;
502     block_ = block_->next_used();
503   }
504 
505  private:
506   NodeBlock* block_;
507   int index_;
508 
509   DISALLOW_COPY_AND_ASSIGN(NodeIterator);
510 };
511 
512 class GlobalHandles::PendingPhantomCallbacksSecondPassTask
513     : public v8::internal::CancelableTask {
514  public:
515   // Takes ownership of the contents of pending_phantom_callbacks, leaving it in
516   // the same state it would be after a call to Clear().
PendingPhantomCallbacksSecondPassTask(List<PendingPhantomCallback> * pending_phantom_callbacks,Isolate * isolate)517   PendingPhantomCallbacksSecondPassTask(
518       List<PendingPhantomCallback>* pending_phantom_callbacks, Isolate* isolate)
519       : CancelableTask(isolate) {
520     pending_phantom_callbacks_.Swap(pending_phantom_callbacks);
521   }
522 
RunInternal()523   void RunInternal() override {
524     TRACE_EVENT0("v8", "V8.GCPhantomHandleProcessingCallback");
525     isolate()->heap()->CallGCPrologueCallbacks(
526         GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
527     InvokeSecondPassPhantomCallbacks(&pending_phantom_callbacks_, isolate());
528     isolate()->heap()->CallGCEpilogueCallbacks(
529         GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
530   }
531 
532  private:
533   List<PendingPhantomCallback> pending_phantom_callbacks_;
534 
535   DISALLOW_COPY_AND_ASSIGN(PendingPhantomCallbacksSecondPassTask);
536 };
537 
GlobalHandles(Isolate * isolate)538 GlobalHandles::GlobalHandles(Isolate* isolate)
539     : isolate_(isolate),
540       number_of_global_handles_(0),
541       first_block_(NULL),
542       first_used_block_(NULL),
543       first_free_(NULL),
544       post_gc_processing_count_(0),
545       number_of_phantom_handle_resets_(0),
546       object_group_connections_(kObjectGroupConnectionsCapacity) {}
547 
~GlobalHandles()548 GlobalHandles::~GlobalHandles() {
549   NodeBlock* block = first_block_;
550   while (block != NULL) {
551     NodeBlock* tmp = block->next();
552     delete block;
553     block = tmp;
554   }
555   first_block_ = NULL;
556 }
557 
558 
Create(Object * value)559 Handle<Object> GlobalHandles::Create(Object* value) {
560   if (first_free_ == NULL) {
561     first_block_ = new NodeBlock(this, first_block_);
562     first_block_->PutNodesOnFreeList(&first_free_);
563   }
564   DCHECK(first_free_ != NULL);
565   // Take the first node in the free list.
566   Node* result = first_free_;
567   first_free_ = result->next_free();
568   result->Acquire(value);
569   if (isolate_->heap()->InNewSpace(value) &&
570       !result->is_in_new_space_list()) {
571     new_space_nodes_.Add(result);
572     result->set_in_new_space_list(true);
573   }
574   return result->handle();
575 }
576 
577 
CopyGlobal(Object ** location)578 Handle<Object> GlobalHandles::CopyGlobal(Object** location) {
579   DCHECK(location != NULL);
580   return Node::FromLocation(location)->GetGlobalHandles()->Create(*location);
581 }
582 
583 
Destroy(Object ** location)584 void GlobalHandles::Destroy(Object** location) {
585   if (location != NULL) Node::FromLocation(location)->Release();
586 }
587 
588 
589 typedef v8::WeakCallbackInfo<void>::Callback GenericCallback;
590 
591 
MakeWeak(Object ** location,void * parameter,GenericCallback phantom_callback,v8::WeakCallbackType type)592 void GlobalHandles::MakeWeak(Object** location, void* parameter,
593                              GenericCallback phantom_callback,
594                              v8::WeakCallbackType type) {
595   Node::FromLocation(location)->MakeWeak(parameter, phantom_callback, type);
596 }
597 
MakeWeak(Object *** location_addr)598 void GlobalHandles::MakeWeak(Object*** location_addr) {
599   Node::FromLocation(*location_addr)->MakeWeak(location_addr);
600 }
601 
ClearWeakness(Object ** location)602 void* GlobalHandles::ClearWeakness(Object** location) {
603   return Node::FromLocation(location)->ClearWeakness();
604 }
605 
606 
MarkIndependent(Object ** location)607 void GlobalHandles::MarkIndependent(Object** location) {
608   Node::FromLocation(location)->MarkIndependent();
609 }
610 
IsIndependent(Object ** location)611 bool GlobalHandles::IsIndependent(Object** location) {
612   return Node::FromLocation(location)->is_independent();
613 }
614 
615 
IsNearDeath(Object ** location)616 bool GlobalHandles::IsNearDeath(Object** location) {
617   return Node::FromLocation(location)->IsNearDeath();
618 }
619 
620 
IsWeak(Object ** location)621 bool GlobalHandles::IsWeak(Object** location) {
622   return Node::FromLocation(location)->IsWeak();
623 }
624 
625 DISABLE_CFI_PERF
IterateWeakRoots(ObjectVisitor * v)626 void GlobalHandles::IterateWeakRoots(ObjectVisitor* v) {
627   for (NodeIterator it(this); !it.done(); it.Advance()) {
628     Node* node = it.node();
629     if (node->IsWeakRetainer()) {
630       // Pending weak phantom handles die immediately. Everything else survives.
