1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/global-handles.h"
6
7 #include "src/api.h"
8 #include "src/v8.h"
9 #include "src/vm-state-inl.h"
10
11 namespace v8 {
12 namespace internal {
13
14
~ObjectGroup()15 ObjectGroup::~ObjectGroup() {
16 if (info != NULL) info->Dispose();
17 delete[] objects;
18 }
19
20
~ImplicitRefGroup()21 ImplicitRefGroup::~ImplicitRefGroup() {
22 delete[] children;
23 }
24
25
26 class GlobalHandles::Node {
27 public:
28 // State transition diagram:
29 // FREE -> NORMAL <-> WEAK -> PENDING -> NEAR_DEATH -> { NORMAL, WEAK, FREE }
30 enum State {
31 FREE = 0,
32 NORMAL, // Normal global handle.
33 WEAK, // Flagged as weak but not yet finalized.
34 PENDING, // Has been recognized as only reachable by weak handles.
35 NEAR_DEATH, // Callback has informed the handle is near death.
36 NUMBER_OF_NODE_STATES
37 };
38
39 // Maps handle location (slot) to the containing node.
FromLocation(Object ** location)40 static Node* FromLocation(Object** location) {
41 DCHECK(offsetof(Node, object_) == 0);
42 return reinterpret_cast<Node*>(location);
43 }
44
Node()45 Node() {
46 DCHECK(offsetof(Node, class_id_) == Internals::kNodeClassIdOffset);
47 DCHECK(offsetof(Node, flags_) == Internals::kNodeFlagsOffset);
48 STATIC_ASSERT(static_cast<int>(NodeState::kMask) ==
49 Internals::kNodeStateMask);
50 STATIC_ASSERT(WEAK == Internals::kNodeStateIsWeakValue);
51 STATIC_ASSERT(PENDING == Internals::kNodeStateIsPendingValue);
52 STATIC_ASSERT(NEAR_DEATH == Internals::kNodeStateIsNearDeathValue);
53 STATIC_ASSERT(static_cast<int>(IsIndependent::kShift) ==
54 Internals::kNodeIsIndependentShift);
55 STATIC_ASSERT(static_cast<int>(IsActive::kShift) ==
56 Internals::kNodeIsActiveShift);
57 }
58
59 #ifdef ENABLE_HANDLE_ZAPPING
~Node()60 ~Node() {
61 // TODO(1428): if it's a weak handle we should have invoked its callback.
62 // Zap the values for eager trapping.
63 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
64 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
65 index_ = 0;
66 set_independent(false);
67 set_active(false);
68 set_in_new_space_list(false);
69 parameter_or_next_free_.next_free = NULL;
70 weak_callback_ = NULL;
71 }
72 #endif
73
Initialize(int index,Node ** first_free)74 void Initialize(int index, Node** first_free) {
75 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
76 index_ = static_cast<uint8_t>(index);
77 DCHECK(static_cast<int>(index_) == index);
78 set_state(FREE);
79 set_in_new_space_list(false);
80 parameter_or_next_free_.next_free = *first_free;
81 *first_free = this;
82 }
83
Acquire(Object * object)84 void Acquire(Object* object) {
85 DCHECK(state() == FREE);
86 object_ = object;
87 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
88 set_independent(false);
89 set_active(false);
90 set_state(NORMAL);
91 parameter_or_next_free_.parameter = NULL;
92 weak_callback_ = NULL;
93 IncreaseBlockUses();
94 }
95
Zap()96 void Zap() {
97 DCHECK(IsInUse());
98 // Zap the values for eager trapping.
99 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
100 }
101
Release()102 void Release() {
103 DCHECK(IsInUse());
104 set_state(FREE);
105 // Zap the values for eager trapping.
106 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
107 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
108 set_independent(false);
109 set_active(false);
110 weak_callback_ = NULL;
111 DecreaseBlockUses();
112 }
113
114 // Object slot accessors.
object() const115 Object* object() const { return object_; }
location()116 Object** location() { return &object_; }
handle()117 Handle<Object> handle() { return Handle<Object>(location()); }
118
119 // Wrapper class ID accessors.
has_wrapper_class_id() const120 bool has_wrapper_class_id() const {
121 return class_id_ != v8::HeapProfiler::kPersistentHandleNoClassId;
122 }
123
wrapper_class_id() const124 uint16_t wrapper_class_id() const { return class_id_; }
125
126 // State and flag accessors.
127
state() const128 State state() const {
129 return NodeState::decode(flags_);
130 }
set_state(State state)131 void set_state(State state) {
132 flags_ = NodeState::update(flags_, state);
133 }
134
is_independent()135 bool is_independent() {
136 return IsIndependent::decode(flags_);
137 }
set_independent(bool v)138 void set_independent(bool v) {
139 flags_ = IsIndependent::update(flags_, v);
140 }
141
is_active()142 bool is_active() {
143 return IsActive::decode(flags_);
144 }
set_active(bool v)145 void set_active(bool v) {
146 flags_ = IsActive::update(flags_, v);
147 }
148
is_in_new_space_list()149 bool is_in_new_space_list() {
150 return IsInNewSpaceList::decode(flags_);
151 }
set_in_new_space_list(bool v)152 void set_in_new_space_list(bool v) {
153 flags_ = IsInNewSpaceList::update(flags_, v);
154 }
155
weakness_type() const156 WeaknessType weakness_type() const {
157 return NodeWeaknessType::decode(flags_);
158 }
set_weakness_type(WeaknessType weakness_type)159 void set_weakness_type(WeaknessType weakness_type) {
160 flags_ = NodeWeaknessType::update(flags_, weakness_type);
161 }
162
IsNearDeath() const163 bool IsNearDeath() const {
164 // Check for PENDING to ensure correct answer when processing callbacks.
165 return state() == PENDING || state() == NEAR_DEATH;
166 }
167
IsWeak() const168 bool IsWeak() const { return state() == WEAK; }
169
IsInUse() const170 bool IsInUse() const { return state() != FREE; }
171
IsPendingPhantomCallback() const172 bool IsPendingPhantomCallback() const {
173 return state() == PENDING &&
174 (weakness_type() == PHANTOM_WEAK ||
175 weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
176 }
177
IsPendingPhantomResetHandle() const178 bool IsPendingPhantomResetHandle() const {
179 return state() == PENDING && weakness_type() == PHANTOM_WEAK_RESET_HANDLE;
180 }
181
IsRetainer() const182 bool IsRetainer() const {
183 return state() != FREE &&
184 !(state() == NEAR_DEATH && weakness_type() != FINALIZER_WEAK);
185 }
186
IsStrongRetainer() const187 bool IsStrongRetainer() const { return state() == NORMAL; }
188
IsWeakRetainer() const189 bool IsWeakRetainer() const {
190 return state() == WEAK || state() == PENDING ||
191 (state() == NEAR_DEATH && weakness_type() == FINALIZER_WEAK);
192 }
193
MarkPending()194 void MarkPending() {
195 DCHECK(state() == WEAK);
196 set_state(PENDING);
197 }
198
199 // Independent flag accessors.
MarkIndependent()200 void MarkIndependent() {
201 DCHECK(IsInUse());
202 set_independent(true);
203 }
204
205 // Callback accessor.
