• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips/assembler-mips.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
SupportsSimd128()52 bool CpuFeatures::SupportsSimd128() { return false; }
53 
54 // -----------------------------------------------------------------------------
55 // Operand and MemOperand.
56 
Operand(int32_t immediate,RelocInfo::Mode rmode)57 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
58   rm_ = no_reg;
59   imm32_ = immediate;
60   rmode_ = rmode;
61 }
62 
63 
Operand(const ExternalReference & f)64 Operand::Operand(const ExternalReference& f)  {
65   rm_ = no_reg;
66   imm32_ = reinterpret_cast<int32_t>(f.address());
67   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
68 }
69 
70 
Operand(Smi * value)71 Operand::Operand(Smi* value) {
72   rm_ = no_reg;
73   imm32_ =  reinterpret_cast<intptr_t>(value);
74   rmode_ = RelocInfo::NONE32;
75 }
76 
77 
Operand(Register rm)78 Operand::Operand(Register rm) {
79   rm_ = rm;
80 }
81 
82 
is_reg()83 bool Operand::is_reg() const {
84   return rm_.is_valid();
85 }
86 
87 
88 // -----------------------------------------------------------------------------
89 // RelocInfo.
90 
apply(intptr_t delta)91 void RelocInfo::apply(intptr_t delta) {
92   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
93     // Absolute code pointer inside code object moves with the code object.
94     byte* p = reinterpret_cast<byte*>(pc_);
95     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
96     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
97   }
98 }
99 
100 
target_address()101 Address RelocInfo::target_address() {
102   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
103   return Assembler::target_address_at(pc_, host_);
104 }
105 
target_address_address()106 Address RelocInfo::target_address_address() {
107   DCHECK(IsCodeTarget(rmode_) ||
108          IsRuntimeEntry(rmode_) ||
109          rmode_ == EMBEDDED_OBJECT ||
110          rmode_ == EXTERNAL_REFERENCE);
111   // Read the address of the word containing the target_address in an
112   // instruction stream.
113   // The only architecture-independent user of this function is the serializer.
114   // The serializer uses it to find out how many raw bytes of instruction to
115   // output before the next target.
116   // For an instruction like LUI/ORI where the target bits are mixed into the
117   // instruction bits, the size of the target will be zero, indicating that the
118   // serializer should not step forward in memory after a target is resolved
119   // and written. In this case the target_address_address function should
120   // return the end of the instructions to be patched, allowing the
121   // deserializer to deserialize the instructions as raw bytes and put them in
122   // place, ready to be patched with the target. After jump optimization,
123   // that is the address of the instruction that follows J/JAL/JR/JALR
124   // instruction.
125   return reinterpret_cast<Address>(
126     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
127 }
128 
129 
constant_pool_entry_address()130 Address RelocInfo::constant_pool_entry_address() {
131   UNREACHABLE();
132   return NULL;
133 }
134 
135 
target_address_size()136 int RelocInfo::target_address_size() {
137   return Assembler::kSpecialTargetSize;
138 }
139 
140 
target_address_from_return_address(Address pc)141 Address Assembler::target_address_from_return_address(Address pc) {
142   return pc - kCallTargetAddressOffset;
143 }
144 
145 
set_target_internal_reference_encoded_at(Address pc,Address target)146 void Assembler::set_target_internal_reference_encoded_at(Address pc,
147                                                          Address target) {
148   Instr instr1 = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
149   Instr instr2 = Assembler::instr_at(pc + 1 * Assembler::kInstrSize);
150   DCHECK(Assembler::IsLui(instr1));
151   DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
152   instr1 &= ~kImm16Mask;
153   instr2 &= ~kImm16Mask;
154   int32_t imm = reinterpret_cast<int32_t>(target);
155   DCHECK((imm & 3) == 0);
156   if (Assembler::IsJicOrJialc(instr2)) {
157     // Encoded internal references are lui/jic load of 32-bit absolute address.
158     uint32_t lui_offset_u, jic_offset_u;
159     Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
160 
161     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
162                             instr1 | lui_offset_u);
163     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
164                             instr2 | jic_offset_u);
165   } else {
166     // Encoded internal references are lui/ori load of 32-bit absolute address.
167     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
168                             instr1 | ((imm >> kLuiShift) & kImm16Mask));
169     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
170                             instr2 | (imm & kImm16Mask));
171   }
172 
173   // Currently used only by deserializer, and all code will be flushed
174   // after complete deserialization, no need to flush on each reference.
175 }
176 
177 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)178 void Assembler::deserialization_set_target_internal_reference_at(
179     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
180   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
181     DCHECK(IsLui(instr_at(pc)));
182     set_target_internal_reference_encoded_at(pc, target);
183   } else {
184     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
185     Memory::Address_at(pc) = target;
186   }
187 }
188 
189 
target_object()190 Object* RelocInfo::target_object() {
191   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
192   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
193 }
194 
195 
target_object_handle(Assembler * origin)196 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
197   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
198   return Handle<Object>(reinterpret_cast<Object**>(
199       Assembler::target_address_at(pc_, host_)));
200 }
201 
202 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)203 void RelocInfo::set_target_object(Object* target,
204                                   WriteBarrierMode write_barrier_mode,
205                                   ICacheFlushMode icache_flush_mode) {
206   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
207   Assembler::set_target_address_at(isolate_, pc_, host_,
208                                    reinterpret_cast<Address>(target),
209                                    icache_flush_mode);
210   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
211       host() != NULL &&
212       target->IsHeapObject()) {
213     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
214         host(), this, HeapObject::cast(target));
215     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
216   }
217 }
218 
219 
target_external_reference()220 Address RelocInfo::target_external_reference() {
221   DCHECK(rmode_ == EXTERNAL_REFERENCE);
222   return Assembler::target_address_at(pc_, host_);
223 }
224 
225 
target_internal_reference()226 Address RelocInfo::target_internal_reference() {
227   if (rmode_ == INTERNAL_REFERENCE) {
228     return Memory::Address_at(pc_);
229   } else {
230     // Encoded internal references are lui/ori or lui/jic load of 32-bit
231     // absolute address.