631       if (node->IsPendingPhantomResetHandle()) {
632         node->ResetPhantomHandle();
633         ++number_of_phantom_handle_resets_;
634       } else if (node->IsPendingPhantomCallback()) {
635         node->CollectPhantomCallbackData(isolate(),
636                                          &pending_phantom_callbacks_);
637       } else {
638         v->VisitPointer(node->location());
639       }
640     }
641   }
642 }
643 
644 
IdentifyWeakHandles(WeakSlotCallback f)645 void GlobalHandles::IdentifyWeakHandles(WeakSlotCallback f) {
646   for (NodeIterator it(this); !it.done(); it.Advance()) {
647     if (it.node()->IsWeak() && f(it.node()->location())) {
648       it.node()->MarkPending();
649     }
650   }
651 }
652 
653 
IterateNewSpaceStrongAndDependentRoots(ObjectVisitor * v)654 void GlobalHandles::IterateNewSpaceStrongAndDependentRoots(ObjectVisitor* v) {
655   for (int i = 0; i < new_space_nodes_.length(); ++i) {
656     Node* node = new_space_nodes_[i];
657     if (node->IsStrongRetainer() ||
658         (node->IsWeakRetainer() && !node->is_independent() &&
659          node->is_active())) {
660       v->VisitPointer(node->location());
661     }
662   }
663 }
664 
665 
IdentifyNewSpaceWeakIndependentHandles(WeakSlotCallbackWithHeap f)666 void GlobalHandles::IdentifyNewSpaceWeakIndependentHandles(
667     WeakSlotCallbackWithHeap f) {
668   for (int i = 0; i < new_space_nodes_.length(); ++i) {
669     Node* node = new_space_nodes_[i];
670     DCHECK(node->is_in_new_space_list());
671     if (node->is_independent() && node->IsWeak() &&
672         f(isolate_->heap(), node->location())) {
673       node->MarkPending();
674     }
675   }
676 }
677 
678 
IterateNewSpaceWeakIndependentRoots(ObjectVisitor * v)679 void GlobalHandles::IterateNewSpaceWeakIndependentRoots(ObjectVisitor* v) {
680   for (int i = 0; i < new_space_nodes_.length(); ++i) {
681     Node* node = new_space_nodes_[i];
682     DCHECK(node->is_in_new_space_list());
683     if (node->is_independent() && node->IsWeakRetainer()) {
684       // Pending weak phantom handles die immediately. Everything else survives.
685       if (node->IsPendingPhantomResetHandle()) {
686         node->ResetPhantomHandle();
687         ++number_of_phantom_handle_resets_;
688       } else if (node->IsPendingPhantomCallback()) {
689         node->CollectPhantomCallbackData(isolate(),
690                                          &pending_phantom_callbacks_);
691       } else {
692         v->VisitPointer(node->location());
693       }
694     }
695   }
696 }
697 
698 
IdentifyWeakUnmodifiedObjects(WeakSlotCallback is_unmodified)699 void GlobalHandles::IdentifyWeakUnmodifiedObjects(
700     WeakSlotCallback is_unmodified) {
701   for (int i = 0; i < new_space_nodes_.length(); ++i) {
702     Node* node = new_space_nodes_[i];
703     if (node->IsWeak() && !is_unmodified(node->location())) {
704       node->set_active(true);
705     }
706   }
707 }
708 
709 
MarkNewSpaceWeakUnmodifiedObjectsPending(WeakSlotCallbackWithHeap is_unscavenged)710 void GlobalHandles::MarkNewSpaceWeakUnmodifiedObjectsPending(
711     WeakSlotCallbackWithHeap is_unscavenged) {
712   for (int i = 0; i < new_space_nodes_.length(); ++i) {
713     Node* node = new_space_nodes_[i];
714     DCHECK(node->is_in_new_space_list());
715     if ((node->is_independent() || !node->is_active()) && node->IsWeak() &&
716         is_unscavenged(isolate_->heap(), node->location())) {
717       node->MarkPending();
718     }
719   }
720 }
721 
722 
IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor * v)723 void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor* v) {
724   for (int i = 0; i < new_space_nodes_.length(); ++i) {
725     Node* node = new_space_nodes_[i];
726     DCHECK(node->is_in_new_space_list());
727     if ((node->is_independent() || !node->is_active()) &&
728         node->IsWeakRetainer()) {
729       // Pending weak phantom handles die immediately. Everything else survives.