206 // TODO(svenpanne) Re-enable or nuke later.
207 // WeakReferenceCallback callback() { return callback_; }
208
209 // Callback parameter accessors.
set_parameter(void * parameter)210 void set_parameter(void* parameter) {
211 DCHECK(IsInUse());
212 parameter_or_next_free_.parameter = parameter;
213 }
parameter() const214 void* parameter() const {
215 DCHECK(IsInUse());
216 return parameter_or_next_free_.parameter;
217 }
218
219 // Accessors for next free node in the free list.
next_free()220 Node* next_free() {
221 DCHECK(state() == FREE);
222 return parameter_or_next_free_.next_free;
223 }
set_next_free(Node * value)224 void set_next_free(Node* value) {
225 DCHECK(state() == FREE);
226 parameter_or_next_free_.next_free = value;
227 }
228
MakeWeak(void * parameter,WeakCallbackInfo<void>::Callback phantom_callback,v8::WeakCallbackType type)229 void MakeWeak(void* parameter,
230 WeakCallbackInfo<void>::Callback phantom_callback,
231 v8::WeakCallbackType type) {
232 DCHECK(phantom_callback != nullptr);
233 DCHECK(IsInUse());
234 CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
235 set_state(WEAK);
236 switch (type) {
237 case v8::WeakCallbackType::kParameter:
238 set_weakness_type(PHANTOM_WEAK);
239 break;
240 case v8::WeakCallbackType::kInternalFields:
241 set_weakness_type(PHANTOM_WEAK_2_INTERNAL_FIELDS);
242 break;
243 case v8::WeakCallbackType::kFinalizer:
244 set_weakness_type(FINALIZER_WEAK);
245 break;
246 }
247 set_parameter(parameter);
248 weak_callback_ = phantom_callback;
249 }
250
MakeWeak(Object *** location_addr)251 void MakeWeak(Object*** location_addr) {
252 DCHECK(IsInUse());
253 CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
254 set_state(WEAK);
255 set_weakness_type(PHANTOM_WEAK_RESET_HANDLE);
256 set_parameter(location_addr);
257 weak_callback_ = nullptr;
258 }
259
ClearWeakness()260 void* ClearWeakness() {
261 DCHECK(IsInUse());
262 void* p = parameter();
263 set_state(NORMAL);
264 set_parameter(NULL);
265 return p;
266 }
267
CollectPhantomCallbackData(Isolate * isolate,List<PendingPhantomCallback> * pending_phantom_callbacks)268 void CollectPhantomCallbackData(
269 Isolate* isolate,
270 List<PendingPhantomCallback>* pending_phantom_callbacks) {
271 DCHECK(weakness_type() == PHANTOM_WEAK ||
272 weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
273 DCHECK(state() == PENDING);
274 DCHECK(weak_callback_ != nullptr);
275
276 void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
277 nullptr};
278 if (weakness_type() != PHANTOM_WEAK && object()->IsJSObject()) {
279 auto jsobject = JSObject::cast(object());
280 int field_count = jsobject->GetInternalFieldCount();
281 for (int i = 0; i < v8::kInternalFieldsInWeakCallback; ++i) {
282 if (field_count == i) break;
283 auto field = jsobject->GetInternalField(i);
284 if (field->IsSmi()) internal_fields[i] = field;
285 }
286 }
287
288 // Zap with something dangerous.
289 *location() = reinterpret_cast<Object*>(0x6057ca11);
290
291 typedef v8::WeakCallbackInfo<void> Data;
292 auto callback = reinterpret_cast<Data::Callback>(weak_callback_);
293 pending_phantom_callbacks->Add(
294 PendingPhantomCallback(this, callback, parameter(), internal_fields));
295 DCHECK(IsInUse());
296 set_state(NEAR_DEATH);
297 }
298
ResetPhantomHandle()299 void ResetPhantomHandle() {
300 DCHECK(weakness_type() == PHANTOM_WEAK_RESET_HANDLE);
301 DCHECK(state() == PENDING);
302 DCHECK(weak_callback_ == nullptr);
303 Object*** handle = reinterpret_cast<Object***>(parameter());
304 *handle = nullptr;
305 Release();
306 }
307
PostGarbageCollectionProcessing(Isolate * isolate)308 bool PostGarbageCollectionProcessing(Isolate* isolate) {
309 // Handles only weak handles (not phantom) that are dying.
310 if (state() != Node::PENDING) return false;
311 if (weak_callback_ == NULL) {
312 Release();
313 return false;
314 }
315 set_state(NEAR_DEATH);
316
317 // Check that we are not passing a finalized external string to
318 // the callback.
319 DCHECK(!object_->IsExternalOneByteString() ||
320 ExternalOneByteString::cast(object_)->resource() != NULL);
321 DCHECK(!object_->IsExternalTwoByteString() ||
322 ExternalTwoByteString::cast(object_)->resource() != NULL);
323 if (weakness_type() != FINALIZER_WEAK) {
324 return false;
325 }
326
327 // Leaving V8.
328 VMState<EXTERNAL> vmstate(isolate);
329 HandleScope handle_scope(isolate);
330 void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
331 nullptr};
332 v8::WeakCallbackInfo<void> data(reinterpret_cast<v8::Isolate*>(isolate),
333 parameter(), internal_fields, nullptr);
334 weak_callback_(data);
335
336 // Absence of explicit cleanup or revival of weak handle
337 // in most of the cases would lead to memory leak.
338 CHECK(state() != NEAR_DEATH);
339 return true;
340 }
341
342 inline GlobalHandles* GetGlobalHandles();
343
344 private:
345 inline NodeBlock* FindBlock();
346 inline void IncreaseBlockUses();
347 inline void DecreaseBlockUses();
348
349 // Storage for object pointer.
350 // Placed first to avoid offset computation.
351 Object* object_;
352
353 // Next word stores class_id, index, state, and independent.
354 // Note: the most aligned fields should go first.
355
356 // Wrapper class ID.
357 uint16_t class_id_;
358
359 // Index in the containing handle block.
360 uint8_t index_;
361
362 // This stores three flags (independent, partially_dependent and
363 // in_new_space_list) and a State.
364 class NodeState : public BitField<State, 0, 3> {};
365 class IsIndependent : public BitField<bool, 3, 1> {};
366 // The following two fields are mutually exclusive
367 class IsActive : public BitField<bool, 4, 1> {};
368 class IsInNewSpaceList : public BitField<bool, 5, 1> {};
369 class NodeWeaknessType : public BitField<WeaknessType, 6, 2> {};
370
371 uint8_t flags_;
372
373 // Handle specific callback - might be a weak reference in disguise.
374 WeakCallbackInfo<void>::Callback weak_callback_;
375
376 // Provided data for callback. In FREE state, this is used for
377 // the free list link.
378 union {
379 void* parameter;
380 Node* next_free;
381 } parameter_or_next_free_;
382
383 DISALLOW_COPY_AND_ASSIGN(Node);
384 };
385
386
387 class GlobalHandles::NodeBlock {
388 public:
389 static const int kSize = 256;
390
NodeBlock(GlobalHandles * global_handles,NodeBlock * next)391 explicit NodeBlock(GlobalHandles* global_handles, NodeBlock* next)
392 : next_(next),
393 used_nodes_(0),
394 next_used_(NULL),
395 prev_used_(NULL),
396 global_handles_(global_handles) {}
397
PutNodesOnFreeList(Node ** first_free)398 void PutNodesOnFreeList(Node** first_free) {
399 for (int i = kSize - 1; i >= 0; --i) {
400 nodes_[i].Initialize(i, first_free);
401 }
402 }
403
node_at(int index)404 Node* node_at(int index) {
405 DCHECK(0 <= index && index < kSize);
406 return &nodes_[index];
407 }
408
IncreaseUses()409 void IncreaseUses() {
410 DCHECK(used_nodes_ < kSize);
411 if (used_nodes_++ == 0) {
412 NodeBlock* old_first = global_handles_->first_used_block_;
413 global_handles_->first_used_block_ = this;
414 next_used_ = old_first;
415 prev_used_ = NULL;
416 if (old_first == NULL) return;
417 old_first->prev_used_ = this;
418 }
419 }
420
DecreaseUses()421 void DecreaseUses() {
422 DCHECK(used_nodes_ > 0);
423 if (--used_nodes_ == 0) {
424 if (next_used_ != NULL) next_used_->prev_used_ = prev_used_;
425 if (prev_used_ != NULL) prev_used_->next_used_ = next_used_;
426 if (this == global_handles_->first_used_block_) {
427 global_handles_->first_used_block_ = next_used_;
428 }
429 }
430 }
431
global_handles()432 GlobalHandles* global_handles() { return global_handles_; }
433
434 // Next block in the list of all blocks.
next() const435 NodeBlock* next() const { return next_; }
436
437 // Next/previous block in the list of blocks with used nodes.
next_used() const438 NodeBlock* next_used() const { return next_used_; }
prev_used() const439 NodeBlock* prev_used() const { return prev_used_; }
440
441 private:
442 Node nodes_[kSize];
443 NodeBlock* const next_;
444 int used_nodes_;
445 NodeBlock* next_used_;
446 NodeBlock* prev_used_;
447 GlobalHandles* global_handles_;
448 };
449
450
GetGlobalHandles()451 GlobalHandles* GlobalHandles::Node::GetGlobalHandles() {
452 return FindBlock()->global_handles();
453 }
454
455
FindBlock()456 GlobalHandles::NodeBlock* GlobalHandles::Node::FindBlock() {
457 intptr_t ptr = reinterpret_cast<intptr_t>(this);
458 ptr = ptr - index_ * sizeof(Node);
459 NodeBlock* block = reinterpret_cast<NodeBlock*>(ptr);
460 DCHECK(block->node_at(index_) == this);
461 return block;
462 }
463
464
IncreaseBlockUses()465 void GlobalHandles::Node::IncreaseBlockUses() {
466 NodeBlock* node_block = FindBlock();
467 node_block->IncreaseUses();
468 GlobalHandles* global_handles = node_block->global_handles();
469 global_handles->isolate()->counters()->global_handles()->Increment();
470 global_handles->number_of_global_handles_++;
471 }
472
473
DecreaseBlockUses()474 void GlobalHandles::Node::DecreaseBlockUses() {
475 NodeBlock* node_block = FindBlock();
476 GlobalHandles* global_handles = node_block->global_handles();
477 parameter_or_next_free_.next_free = global_handles->first_free_;
478 global_handles->first_free_ = this;
479 node_block->DecreaseUses();
480 global_handles->isolate()->counters()->global_handles()->Decrement();
481 global_handles->number_of_global_handles_--;
482 }
483
484
485 class GlobalHandles::NodeIterator {
486 public:
NodeIterator(GlobalHandles * global_handles)487 explicit NodeIterator(GlobalHandles* global_handles)
488 : block_(global_handles->first_used_block_),
489 index_(0) {}
490
done() const491 bool done() const { return block_ == NULL; }
492
node() const493 Node* node() const {
494 DCHECK(!done());
495 return block_->node_at(index_);
496 }
497
Advance()498 void Advance() {
499 DCHECK(!done());
500 if (++index_ < NodeBlock::kSize) return;
501 index_ = 0;
502 block_ = block_->next_used();
503 }
504
505 private:
506 NodeBlock* block_;
507 int index_;
508
509 DISALLOW_COPY_AND_ASSIGN(NodeIterator);
510 };
511
512 class GlobalHandles::PendingPhantomCallbacksSecondPassTask
513 : public v8::internal::CancelableTask {
514 public:
515 // Takes ownership of the contents of pending_phantom_callbacks, leaving it in
516 // the same state it would be after a call to Clear().
PendingPhantomCallbacksSecondPassTask(List<PendingPhantomCallback> * pending_phantom_callbacks,Isolate * isolate)517 PendingPhantomCallbacksSecondPassTask(
518 List<PendingPhantomCallback>* pending_phantom_callbacks, Isolate* isolate)
519 : CancelableTask(isolate) {
520 pending_phantom_callbacks_.Swap(pending_phantom_callbacks);
521 }
522
RunInternal()523 void RunInternal() override {
524 TRACE_EVENT0("v8", "V8.GCPhantomHandleProcessingCallback");
525 isolate()->heap()->CallGCPrologueCallbacks(
526 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
527 InvokeSecondPassPhantomCallbacks(&pending_phantom_callbacks_, isolate());
528 isolate()->heap()->CallGCEpilogueCallbacks(
529 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
530 }
531
532 private:
533 List<PendingPhantomCallback> pending_phantom_callbacks_;
534
535 DISALLOW_COPY_AND_ASSIGN(PendingPhantomCallbacksSecondPassTask);
536 };
537
GlobalHandles(Isolate * isolate)538 GlobalHandles::GlobalHandles(Isolate* isolate)
539 : isolate_(isolate),
540 number_of_global_handles_(0),
541 first_block_(NULL),
542 first_used_block_(NULL),
543 first_free_(NULL),
544 post_gc_processing_count_(0),
545 number_of_phantom_handle_resets_(0),
546 object_group_connections_(kObjectGroupConnectionsCapacity) {}
547
~GlobalHandles()548 GlobalHandles::~GlobalHandles() {
549 NodeBlock* block = first_block_;
550 while (block != NULL) {
551 NodeBlock* tmp = block->next();
552 delete block;
553 block = tmp;
554 }
555 first_block_ = NULL;
556 }
557
558
Create(Object * value)559 Handle<Object> GlobalHandles::Create(Object* value) {
560 if (first_free_ == NULL) {
561 first_block_ = new NodeBlock(this, first_block_);
562 first_block_->PutNodesOnFreeList(&first_free_);
563 }
564 DCHECK(first_free_ != NULL);
565 // Take the first node in the free list.