730       if (node->IsPendingPhantomResetHandle()) {
731         node->ResetPhantomHandle();
732         ++number_of_phantom_handle_resets_;
733       } else if (node->IsPendingPhantomCallback()) {
734         node->CollectPhantomCallbackData(isolate(),
735                                          &pending_phantom_callbacks_);
736       } else {
737         v->VisitPointer(node->location());
738       }
739     }
740   }
741 }
742 
743 
744 DISABLE_CFI_PERF
IterateObjectGroups(ObjectVisitor * v,WeakSlotCallbackWithHeap can_skip)745 bool GlobalHandles::IterateObjectGroups(ObjectVisitor* v,
746                                         WeakSlotCallbackWithHeap can_skip) {
747   ComputeObjectGroupsAndImplicitReferences();
748   int last = 0;
749   bool any_group_was_visited = false;
750   for (int i = 0; i < object_groups_.length(); i++) {
751     ObjectGroup* entry = object_groups_.at(i);
752     DCHECK(entry != NULL);
753 
754     Object*** objects = entry->objects;
755     bool group_should_be_visited = false;
756     for (size_t j = 0; j < entry->length; j++) {
757       Object* object = *objects[j];
758       if (object->IsHeapObject()) {
759         if (!can_skip(isolate_->heap(), &object)) {
760           group_should_be_visited = true;
761           break;
762         }
763       }
764     }
765 
766     if (!group_should_be_visited) {
767       object_groups_[last++] = entry;
768       continue;
769     }
770 
771     // An object in the group requires visiting, so iterate over all
772     // objects in the group.
773     for (size_t j = 0; j < entry->length; ++j) {
774       Object* object = *objects[j];
775       if (object->IsHeapObject()) {
776         v->VisitPointer(&object);
777         any_group_was_visited = true;
778       }
779     }
780 
781     // Once the entire group has been iterated over, set the object
782     // group to NULL so it won't be processed again.
783     delete entry;
784     object_groups_.at(i) = NULL;
785   }
786   object_groups_.Rewind(last);
787   return any_group_was_visited;
788 }
789 
790 namespace {
791 // Traces the information about object groups and implicit ref groups given by
792 // the embedder to the V8 during each gc prologue.
793 class ObjectGroupsTracer {
794  public:
795   explicit ObjectGroupsTracer(Isolate* isolate);
796   void Print();
797 
798  private:
799   void PrintObjectGroup(ObjectGroup* group);
800   void PrintImplicitRefGroup(ImplicitRefGroup* group);
801   void PrintObject(Object* object);
802   void PrintConstructor(JSObject* js_object);
803   void PrintInternalFields(JSObject* js_object);
804   Isolate* isolate_;
805   DISALLOW_COPY_AND_ASSIGN(ObjectGroupsTracer);
806 };
807 
ObjectGroupsTracer(Isolate * isolate)808 ObjectGroupsTracer::ObjectGroupsTracer(Isolate* isolate) : isolate_(isolate) {}
809 
Print()810 void ObjectGroupsTracer::Print() {
811   GlobalHandles* global_handles = isolate_->global_handles();
812 
813   PrintIsolate(isolate_, "### Tracing object groups:\n");
814 
815   for (auto group : *(global_handles->object_groups())) {
816     PrintObjectGroup(group);
817   }
818   for (auto group : *(global_handles->implicit_ref_groups())) {
819     PrintImplicitRefGroup(group);
820   }
821 
822   PrintIsolate(isolate_, "### Tracing object groups finished.\n");
823 }
824 
PrintObject(Object * object)825 void ObjectGroupsTracer::PrintObject(Object* object) {
826   if (object->IsJSObject()) {
827     JSObject* js_object = JSObject::cast(object);
828 
829     PrintF("{ constructor_name: ");
830     PrintConstructor(js_object);
831     PrintF(", hidden_fields: [ ");
832     PrintInternalFields(js_object);
833     PrintF(" ] }\n");
834   } else {
835     PrintF("object of unexpected type: %p\n", static_cast<void*>(object));
836   }
837 }
838 
PrintConstructor(JSObject * js_object)839 void ObjectGroupsTracer::PrintConstructor(JSObject* js_object) {
840   Object* maybe_constructor = js_object->map()->GetConstructor();
841   if (maybe_constructor->IsJSFunction()) {
842     JSFunction* constructor = JSFunction::cast(maybe_constructor);
843     String* name = String::cast(constructor->shared()->name());
844     if (name->length() == 0) name = constructor->shared()->inferred_name();
845 
846     PrintF("%s", name->ToCString().get());
847   } else if (maybe_constructor->IsNull(isolate_)) {
848     if (js_object->IsOddball()) {
849       PrintF("<oddball>");
850     } else {
851       PrintF("<null>");
852     }
853   } else {
854     UNREACHABLE();
855   }
856 }
857 
PrintInternalFields(JSObject * js_object)858 void ObjectGroupsTracer::PrintInternalFields(JSObject* js_object) {
859   for (int i = 0; i < js_object->GetInternalFieldCount(); ++i) {
860     if (i != 0) {
861       PrintF(", ");
862     }
863     PrintF("%p", static_cast<void*>(js_object->GetInternalField(i)));
864   }
865 }
866 
PrintObjectGroup(ObjectGroup * group)867 void ObjectGroupsTracer::PrintObjectGroup(ObjectGroup* group) {