566 Node* result = first_free_;
567 first_free_ = result->next_free();
568 result->Acquire(value);
569 if (isolate_->heap()->InNewSpace(value) &&
570 !result->is_in_new_space_list()) {
571 new_space_nodes_.Add(result);
572 result->set_in_new_space_list(true);
573 }
574 return result->handle();
575 }
576
577
CopyGlobal(Object ** location)578 Handle<Object> GlobalHandles::CopyGlobal(Object** location) {
579 DCHECK(location != NULL);
580 return Node::FromLocation(location)->GetGlobalHandles()->Create(*location);
581 }
582
583
Destroy(Object ** location)584 void GlobalHandles::Destroy(Object** location) {
585 if (location != NULL) Node::FromLocation(location)->Release();
586 }
587
588
589 typedef v8::WeakCallbackInfo<void>::Callback GenericCallback;
590
591
MakeWeak(Object ** location,void * parameter,GenericCallback phantom_callback,v8::WeakCallbackType type)592 void GlobalHandles::MakeWeak(Object** location, void* parameter,
593 GenericCallback phantom_callback,
594 v8::WeakCallbackType type) {
595 Node::FromLocation(location)->MakeWeak(parameter, phantom_callback, type);
596 }
597
MakeWeak(Object *** location_addr)598 void GlobalHandles::MakeWeak(Object*** location_addr) {
599 Node::FromLocation(*location_addr)->MakeWeak(location_addr);
600 }
601
ClearWeakness(Object ** location)602 void* GlobalHandles::ClearWeakness(Object** location) {
603 return Node::FromLocation(location)->ClearWeakness();
604 }
605
606
MarkIndependent(Object ** location)607 void GlobalHandles::MarkIndependent(Object** location) {
608 Node::FromLocation(location)->MarkIndependent();
609 }
610
IsIndependent(Object ** location)611 bool GlobalHandles::IsIndependent(Object** location) {
612 return Node::FromLocation(location)->is_independent();
613 }
614
615
IsNearDeath(Object ** location)616 bool GlobalHandles::IsNearDeath(Object** location) {
617 return Node::FromLocation(location)->IsNearDeath();
618 }
619
620
IsWeak(Object ** location)621 bool GlobalHandles::IsWeak(Object** location) {
622 return Node::FromLocation(location)->IsWeak();
623 }
624
625 DISABLE_CFI_PERF
IterateWeakRoots(ObjectVisitor * v)626 void GlobalHandles::IterateWeakRoots(ObjectVisitor* v) {
627 for (NodeIterator it(this); !it.done(); it.Advance()) {
628 Node* node = it.node();
629 if (node->IsWeakRetainer()) {
630 // Pending weak phantom handles die immediately. Everything else survives.
631 if (node->IsPendingPhantomResetHandle()) {
632 node->ResetPhantomHandle();
633 ++number_of_phantom_handle_resets_;
634 } else if (node->IsPendingPhantomCallback()) {
635 node->CollectPhantomCallbackData(isolate(),
636 &pending_phantom_callbacks_);
637 } else {
638 v->VisitPointer(node->location());
639 }
640 }
641 }
642 }
643
644
IdentifyWeakHandles(WeakSlotCallback f)645 void GlobalHandles::IdentifyWeakHandles(WeakSlotCallback f) {
646 for (NodeIterator it(this); !it.done(); it.Advance()) {
647 if (it.node()->IsWeak() && f(it.node()->location())) {
648 it.node()->MarkPending();
649 }
650 }
651 }
652
653
IterateNewSpaceStrongAndDependentRoots(ObjectVisitor * v)654 void GlobalHandles::IterateNewSpaceStrongAndDependentRoots(ObjectVisitor* v) {
655 for (int i = 0; i < new_space_nodes_.length(); ++i) {
656 Node* node = new_space_nodes_[i];
657 if (node->IsStrongRetainer() ||
658 (node->IsWeakRetainer() && !node->is_independent() &&
659 node->is_active())) {
660 v->VisitPointer(node->location());
661 }
662 }
663 }
664
665
IdentifyNewSpaceWeakIndependentHandles(WeakSlotCallbackWithHeap f)666 void GlobalHandles::IdentifyNewSpaceWeakIndependentHandles(
667 WeakSlotCallbackWithHeap f) {
668 for (int i = 0; i < new_space_nodes_.length(); ++i) {
669 Node* node = new_space_nodes_[i];
670 DCHECK(node->is_in_new_space_list());
671 if (node->is_independent() && node->IsWeak() &&
672 f(isolate_->heap(), node->location())) {
673 node->MarkPending();
674 }
675 }
676 }
677
678
IterateNewSpaceWeakIndependentRoots(ObjectVisitor * v)679 void GlobalHandles::IterateNewSpaceWeakIndependentRoots(ObjectVisitor* v) {
680 for (int i = 0; i < new_space_nodes_.length(); ++i) {
681 Node* node = new_space_nodes_[i];
682 DCHECK(node->is_in_new_space_list());
683 if (node->is_independent() && node->IsWeakRetainer()) {
684 // Pending weak phantom handles die immediately. Everything else survives.
685 if (node->IsPendingPhantomResetHandle()) {
686 node->ResetPhantomHandle();
687 ++number_of_phantom_handle_resets_;
688 } else if (node->IsPendingPhantomCallback()) {
689 node->CollectPhantomCallbackData(isolate(),
690 &pending_phantom_callbacks_);
691 } else {
692 v->VisitPointer(node->location());
693 }
694 }
695 }
696 }
697
698
IdentifyWeakUnmodifiedObjects(WeakSlotCallback is_unmodified)699 void GlobalHandles::IdentifyWeakUnmodifiedObjects(
700 WeakSlotCallback is_unmodified) {
701 for (int i = 0; i < new_space_nodes_.length(); ++i) {
702 Node* node = new_space_nodes_[i];
703 if (node->IsWeak() && !is_unmodified(node->location())) {
704 node->set_active(true);
705 }
706 }
707 }
708
709
MarkNewSpaceWeakUnmodifiedObjectsPending(WeakSlotCallbackWithHeap is_unscavenged)710 void GlobalHandles::MarkNewSpaceWeakUnmodifiedObjectsPending(
711 WeakSlotCallbackWithHeap is_unscavenged) {
712 for (int i = 0; i < new_space_nodes_.length(); ++i) {
713 Node* node = new_space_nodes_[i];
714 DCHECK(node->is_in_new_space_list());
715 if ((node->is_independent() || !node->is_active()) && node->IsWeak() &&
716 is_unscavenged(isolate_->heap(), node->location())) {
717 node->MarkPending();
718 }
719 }
720 }
721
722
IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor * v)723 void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor* v) {
724 for (int i = 0; i < new_space_nodes_.length(); ++i) {
725 Node* node = new_space_nodes_[i];
726 DCHECK(node->is_in_new_space_list());
727 if ((node->is_independent() || !node->is_active()) &&
728 node->IsWeakRetainer()) {
729 // Pending weak phantom handles die immediately. Everything else survives.
730 if (node->IsPendingPhantomResetHandle()) {
731 node->ResetPhantomHandle();
732 ++number_of_phantom_handle_resets_;
733 } else if (node->IsPendingPhantomCallback()) {
734 node->CollectPhantomCallbackData(isolate(),
735 &pending_phantom_callbacks_);
736 } else {
737 v->VisitPointer(node->location());
738 }
739 }
740 }
741 }
742
743
744 DISABLE_CFI_PERF
IterateObjectGroups(ObjectVisitor * v,WeakSlotCallbackWithHeap can_skip)745 bool GlobalHandles::IterateObjectGroups(ObjectVisitor* v,
746 WeakSlotCallbackWithHeap can_skip) {
747 ComputeObjectGroupsAndImplicitReferences();
748 int last = 0;
749 bool any_group_was_visited = false;
750 for (int i = 0; i < object_groups_.length(); i++) {
751 ObjectGroup* entry = object_groups_.at(i);
752 DCHECK(entry != NULL);
753
754 Object*** objects = entry->objects;
755 bool group_should_be_visited = false;
756 for (size_t j = 0; j < entry->length; j++) {
757 Object* object = *objects[j];
758 if (object->IsHeapObject()) {
759 if (!can_skip(isolate_->heap(), &object)) {
760 group_should_be_visited = true;
761 break;
762 }
763 }
764 }
765
766 if (!group_should_be_visited) {
767 object_groups_[last++] = entry;
768 continue;
769 }
770
771 // An object in the group requires visiting, so iterate over all
772 // objects in the group.
773 for (size_t j = 0; j < entry->length; ++j) {
774 Object* object = *objects[j];
775 if (object->IsHeapObject()) {
776 v->VisitPointer(&object);
777 any_group_was_visited = true;
778 }
779 }
780
781 // Once the entire group has been iterated over, set the object
782 // group to NULL so it won't be processed again.
783 delete entry;
784 object_groups_.at(i) = NULL;
785 }
786 object_groups_.Rewind(last);
787 return any_group_was_visited;
788 }
789
790 namespace {
791 // Traces the information about object groups and implicit ref groups given by
792 // the embedder to the V8 during each gc prologue.
793 class ObjectGroupsTracer {
794 public:
795 explicit ObjectGroupsTracer(Isolate* isolate);
796 void Print();
797
798 private:
799 void PrintObjectGroup(ObjectGroup* group);
800 void PrintImplicitRefGroup(ImplicitRefGroup* group);
801 void PrintObject(Object* object);
802 void PrintConstructor(JSObject* js_object);
803 void PrintInternalFields(JSObject* js_object);
804 Isolate* isolate_;
805 DISALLOW_COPY_AND_ASSIGN(ObjectGroupsTracer);
806 };
807
ObjectGroupsTracer(Isolate * isolate)808 ObjectGroupsTracer::ObjectGroupsTracer(Isolate* isolate) : isolate_(isolate) {}
809
Print()810 void ObjectGroupsTracer::Print() {
811 GlobalHandles* global_handles = isolate_->global_handles();
812
813 PrintIsolate(isolate_, "### Tracing object groups:\n");
814
815 for (auto group : *(global_handles->object_groups())) {
816 PrintObjectGroup(group);
817 }
818 for (auto group : *(global_handles->implicit_ref_groups())) {
819 PrintImplicitRefGroup(group);
820 }
821
822 PrintIsolate(isolate_, "### Tracing object groups finished.\n");
823 }
824
PrintObject(Object * object)825 void ObjectGroupsTracer::PrintObject(Object* object) {
826 if (object->IsJSObject()) {
827 JSObject* js_object = JSObject::cast(object);
828
829 PrintF("{ constructor_name: ");
830 PrintConstructor(js_object);
831 PrintF(", hidden_fields: [ ");
832 PrintInternalFields(js_object);
833 PrintF(" ] }\n");
834 } else {
835 PrintF("object of unexpected type: %p\n", static_cast<void*>(object));
836 }
837 }
838
PrintConstructor(JSObject * js_object)839 void ObjectGroupsTracer::PrintConstructor(JSObject* js_object) {
840 Object* maybe_constructor = js_object->map()->GetConstructor();
841 if (maybe_constructor->IsJSFunction()) {
842 JSFunction* constructor = JSFunction::cast(maybe_constructor);
843 String* name = String::cast(constructor->shared()->name());
844 if (name->length() == 0) name = constructor->shared()->inferred_name();
845
846 PrintF("%s", name->ToCString().get());
847 } else if (maybe_constructor->IsNull(isolate_)) {
848 if (js_object->IsOddball()) {
849 PrintF("<oddball>");
850 } else {
851 PrintF("<null>");
852 }
853 } else {
854 UNREACHABLE();
855 }
856 }
857
PrintInternalFields(JSObject * js_object)858 void ObjectGroupsTracer::PrintInternalFields(JSObject* js_object) {
859 for (int i = 0; i < js_object->GetInternalFieldCount(); ++i) {
860 if (i != 0) {
861 PrintF(", ");
862 }
863 PrintF("%p", static_cast<void*>(js_object->GetInternalField(i)));
864 }
865 }
866
PrintObjectGroup(ObjectGroup * group)867 void ObjectGroupsTracer::PrintObjectGroup(ObjectGroup* group) {
868 PrintIsolate(isolate_, "ObjectGroup (size: %" PRIuS ")\n", group->length);
869 Object*** objects = group->objects;
870
871 for (size_t i = 0; i < group->length; ++i) {
872 PrintIsolate(isolate_, " - Member: ");
873 PrintObject(*objects[i]);
874 }
875 }
876
PrintImplicitRefGroup(ImplicitRefGroup * group)877 void ObjectGroupsTracer::PrintImplicitRefGroup(ImplicitRefGroup* group) {
878 PrintIsolate(isolate_, "ImplicitRefGroup (children count: %" PRIuS ")\n",
879 group->length);
880 PrintIsolate(isolate_, " - Parent: ");
881 PrintObject(*(group->parent));
882
883 Object*** children = group->children;
884 for (size_t i = 0; i < group->length; ++i) {
885 PrintIsolate(isolate_, " - Child: ");
886 PrintObject(*children[i]);
887 }
888 }
889
890 } // namespace
891
PrintObjectGroups()892 void GlobalHandles::PrintObjectGroups() {
893 ObjectGroupsTracer(isolate_).Print();
894 }
895
InvokeSecondPassPhantomCallbacks(List<PendingPhantomCallback> * callbacks,Isolate * isolate)896 void GlobalHandles::InvokeSecondPassPhantomCallbacks(
897 List<PendingPhantomCallback>* callbacks, Isolate* isolate) {
898 while (callbacks->length() != 0) {
899 auto callback = callbacks->RemoveLast();
900 DCHECK(callback.node() == nullptr);
901 // Fire second pass callback
902 callback.Invoke(isolate);
903 }
904 }
905
906
PostScavengeProcessing(const int initial_post_gc_processing_count)907 int GlobalHandles::PostScavengeProcessing(
908 const int initial_post_gc_processing_count) {
909 int freed_nodes = 0;
910 for (int i = 0; i < new_space_nodes_.length(); ++i) {
911 Node* node = new_space_nodes_[i];
912 DCHECK(node->is_in_new_space_list());
913 if (!node->IsRetainer()) {
914 // Free nodes do not have weak callbacks. Do not use them to compute
915 // the freed_nodes.
916 continue;
917 }
918 // Skip dependent or unmodified handles. Their weak callbacks might expect
919 // to be
920 // called between two global garbage collection callbacks which
921 // are not called for minor collections.
922 if (!node->is_independent() && (node->is_active())) {
923 node->set_active(false);
924 continue;
925 }
926 node->set_active(false);
927
928 if (node->PostGarbageCollectionProcessing(isolate_)) {
929 if (initial_post_gc_processing_count != post_gc_processing_count_) {
930 // Weak callback triggered another GC and another round of
931 // PostGarbageCollection processing. The current node might
932 // have been deleted in that round, so we need to bail out (or
933 // restart the processing).