868   PrintIsolate(isolate_, "ObjectGroup (size: %" PRIuS ")\n", group->length);
869   Object*** objects = group->objects;
870 
871   for (size_t i = 0; i < group->length; ++i) {
872     PrintIsolate(isolate_, "  - Member: ");
873     PrintObject(*objects[i]);
874   }
875 }
876 
PrintImplicitRefGroup(ImplicitRefGroup * group)877 void ObjectGroupsTracer::PrintImplicitRefGroup(ImplicitRefGroup* group) {
878   PrintIsolate(isolate_, "ImplicitRefGroup (children count: %" PRIuS ")\n",
879                group->length);
880   PrintIsolate(isolate_, "  - Parent: ");
881   PrintObject(*(group->parent));
882 
883   Object*** children = group->children;
884   for (size_t i = 0; i < group->length; ++i) {
885     PrintIsolate(isolate_, "  - Child: ");
886     PrintObject(*children[i]);
887   }
888 }
889 
890 }  // namespace
891 
PrintObjectGroups()892 void GlobalHandles::PrintObjectGroups() {
893   ObjectGroupsTracer(isolate_).Print();
894 }
895 
InvokeSecondPassPhantomCallbacks(List<PendingPhantomCallback> * callbacks,Isolate * isolate)896 void GlobalHandles::InvokeSecondPassPhantomCallbacks(
897     List<PendingPhantomCallback>* callbacks, Isolate* isolate) {
898   while (callbacks->length() != 0) {
899     auto callback = callbacks->RemoveLast();
900     DCHECK(callback.node() == nullptr);
901     // Fire second pass callback
902     callback.Invoke(isolate);
903   }
904 }
905 
906 
PostScavengeProcessing(const int initial_post_gc_processing_count)907 int GlobalHandles::PostScavengeProcessing(
908     const int initial_post_gc_processing_count) {
909   int freed_nodes = 0;
910   for (int i = 0; i < new_space_nodes_.length(); ++i) {
911     Node* node = new_space_nodes_[i];
912     DCHECK(node->is_in_new_space_list());
913     if (!node->IsRetainer()) {
914       // Free nodes do not have weak callbacks. Do not use them to compute
915       // the freed_nodes.
916       continue;
917     }
918     // Skip dependent or unmodified handles. Their weak callbacks might expect
919     // to be
920     // called between two global garbage collection callbacks which
921     // are not called for minor collections.
922       if (!node->is_independent() && (node->is_active())) {
923         node->set_active(false);
924         continue;
925       }
926       node->set_active(false);
927 
928     if (node->PostGarbageCollectionProcessing(isolate_)) {
929       if (initial_post_gc_processing_count != post_gc_processing_count_) {
930         // Weak callback triggered another GC and another round of
931         // PostGarbageCollection processing.  The current node might
932         // have been deleted in that round, so we need to bail out (or
933         // restart the processing).
934         return freed_nodes;
935       }
936     }
937     if (!node->IsRetainer()) {
938       freed_nodes++;
939     }
940   }
941   return freed_nodes;
942 }
943 
944 
PostMarkSweepProcessing(const int initial_post_gc_processing_count)945 int GlobalHandles::PostMarkSweepProcessing(
946     const int initial_post_gc_processing_count) {
947   int freed_nodes = 0;
948   for (NodeIterator it(this); !it.done(); it.Advance()) {
949     if (!it.node()->IsRetainer()) {
950       // Free nodes do not have weak callbacks. Do not use them to compute
951       // the freed_nodes.
952       continue;
953     }
954     it.node()->set_active(false);
955     if (it.node()->PostGarbageCollectionProcessing(isolate_)) {
956       if (initial_post_gc_processing_count != post_gc_processing_count_) {
957         // See the comment above.
958         return freed_nodes;
959       }
960     }
961     if (!it.node()->IsRetainer()) {
962       freed_nodes++;
963     }
964   }
965   return freed_nodes;
966 }
967 
968 
UpdateListOfNewSpaceNodes()969 void GlobalHandles::UpdateListOfNewSpaceNodes() {
970   int last = 0;
971   for (int i = 0; i < new_space_nodes_.length(); ++i) {
972     Node* node = new_space_nodes_[i];
973     DCHECK(node->is_in_new_space_list());
974     if (node->IsRetainer()) {
975       if (isolate_->heap()->InNewSpace(node->object())) {
976         new_space_nodes_[last++] = node;
977         isolate_->heap()->IncrementNodesCopiedInNewSpace();
978       } else {
979         node->set_in_new_space_list(false);
980         isolate_->heap()->IncrementNodesPromoted();
981       }
982     } else {
983       node->set_in_new_space_list(false);
984       isolate_->heap()->IncrementNodesDiedInNewSpace();
985     }
986   }
987   new_space_nodes_.Rewind(last);
988   new_space_nodes_.Trim();
989 }
990 
991 
DispatchPendingPhantomCallbacks(bool synchronous_second_pass)992 int GlobalHandles::DispatchPendingPhantomCallbacks(
993     bool synchronous_second_pass) {
994   int freed_nodes = 0;
995   List<PendingPhantomCallback> second_pass_callbacks;
996   {
997     // The initial pass callbacks must simply clear the nodes.