934 return freed_nodes;
935 }
936 }
937 if (!node->IsRetainer()) {
938 freed_nodes++;
939 }
940 }
941 return freed_nodes;
942 }
943
944
PostMarkSweepProcessing(const int initial_post_gc_processing_count)945 int GlobalHandles::PostMarkSweepProcessing(
946 const int initial_post_gc_processing_count) {
947 int freed_nodes = 0;
948 for (NodeIterator it(this); !it.done(); it.Advance()) {
949 if (!it.node()->IsRetainer()) {
950 // Free nodes do not have weak callbacks. Do not use them to compute
951 // the freed_nodes.
952 continue;
953 }
954 it.node()->set_active(false);
955 if (it.node()->PostGarbageCollectionProcessing(isolate_)) {
956 if (initial_post_gc_processing_count != post_gc_processing_count_) {
957 // See the comment above.
958 return freed_nodes;
959 }
960 }
961 if (!it.node()->IsRetainer()) {
962 freed_nodes++;
963 }
964 }
965 return freed_nodes;
966 }
967
968
UpdateListOfNewSpaceNodes()969 void GlobalHandles::UpdateListOfNewSpaceNodes() {
970 int last = 0;
971 for (int i = 0; i < new_space_nodes_.length(); ++i) {
972 Node* node = new_space_nodes_[i];
973 DCHECK(node->is_in_new_space_list());
974 if (node->IsRetainer()) {
975 if (isolate_->heap()->InNewSpace(node->object())) {
976 new_space_nodes_[last++] = node;
977 isolate_->heap()->IncrementNodesCopiedInNewSpace();
978 } else {
979 node->set_in_new_space_list(false);
980 isolate_->heap()->IncrementNodesPromoted();
981 }
982 } else {
983 node->set_in_new_space_list(false);
984 isolate_->heap()->IncrementNodesDiedInNewSpace();
985 }
986 }
987 new_space_nodes_.Rewind(last);
988 new_space_nodes_.Trim();
989 }
990
991
DispatchPendingPhantomCallbacks(bool synchronous_second_pass)992 int GlobalHandles::DispatchPendingPhantomCallbacks(
993 bool synchronous_second_pass) {
994 int freed_nodes = 0;
995 List<PendingPhantomCallback> second_pass_callbacks;
996 {
997 // The initial pass callbacks must simply clear the nodes.
998 for (auto i = pending_phantom_callbacks_.begin();
999 i != pending_phantom_callbacks_.end(); ++i) {
1000 auto callback = i;
1001 // Skip callbacks that have already been processed once.
1002 if (callback->node() == nullptr) continue;
1003 callback->Invoke(isolate());
1004 if (callback->callback()) second_pass_callbacks.Add(*callback);
1005 freed_nodes++;
1006 }
1007 }
1008 pending_phantom_callbacks_.Clear();
1009 if (second_pass_callbacks.length() > 0) {
1010 if (FLAG_optimize_for_size || FLAG_predictable || synchronous_second_pass) {
1011 isolate()->heap()->CallGCPrologueCallbacks(
1012 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
1013 InvokeSecondPassPhantomCallbacks(&second_pass_callbacks, isolate());
1014 isolate()->heap()->CallGCEpilogueCallbacks(
1015 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
1016 } else {
1017 auto task = new PendingPhantomCallbacksSecondPassTask(
1018 &second_pass_callbacks, isolate());
1019 V8::GetCurrentPlatform()->CallOnForegroundThread(
1020 reinterpret_cast<v8::Isolate*>(isolate()), task);
1021 }
1022 }
1023 return freed_nodes;
1024 }
1025
1026
Invoke(Isolate * isolate)1027 void GlobalHandles::PendingPhantomCallback::Invoke(Isolate* isolate) {
1028 Data::Callback* callback_addr = nullptr;
1029 if (node_ != nullptr) {
1030 // Initialize for first pass callback.
1031 DCHECK(node_->state() == Node::NEAR_DEATH);
1032 callback_addr = &callback_;
1033 }
1034 Data data(reinterpret_cast<v8::Isolate*>(isolate), parameter_,
1035 internal_fields_, callback_addr);
1036 Data::Callback callback = callback_;
1037 callback_ = nullptr;
1038 callback(data);
1039 if (node_ != nullptr) {
1040 // Transition to second pass state.
1041 DCHECK(node_->state() == Node::FREE);
1042 node_ = nullptr;
1043 }
1044 }
1045
1046
PostGarbageCollectionProcessing(GarbageCollector collector,const v8::GCCallbackFlags gc_callback_flags)1047 int GlobalHandles::PostGarbageCollectionProcessing(
1048 GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) {
1049 // Process weak global handle callbacks. This must be done after the
1050 // GC is completely done, because the callbacks may invoke arbitrary
1051 // API functions.
1052 DCHECK(isolate_->heap()->gc_state() == Heap::NOT_IN_GC);
1053 const int initial_post_gc_processing_count = ++post_gc_processing_count_;
1054 int freed_nodes = 0;
1055 bool synchronous_second_pass =
1056 (gc_callback_flags &
1057 (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage |
1058 kGCCallbackFlagSynchronousPhantomCallbackProcessing)) != 0;
1059 freed_nodes += DispatchPendingPhantomCallbacks(synchronous_second_pass);
1060 if (initial_post_gc_processing_count != post_gc_processing_count_) {
1061 // If the callbacks caused a nested GC, then return. See comment in
1062 // PostScavengeProcessing.
1063 return freed_nodes;
1064 }
1065 if (Heap::IsYoungGenerationCollector(collector)) {
1066 freed_nodes += PostScavengeProcessing(initial_post_gc_processing_count);
1067 } else {
1068 freed_nodes += PostMarkSweepProcessing(initial_post_gc_processing_count);
1069 }
1070 if (initial_post_gc_processing_count != post_gc_processing_count_) {
1071 // If the callbacks caused a nested GC, then return. See comment in
1072 // PostScavengeProcessing.