998     for (auto i = pending_phantom_callbacks_.begin();
999          i != pending_phantom_callbacks_.end(); ++i) {
1000       auto callback = i;
1001       // Skip callbacks that have already been processed once.
1002       if (callback->node() == nullptr) continue;
1003       callback->Invoke(isolate());
1004       if (callback->callback()) second_pass_callbacks.Add(*callback);
1005       freed_nodes++;
1006     }
1007   }
1008   pending_phantom_callbacks_.Clear();
1009   if (second_pass_callbacks.length() > 0) {
1010     if (FLAG_optimize_for_size || FLAG_predictable || synchronous_second_pass) {
1011       isolate()->heap()->CallGCPrologueCallbacks(
1012           GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
1013       InvokeSecondPassPhantomCallbacks(&second_pass_callbacks, isolate());
1014       isolate()->heap()->CallGCEpilogueCallbacks(
1015           GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
1016     } else {
1017       auto task = new PendingPhantomCallbacksSecondPassTask(
1018           &second_pass_callbacks, isolate());
1019       V8::GetCurrentPlatform()->CallOnForegroundThread(
1020           reinterpret_cast<v8::Isolate*>(isolate()), task);
1021     }
1022   }
1023   return freed_nodes;
1024 }
1025 
1026 
Invoke(Isolate * isolate)1027 void GlobalHandles::PendingPhantomCallback::Invoke(Isolate* isolate) {
1028   Data::Callback* callback_addr = nullptr;
1029   if (node_ != nullptr) {
1030     // Initialize for first pass callback.
1031     DCHECK(node_->state() == Node::NEAR_DEATH);
1032     callback_addr = &callback_;
1033   }
1034   Data data(reinterpret_cast<v8::Isolate*>(isolate), parameter_,
1035             internal_fields_, callback_addr);
1036   Data::Callback callback = callback_;
1037   callback_ = nullptr;
1038   callback(data);
1039   if (node_ != nullptr) {
1040     // Transition to second pass state.
1041     DCHECK(node_->state() == Node::FREE);
1042     node_ = nullptr;
1043   }
1044 }
1045 
1046 
PostGarbageCollectionProcessing(GarbageCollector collector,const v8::GCCallbackFlags gc_callback_flags)1047 int GlobalHandles::PostGarbageCollectionProcessing(
1048     GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) {
1049   // Process weak global handle callbacks. This must be done after the
1050   // GC is completely done, because the callbacks may invoke arbitrary
1051   // API functions.
1052   DCHECK(isolate_->heap()->gc_state() == Heap::NOT_IN_GC);
1053   const int initial_post_gc_processing_count = ++post_gc_processing_count_;
1054   int freed_nodes = 0;
1055   bool synchronous_second_pass =
1056       (gc_callback_flags &
1057        (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage |
1058         kGCCallbackFlagSynchronousPhantomCallbackProcessing)) != 0;
1059   freed_nodes += DispatchPendingPhantomCallbacks(synchronous_second_pass);
1060   if (initial_post_gc_processing_count != post_gc_processing_count_) {
1061     // If the callbacks caused a nested GC, then return.  See comment in
1062     // PostScavengeProcessing.
1063     return freed_nodes;
1064   }
1065   if (Heap::IsYoungGenerationCollector(collector)) {
1066     freed_nodes += PostScavengeProcessing(initial_post_gc_processing_count);
1067   } else {
1068     freed_nodes += PostMarkSweepProcessing(initial_post_gc_processing_count);
1069   }
1070   if (initial_post_gc_processing_count != post_gc_processing_count_) {
1071     // If the callbacks caused a nested GC, then return.  See comment in
1072     // PostScavengeProcessing.