1073 return freed_nodes;
1074 }
1075 if (initial_post_gc_processing_count == post_gc_processing_count_) {
1076 UpdateListOfNewSpaceNodes();
1077 }
1078 return freed_nodes;
1079 }
1080
1081
IterateStrongRoots(ObjectVisitor * v)1082 void GlobalHandles::IterateStrongRoots(ObjectVisitor* v) {
1083 for (NodeIterator it(this); !it.done(); it.Advance()) {
1084 if (it.node()->IsStrongRetainer()) {
1085 v->VisitPointer(it.node()->location());
1086 }
1087 }
1088 }
1089
1090
1091 DISABLE_CFI_PERF
IterateAllRoots(ObjectVisitor * v)1092 void GlobalHandles::IterateAllRoots(ObjectVisitor* v) {
1093 for (NodeIterator it(this); !it.done(); it.Advance()) {
1094 if (it.node()->IsRetainer()) {
1095 v->VisitPointer(it.node()->location());
1096 }
1097 }
1098 }
1099
1100
1101 DISABLE_CFI_PERF
IterateAllRootsWithClassIds(ObjectVisitor * v)1102 void GlobalHandles::IterateAllRootsWithClassIds(ObjectVisitor* v) {
1103 for (NodeIterator it(this); !it.done(); it.Advance()) {
1104 if (it.node()->IsRetainer() && it.node()->has_wrapper_class_id()) {
1105 v->VisitEmbedderReference(it.node()->location(),
1106 it.node()->wrapper_class_id());
1107 }
1108 }
1109 }
1110
1111
1112 DISABLE_CFI_PERF
IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor * v)1113 void GlobalHandles::IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
1114 for (int i = 0; i < new_space_nodes_.length(); ++i) {
1115 Node* node = new_space_nodes_[i];
1116 if (node->IsRetainer() && node->has_wrapper_class_id()) {
1117 v->VisitEmbedderReference(node->location(),
1118 node->wrapper_class_id());
1119 }
1120 }
1121 }
1122
1123
1124 DISABLE_CFI_PERF
IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor * v)1125 void GlobalHandles::IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
1126 for (int i = 0; i < new_space_nodes_.length(); ++i) {
1127 Node* node = new_space_nodes_[i];
1128 if (node->has_wrapper_class_id() && node->IsWeak()) {
1129 v->VisitEmbedderReference(node->location(), node->wrapper_class_id());
1130 }
1131 }
1132 }
1133
1134
NumberOfWeakHandles()1135 int GlobalHandles::NumberOfWeakHandles() {
1136 int count = 0;
1137 for (NodeIterator it(this); !it.done(); it.Advance()) {
1138 if (it.node()->IsWeakRetainer()) {
1139 count++;
1140 }
1141 }
1142 return count;
1143 }
1144
1145
NumberOfGlobalObjectWeakHandles()1146 int GlobalHandles::NumberOfGlobalObjectWeakHandles() {
1147 int count = 0;
1148 for (NodeIterator it(this); !it.done(); it.Advance()) {
1149 if (it.node()->IsWeakRetainer() &&
1150 it.node()->object()->IsJSGlobalObject()) {
1151 count++;
1152 }
1153 }
1154 return count;
1155 }
1156
1157
RecordStats(HeapStats * stats)1158 void GlobalHandles::RecordStats(HeapStats* stats) {
1159 *stats->global_handle_count = 0;
1160 *stats->weak_global_handle_count = 0;
1161 *stats->pending_global_handle_count = 0;
1162 *stats->near_death_global_handle_count = 0;
1163 *stats->free_global_handle_count = 0;
1164 for (NodeIterator it(this); !it.done(); it.Advance()) {
1165 *stats->global_handle_count += 1;
1166 if (it.node()->state() == Node::WEAK) {
1167 *stats->weak_global_handle_count += 1;
1168 } else if (it.node()->state() == Node::PENDING) {
1169 *stats->pending_global_handle_count += 1;
1170 } else if (it.node()->state() == Node::NEAR_DEATH) {
1171 *stats->near_death_global_handle_count += 1;
1172 } else if (it.node()->state() == Node::FREE) {
1173 *stats->free_global_handle_count += 1;
1174 }
1175 }
1176 }
1177
1178 #ifdef DEBUG
1179
PrintStats()1180 void GlobalHandles::PrintStats() {
1181 int total = 0;
1182 int weak = 0;
1183 int pending = 0;
1184 int near_death = 0;
1185 int destroyed = 0;
1186
1187 for (NodeIterator it(this); !it.done(); it.Advance()) {
1188 total++;
1189 if (it.node()->state() == Node::WEAK) weak++;
1190 if (it.node()->state() == Node::PENDING) pending++;
1191 if (it.node()->state() == Node::NEAR_DEATH) near_death++;
1192 if (it.node()->state() == Node::FREE) destroyed++;
1193 }
1194
1195 PrintF("Global Handle Statistics:\n");
1196 PrintF(" allocated memory = %" PRIuS "B\n", total * sizeof(Node));
1197 PrintF(" # weak = %d\n", weak);
1198 PrintF(" # pending = %d\n", pending);
1199 PrintF(" # near_death = %d\n", near_death);
1200 PrintF(" # free = %d\n", destroyed);
1201 PrintF(" # total = %d\n", total);
1202 }
1203
1204
Print()1205 void GlobalHandles::Print() {
1206 PrintF("Global handles:\n");
1207 for (NodeIterator it(this); !it.done(); it.Advance()) {
1208 PrintF(" handle %p to %p%s\n",
1209 reinterpret_cast<void*>(it.node()->location()),
1210 reinterpret_cast<void*>(it.node()->object()),
1211 it.node()->IsWeak() ? " (weak)" : "");
1212 }
1213 }
1214
1215 #endif
1216
1217
1218
AddObjectGroup(Object *** handles,size_t length,v8::RetainedObjectInfo * info)1219 void GlobalHandles::AddObjectGroup(Object*** handles,
1220 size_t length,
1221 v8::RetainedObjectInfo* info) {
1222 #ifdef DEBUG
1223 for (size_t i = 0; i < length; ++i) {
1224 DCHECK(!Node::FromLocation(handles[i])->is_independent());
1225 }
1226 #endif
1227 if (length == 0) {
1228 if (info != NULL) info->Dispose();
1229 return;
1230 }
1231 ObjectGroup* group = new ObjectGroup(length);
1232 for (size_t i = 0; i < length; ++i)
1233 group->objects[i] = handles[i];
1234 group->info = info;
1235 object_groups_.Add(group);
1236 }
1237
1238
SetObjectGroupId(Object ** handle,UniqueId id)1239 void GlobalHandles::SetObjectGroupId(Object** handle,
1240 UniqueId id) {
1241 object_group_connections_.Add(ObjectGroupConnection(id, handle));
1242 }
1243
1244
SetRetainedObjectInfo(UniqueId id,RetainedObjectInfo * info)1245 void GlobalHandles::SetRetainedObjectInfo(UniqueId id,
1246 RetainedObjectInfo* info) {
1247 retainer_infos_.Add(ObjectGroupRetainerInfo(id, info));
1248 }
1249
1250
SetReferenceFromGroup(UniqueId id,Object ** child)1251 void GlobalHandles::SetReferenceFromGroup(UniqueId id, Object** child) {
1252 DCHECK(!Node::FromLocation(child)->is_independent());
1253 implicit_ref_connections_.Add(ObjectGroupConnection(id, child));
1254 }
1255
1256
SetReference(HeapObject ** parent,Object ** child)1257 void GlobalHandles::SetReference(HeapObject** parent, Object** child) {
1258 DCHECK(!Node::FromLocation(child)->is_independent());
1259 ImplicitRefGroup* group = new ImplicitRefGroup(parent, 1);
1260 group->children[0] = child;
1261 implicit_ref_groups_.Add(group);
1262 }
1263
1264
RemoveObjectGroups()1265 void GlobalHandles::RemoveObjectGroups() {
1266 for (int i = 0; i < object_groups_.length(); i++)
1267 delete object_groups_.at(i);
1268 object_groups_.Clear();
1269 for (int i = 0; i < retainer_infos_.length(); ++i)
1270 retainer_infos_[i].info->Dispose();
1271 retainer_infos_.Clear();
1272 object_group_connections_.Clear();
1273 object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
1274 }
1275
1276
RemoveImplicitRefGroups()1277 void GlobalHandles::RemoveImplicitRefGroups() {
1278 for (int i = 0; i < implicit_ref_groups_.length(); i++) {
1279 delete implicit_ref_groups_.at(i);
1280 }
1281 implicit_ref_groups_.Clear();
1282 implicit_ref_connections_.Clear();
1283 }
1284
1285
TearDown()1286 void GlobalHandles::TearDown() {
1287 // TODO(1428): invoke weak callbacks.