1073     return freed_nodes;
1074   }
1075   if (initial_post_gc_processing_count == post_gc_processing_count_) {
1076     UpdateListOfNewSpaceNodes();
1077   }
1078   return freed_nodes;
1079 }
1080 
1081 
IterateStrongRoots(ObjectVisitor * v)1082 void GlobalHandles::IterateStrongRoots(ObjectVisitor* v) {
1083   for (NodeIterator it(this); !it.done(); it.Advance()) {
1084     if (it.node()->IsStrongRetainer()) {
1085       v->VisitPointer(it.node()->location());
1086     }
1087   }
1088 }
1089 
1090 
1091 DISABLE_CFI_PERF
IterateAllRoots(ObjectVisitor * v)1092 void GlobalHandles::IterateAllRoots(ObjectVisitor* v) {
1093   for (NodeIterator it(this); !it.done(); it.Advance()) {
1094     if (it.node()->IsRetainer()) {
1095       v->VisitPointer(it.node()->location());
1096     }
1097   }
1098 }
1099 
1100 
1101 DISABLE_CFI_PERF
IterateAllRootsWithClassIds(ObjectVisitor * v)1102 void GlobalHandles::IterateAllRootsWithClassIds(ObjectVisitor* v) {
1103   for (NodeIterator it(this); !it.done(); it.Advance()) {
1104     if (it.node()->IsRetainer() && it.node()->has_wrapper_class_id()) {
1105       v->VisitEmbedderReference(it.node()->location(),
1106                                 it.node()->wrapper_class_id());
1107     }
1108   }
1109 }
1110 
1111 
1112 DISABLE_CFI_PERF
IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor * v)1113 void GlobalHandles::IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
1114   for (int i = 0; i < new_space_nodes_.length(); ++i) {
1115     Node* node = new_space_nodes_[i];
1116     if (node->IsRetainer() && node->has_wrapper_class_id()) {
1117       v->VisitEmbedderReference(node->location(),
1118                                 node->wrapper_class_id());
1119     }
1120   }
1121 }
1122 
1123 
1124 DISABLE_CFI_PERF
IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor * v)1125 void GlobalHandles::IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
1126   for (int i = 0; i < new_space_nodes_.length(); ++i) {
1127     Node* node = new_space_nodes_[i];
1128     if (node->has_wrapper_class_id() && node->IsWeak()) {
1129       v->VisitEmbedderReference(node->location(), node->wrapper_class_id());
1130     }
1131   }
1132 }
1133 
1134 
NumberOfWeakHandles()1135 int GlobalHandles::NumberOfWeakHandles() {
1136   int count = 0;
1137   for (NodeIterator it(this); !it.done(); it.Advance()) {
1138     if (it.node()->IsWeakRetainer()) {
1139       count++;
1140     }
1141   }
1142   return count;
1143 }
1144 
1145 
NumberOfGlobalObjectWeakHandles()1146 int GlobalHandles::NumberOfGlobalObjectWeakHandles() {
1147   int count = 0;
1148   for (NodeIterator it(this); !it.done(); it.Advance()) {
1149     if (it.node()->IsWeakRetainer() &&
1150         it.node()->object()->IsJSGlobalObject()) {
1151       count++;
1152     }
1153   }
1154   return count;
1155 }
1156 
1157 
RecordStats(HeapStats * stats)1158 void GlobalHandles::RecordStats(HeapStats* stats) {
1159   *stats->global_handle_count = 0;
1160   *stats->weak_global_handle_count = 0;
1161   *stats->pending_global_handle_count = 0;
1162   *stats->near_death_global_handle_count = 0;
1163   *stats->free_global_handle_count = 0;
1164   for (NodeIterator it(this); !it.done(); it.Advance()) {
1165     *stats->global_handle_count += 1;
1166     if (it.node()->state() == Node::WEAK) {
1167       *stats->weak_global_handle_count += 1;
1168     } else if (it.node()->state() == Node::PENDING) {
1169       *stats->pending_global_handle_count += 1;
1170     } else if (it.node()->state() == Node::NEAR_DEATH) {
1171       *stats->near_death_global_handle_count += 1;
1172     } else if (it.node()->state() == Node::FREE) {
1173       *stats->free_global_handle_count += 1;
1174     }
1175   }
1176 }
1177 
1178 #ifdef DEBUG
1179 
PrintStats()1180 void GlobalHandles::PrintStats() {
1181   int total = 0;
1182   int weak = 0;
1183   int pending = 0;
1184   int near_death = 0;
1185   int destroyed = 0;
1186 
1187   for (NodeIterator it(this); !it.done(); it.Advance()) {
1188     total++;
1189     if (it.node()->state() == Node::WEAK) weak++;
1190     if (it.node()->state() == Node::PENDING) pending++;
1191     if (it.node()->state() == Node::NEAR_DEATH) near_death++;
1192     if (it.node()->state() == Node::FREE) destroyed++;
1193   }
1194 
1195   PrintF("Global Handle Statistics:\n");
1196   PrintF("  allocated memory = %" PRIuS "B\n", total * sizeof(Node));
1197   PrintF("  # weak       = %d\n", weak);
1198   PrintF("  # pending    = %d\n", pending);
1199   PrintF("  # near_death = %d\n", near_death);
1200   PrintF("  # free       = %d\n", destroyed);
1201   PrintF("  # total      = %d\n", total);
1202 }
1203 
1204 
Print()1205 void GlobalHandles::Print() {
1206   PrintF("Global handles:\n");
1207   for (NodeIterator it(this); !it.done(); it.Advance()) {
1208     PrintF("  handle %p to %p%s\n",
1209            reinterpret_cast<void*>(it.node()->location()),
1210            reinterpret_cast<void*>(it.node()->object()),
1211            it.node()->IsWeak() ? " (weak)" : "");
1212   }
1213 }
1214 
1215 #endif
1216 
1217 
1218 
AddObjectGroup(Object *** handles,size_t length,v8::RetainedObjectInfo * info)1219 void GlobalHandles::AddObjectGroup(Object*** handles,
1220                                    size_t length,
1221                                    v8::RetainedObjectInfo* info) {
1222 #ifdef DEBUG
1223   for (size_t i = 0; i < length; ++i) {
1224     DCHECK(!Node::FromLocation(handles[i])->is_independent());
1225   }
1226 #endif
1227   if (length == 0) {
1228     if (info != NULL) info->Dispose();
1229     return;
1230   }
1231   ObjectGroup* group = new ObjectGroup(length);
1232   for (size_t i = 0; i < length; ++i)
1233     group->objects[i] = handles[i];
1234   group->info = info;
1235   object_groups_.Add(group);
1236 }
1237 
1238 
SetObjectGroupId(Object ** handle,UniqueId id)1239 void GlobalHandles::SetObjectGroupId(Object** handle,
1240                                      UniqueId id) {
1241   object_group_connections_.Add(ObjectGroupConnection(id, handle));
1242 }
1243 
1244 
SetRetainedObjectInfo(UniqueId id,RetainedObjectInfo * info)1245 void GlobalHandles::SetRetainedObjectInfo(UniqueId id,
1246                                           RetainedObjectInfo* info) {
1247   retainer_infos_.Add(ObjectGroupRetainerInfo(id, info));
1248 }
1249 
1250 
SetReferenceFromGroup(UniqueId id,Object ** child)1251 void GlobalHandles::SetReferenceFromGroup(UniqueId id, Object** child) {
1252   DCHECK(!Node::FromLocation(child)->is_independent());
1253   implicit_ref_connections_.Add(ObjectGroupConnection(id, child));
1254 }
1255 
1256 
SetReference(HeapObject ** parent,Object ** child)1257 void GlobalHandles::SetReference(HeapObject** parent, Object** child) {
1258   DCHECK(!Node::FromLocation(child)->is_independent());
1259   ImplicitRefGroup* group = new ImplicitRefGroup(parent, 1);
1260   group->children[0] = child;
1261   implicit_ref_groups_.Add(group);
1262 }
1263 
1264 
RemoveObjectGroups()1265 void GlobalHandles::RemoveObjectGroups() {
1266   for (int i = 0; i < object_groups_.length(); i++)
1267     delete object_groups_.at(i);
1268   object_groups_.Clear();
1269   for (int i = 0; i < retainer_infos_.length(); ++i)
1270     retainer_infos_[i].info->Dispose();
1271   retainer_infos_.Clear();
1272   object_group_connections_.Clear();
1273   object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
1274 }
1275 
1276 
RemoveImplicitRefGroups()1277 void GlobalHandles::RemoveImplicitRefGroups() {
1278   for (int i = 0; i < implicit_ref_groups_.length(); i++) {
1279     delete implicit_ref_groups_.at(i);
1280   }
1281   implicit_ref_groups_.Clear();
1282   implicit_ref_connections_.Clear();
1283 }
1284 
1285 
TearDown()1286 void GlobalHandles::TearDown() {
1287   // TODO(1428): invoke weak callbacks.
1288 }
1289 
1290 
ComputeObjectGroupsAndImplicitReferences()1291 void GlobalHandles::ComputeObjectGroupsAndImplicitReferences() {
1292   if (object_group_connections_.length() == 0) {
1293     for (int i = 0; i < retainer_infos_.length(); ++i)
1294       retainer_infos_[i].info->Dispose();
1295     retainer_infos_.Clear();
1296     implicit_ref_connections_.Clear();
1297     return;
1298   }
1299 
1300   object_group_connections_.Sort();
1301   retainer_infos_.Sort();
1302   implicit_ref_connections_.Sort();
1303 
1304   int info_index = 0;  // For iterating retainer_infos_.
1305   UniqueId current_group_id(0);
1306   int current_group_start = 0;
1307 
1308   int current_implicit_refs_start = 0;
1309   int current_implicit_refs_end = 0;
1310   for (int i = 0; i <= object_group_connections_.length(); ++i) {
1311     if (i == 0)
1312       current_group_id = object_group_connections_[i].id;
1313     if (i == object_group_connections_.length() ||
1314         current_group_id != object_group_connections_[i].id) {
1315       // Group detected: objects in indices [current_group_start, i[.
1316 
1317       // Find out which implicit references are related to this group. (We want
1318       // to ignore object groups which only have 1 object, but that object is
1319       // needed as a representative object for the implicit refrerence group.)
1320       while (current_implicit_refs_start < implicit_ref_connections_.length() &&
1321              implicit_ref_connections_[current_implicit_refs_start].id <
1322                  current_group_id)
1323         ++current_implicit_refs_start;
1324       current_implicit_refs_end = current_implicit_refs_start;
1325       while (current_implicit_refs_end < implicit_ref_connections_.length() &&
1326              implicit_ref_connections_[current_implicit_refs_end].id ==
1327                  current_group_id)
1328         ++current_implicit_refs_end;
1329 
1330       if (current_implicit_refs_end > current_implicit_refs_start) {
1331         // Find a representative object for the implicit references.