1288 }
1289
1290
ComputeObjectGroupsAndImplicitReferences()1291 void GlobalHandles::ComputeObjectGroupsAndImplicitReferences() {
1292 if (object_group_connections_.length() == 0) {
1293 for (int i = 0; i < retainer_infos_.length(); ++i)
1294 retainer_infos_[i].info->Dispose();
1295 retainer_infos_.Clear();
1296 implicit_ref_connections_.Clear();
1297 return;
1298 }
1299
1300 object_group_connections_.Sort();
1301 retainer_infos_.Sort();
1302 implicit_ref_connections_.Sort();
1303
1304 int info_index = 0; // For iterating retainer_infos_.
1305 UniqueId current_group_id(0);
1306 int current_group_start = 0;
1307
1308 int current_implicit_refs_start = 0;
1309 int current_implicit_refs_end = 0;
1310 for (int i = 0; i <= object_group_connections_.length(); ++i) {
1311 if (i == 0)
1312 current_group_id = object_group_connections_[i].id;
1313 if (i == object_group_connections_.length() ||
1314 current_group_id != object_group_connections_[i].id) {
1315 // Group detected: objects in indices [current_group_start, i[.
1316
1317 // Find out which implicit references are related to this group. (We want
1318 // to ignore object groups which only have 1 object, but that object is
1319 // needed as a representative object for the implicit refrerence group.)
1320 while (current_implicit_refs_start < implicit_ref_connections_.length() &&
1321 implicit_ref_connections_[current_implicit_refs_start].id <
1322 current_group_id)
1323 ++current_implicit_refs_start;
1324 current_implicit_refs_end = current_implicit_refs_start;
1325 while (current_implicit_refs_end < implicit_ref_connections_.length() &&
1326 implicit_ref_connections_[current_implicit_refs_end].id ==
1327 current_group_id)
1328 ++current_implicit_refs_end;
1329
1330 if (current_implicit_refs_end > current_implicit_refs_start) {
1331 // Find a representative object for the implicit references.
1332 HeapObject** representative = NULL;
1333 for (int j = current_group_start; j < i; ++j) {
1334 Object** object = object_group_connections_[j].object;
1335 if ((*object)->IsHeapObject()) {
1336 representative = reinterpret_cast<HeapObject**>(object);
1337 break;
1338 }
1339 }
1340 if (representative) {
1341 ImplicitRefGroup* group = new ImplicitRefGroup(
1342 representative,
1343 current_implicit_refs_end - current_implicit_refs_start);
1344 for (int j = current_implicit_refs_start;
1345 j < current_implicit_refs_end;
1346 ++j) {
1347 group->children[j - current_implicit_refs_start] =
1348 implicit_ref_connections_[j].object;
1349 }
1350 implicit_ref_groups_.Add(group);
1351 }
1352 current_implicit_refs_start = current_implicit_refs_end;
1353 }
1354
1355 // Find a RetainedObjectInfo for the group.
1356 RetainedObjectInfo* info = NULL;
1357 while (info_index < retainer_infos_.length() &&
1358 retainer_infos_[info_index].id < current_group_id) {
1359 retainer_infos_[info_index].info->Dispose();
1360 ++info_index;
1361 }
1362 if (info_index < retainer_infos_.length() &&
1363 retainer_infos_[info_index].id == current_group_id) {
1364 // This object group has an associated ObjectGroupRetainerInfo.
1365 info = retainer_infos_[info_index].info;
1366 ++info_index;
1367 }
1368
1369 // Ignore groups which only contain one object.
1370 if (i > current_group_start + 1) {
1371 ObjectGroup* group = new ObjectGroup(i - current_group_start);
1372 for (int j = current_group_start; j < i; ++j) {
1373 group->objects[j - current_group_start] =
1374 object_group_connections_[j].object;
1375 }
1376 group->info = info;
1377 object_groups_.Add(group);
1378 } else if (info) {
1379 info->Dispose();
1380 }
1381
1382 if (i < object_group_connections_.length()) {
1383 current_group_id = object_group_connections_[i].id;
1384 current_group_start = i;
1385 }
1386 }
1387 }
1388 object_group_connections_.Clear();
1389 object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
1390 retainer_infos_.Clear();
1391 implicit_ref_connections_.Clear();
1392 }
1393
1394
EternalHandles()1395 EternalHandles::EternalHandles() : size_(0) {
1396 for (unsigned i = 0; i < arraysize(singleton_handles_); i++) {
1397 singleton_handles_[i] = kInvalidIndex;
1398 }
1399 }
1400
1401
~EternalHandles()1402 EternalHandles::~EternalHandles() {
1403 for (int i = 0; i < blocks_.length(); i++) delete[] blocks_[i];
1404 }
1405
1406
IterateAllRoots(ObjectVisitor * visitor)1407 void EternalHandles::IterateAllRoots(ObjectVisitor* visitor) {
1408 int limit = size_;
1409 for (int i = 0; i < blocks_.length(); i++) {
1410 DCHECK(limit > 0);
1411 Object** block = blocks_[i];
1412 visitor->VisitPointers(block, block + Min(limit, kSize));
1413 limit -= kSize;
1414 }
1415 }
1416
1417
IterateNewSpaceRoots(ObjectVisitor * visitor)1418 void EternalHandles::IterateNewSpaceRoots(ObjectVisitor* visitor) {
1419 for (int i = 0; i < new_space_indices_.length(); i++) {
1420 visitor->VisitPointer(GetLocation(new_space_indices_[i]));
1421 }
1422 }
1423
1424
PostGarbageCollectionProcessing(Heap * heap)1425 void EternalHandles::PostGarbageCollectionProcessing(Heap* heap) {
1426 int last = 0;
1427 for (int i = 0; i < new_space_indices_.length(); i++) {
1428 int index = new_space_indices_[i];
1429 if (heap->InNewSpace(*GetLocation(index))) {
1430 new_space_indices_[last++] = index;
1431 }
1432 }
1433 new_space_indices_.Rewind(last);
1434 }
1435
1436
Create(Isolate * isolate,Object * object,int * index)1437 void EternalHandles::Create(Isolate* isolate, Object* object, int* index) {
1438 DCHECK_EQ(kInvalidIndex, *index);
1439 if (object == NULL) return;
1440 DCHECK_NE(isolate->heap()->the_hole_value(), object);
1441 int block = size_ >> kShift;
1442 int offset = size_ & kMask;
1443 // need to resize
1444 if (offset == 0) {
1445 Object** next_block = new Object*[kSize];
1446 Object* the_hole = isolate->heap()->the_hole_value();
1447 MemsetPointer(next_block, the_hole, kSize);
1448 blocks_.Add(next_block);
1449 }
1450 DCHECK_EQ(isolate->heap()->the_hole_value(), blocks_[block][offset]);
1451 blocks_[block][offset] = object;
1452 if (isolate->heap()->InNewSpace(object)) {
1453 new_space_indices_.Add(size_);
1454 }
1455 *index = size_++;
1456 }
1457
1458
1459 } // namespace internal
1460 } // namespace v8
1461