1332         HeapObject** representative = NULL;
1333         for (int j = current_group_start; j < i; ++j) {
1334           Object** object = object_group_connections_[j].object;
1335           if ((*object)->IsHeapObject()) {
1336             representative = reinterpret_cast<HeapObject**>(object);
1337             break;
1338           }
1339         }
1340         if (representative) {
1341           ImplicitRefGroup* group = new ImplicitRefGroup(
1342               representative,
1343               current_implicit_refs_end - current_implicit_refs_start);
1344           for (int j = current_implicit_refs_start;
1345                j < current_implicit_refs_end;
1346                ++j) {
1347             group->children[j - current_implicit_refs_start] =
1348                 implicit_ref_connections_[j].object;
1349           }
1350           implicit_ref_groups_.Add(group);
1351         }
1352         current_implicit_refs_start = current_implicit_refs_end;
1353       }
1354 
1355       // Find a RetainedObjectInfo for the group.
1356       RetainedObjectInfo* info = NULL;
1357       while (info_index < retainer_infos_.length() &&
1358              retainer_infos_[info_index].id < current_group_id) {
1359         retainer_infos_[info_index].info->Dispose();
1360         ++info_index;
1361       }
1362       if (info_index < retainer_infos_.length() &&
1363           retainer_infos_[info_index].id == current_group_id) {
1364         // This object group has an associated ObjectGroupRetainerInfo.
1365         info = retainer_infos_[info_index].info;
1366         ++info_index;
1367       }
1368 
1369       // Ignore groups which only contain one object.
1370       if (i > current_group_start + 1) {
1371         ObjectGroup* group = new ObjectGroup(i - current_group_start);
1372         for (int j = current_group_start; j < i; ++j) {
1373           group->objects[j - current_group_start] =
1374               object_group_connections_[j].object;
1375         }
1376         group->info = info;
1377         object_groups_.Add(group);
1378       } else if (info) {
1379         info->Dispose();
1380       }
1381 
1382       if (i < object_group_connections_.length()) {
1383         current_group_id = object_group_connections_[i].id;
1384         current_group_start = i;
1385       }
1386     }
1387   }
1388   object_group_connections_.Clear();
1389   object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
1390   retainer_infos_.Clear();
1391   implicit_ref_connections_.Clear();
1392 }
1393 
1394 
EternalHandles()1395 EternalHandles::EternalHandles() : size_(0) {
1396   for (unsigned i = 0; i < arraysize(singleton_handles_); i++) {
1397     singleton_handles_[i] = kInvalidIndex;
1398   }
1399 }
1400 
1401 
~EternalHandles()1402 EternalHandles::~EternalHandles() {
1403   for (int i = 0; i < blocks_.length(); i++) delete[] blocks_[i];
1404 }
1405 
1406 
IterateAllRoots(ObjectVisitor * visitor)1407 void EternalHandles::IterateAllRoots(ObjectVisitor* visitor) {
1408   int limit = size_;
1409   for (int i = 0; i < blocks_.length(); i++) {
1410     DCHECK(limit > 0);
1411     Object** block = blocks_[i];
1412     visitor->VisitPointers(block, block + Min(limit, kSize));
1413     limit -= kSize;
1414   }
1415 }
1416 
1417 
IterateNewSpaceRoots(ObjectVisitor * visitor)1418 void EternalHandles::IterateNewSpaceRoots(ObjectVisitor* visitor) {
1419   for (int i = 0; i < new_space_indices_.length(); i++) {
1420     visitor->VisitPointer(GetLocation(new_space_indices_[i]));
1421   }
1422 }
1423 
1424 
PostGarbageCollectionProcessing(Heap * heap)1425 void EternalHandles::PostGarbageCollectionProcessing(Heap* heap) {
1426   int last = 0;
1427   for (int i = 0; i < new_space_indices_.length(); i++) {
1428     int index = new_space_indices_[i];
1429     if (heap->InNewSpace(*GetLocation(index))) {
1430       new_space_indices_[last++] = index;
1431     }
1432   }
1433   new_space_indices_.Rewind(last);
1434 }
1435 
1436 
Create(Isolate * isolate,Object * object,int * index)1437 void EternalHandles::Create(Isolate* isolate, Object* object, int* index) {
1438   DCHECK_EQ(kInvalidIndex, *index);
1439   if (object == NULL) return;
1440   DCHECK_NE(isolate->heap()->the_hole_value(), object);
1441   int block = size_ >> kShift;
1442   int offset = size_ & kMask;
1443   // need to resize
1444   if (offset == 0) {
1445     Object** next_block = new Object*[kSize];
1446     Object* the_hole = isolate->heap()->the_hole_value();
1447     MemsetPointer(next_block, the_hole, kSize);
1448     blocks_.Add(next_block);
1449   }
1450   DCHECK_EQ(isolate->heap()->the_hole_value(), blocks_[block][offset]);
1451   blocks_[block][offset] = object;
1452   if (isolate->heap()->InNewSpace(object)) {
1453     new_space_indices_.Add(size_);
1454   }
1455   *index = size_++;
1456 }
1457 
1458 
1459 }  // namespace internal
1460 }  // namespace v8
1461