232     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
233     Instr instr1 = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
234     Instr instr2 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
235     DCHECK(Assembler::IsLui(instr1));
236     DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
237     if (Assembler::IsJicOrJialc(instr2)) {
238       return reinterpret_cast<Address>(
239           Assembler::CreateTargetAddress(instr1, instr2));
240     }
241     int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
242     imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
243     return reinterpret_cast<Address>(imm);
244   }
245 }
246 
247 
target_internal_reference_address()248 Address RelocInfo::target_internal_reference_address() {
249   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
250   return reinterpret_cast<Address>(pc_);
251 }
252 
253 
target_runtime_entry(Assembler * origin)254 Address RelocInfo::target_runtime_entry(Assembler* origin) {
255   DCHECK(IsRuntimeEntry(rmode_));
256   return target_address();
257 }
258 
259 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)260 void RelocInfo::set_target_runtime_entry(Address target,
261                                          WriteBarrierMode write_barrier_mode,
262                                          ICacheFlushMode icache_flush_mode) {
263   DCHECK(IsRuntimeEntry(rmode_));
264   if (target_address() != target)
265     set_target_address(target, write_barrier_mode, icache_flush_mode);
266 }
267 
268 
target_cell_handle()269 Handle<Cell> RelocInfo::target_cell_handle() {
270   DCHECK(rmode_ == RelocInfo::CELL);
271   Address address = Memory::Address_at(pc_);
272   return Handle<Cell>(reinterpret_cast<Cell**>(address));
273 }
274 
275 
target_cell()276 Cell* RelocInfo::target_cell() {
277   DCHECK(rmode_ == RelocInfo::CELL);
278   return Cell::FromValueAddress(Memory::Address_at(pc_));
279 }
280 
281 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)282 void RelocInfo::set_target_cell(Cell* cell,
283                                 WriteBarrierMode write_barrier_mode,
284                                 ICacheFlushMode icache_flush_mode) {
285   DCHECK(rmode_ == RelocInfo::CELL);
286   Address address = cell->address() + Cell::kValueOffset;
287   Memory::Address_at(pc_) = address;
288   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
289     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
290                                                                   cell);
291   }
292 }
293 
294 
295 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
296 
297 
code_age_stub_handle(Assembler * origin)298 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
299   UNREACHABLE();  // This should never be reached on Arm.
300   return Handle<Object>();
301 }
302 
303 
code_age_stub()304 Code* RelocInfo::code_age_stub() {
305   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
306   return Code::GetCodeFromTargetAddress(
307       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
308 }
309 
310 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)311 void RelocInfo::set_code_age_stub(Code* stub,
312                                   ICacheFlushMode icache_flush_mode) {
313   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
314   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
315                                    stub->instruction_start());
316 }
317 
318 
debug_call_address()319 Address RelocInfo::debug_call_address() {
320   // The pc_ offset of 0 assumes patched debug break slot or return
321   // sequence.
322   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
323   return Assembler::target_address_at(pc_, host_);
324 }
325 
326 
set_debug_call_address(Address target)327 void RelocInfo::set_debug_call_address(Address target) {
328   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
329   // The pc_ offset of 0 assumes patched debug break slot or return
330   // sequence.
331   Assembler::set_target_address_at(isolate_, pc_, host_, target);
332   if (host() != NULL) {
333     Object* target_code = Code::GetCodeFromTargetAddress(target);
334     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
335         host(), this, HeapObject::cast(target_code));
336   }
337 }
338 
339 
WipeOut()340 void RelocInfo::WipeOut() {
341   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
342          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
343          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
344   if (IsInternalReference(rmode_)) {
345     Memory::Address_at(pc_) = NULL;
346   } else if (IsInternalReferenceEncoded(rmode_)) {
347     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
348   } else {
349     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
350   }
351 }
352 
353 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)354 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
355   RelocInfo::Mode mode = rmode();
356   if (mode == RelocInfo::EMBEDDED_OBJECT) {
357     visitor->VisitEmbeddedPointer(this);
358   } else if (RelocInfo::IsCodeTarget(mode)) {
359     visitor->VisitCodeTarget(this);
360   } else if (mode == RelocInfo::CELL) {
361     visitor->VisitCell(this);
362   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
363     visitor->VisitExternalReference(this);
364   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
365              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
366     visitor->VisitInternalReference(this);
367   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
368     visitor->VisitCodeAgeSequence(this);
369   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
370              IsPatchedDebugBreakSlotSequence()) {
371     visitor->VisitDebugTarget(this);
372   } else if (RelocInfo::IsRuntimeEntry(mode)) {
373     visitor->VisitRuntimeEntry(this);
374   }
375 }
376 
377 
378 template<typename StaticVisitor>
Visit(Heap * heap)379 void RelocInfo::Visit(Heap* heap) {
380   RelocInfo::Mode mode = rmode();
381   if (mode == RelocInfo::EMBEDDED_OBJECT) {
382     StaticVisitor::VisitEmbeddedPointer(heap, this);
383   } else if (RelocInfo::IsCodeTarget(mode)) {
384     StaticVisitor::VisitCodeTarget(heap, this);
385   } else if (mode == RelocInfo::CELL) {
386     StaticVisitor::VisitCell(heap, this);
387   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
388     StaticVisitor::VisitExternalReference(this);
389   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
390              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
391     StaticVisitor::VisitInternalReference(this);
392   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
393     StaticVisitor::VisitCodeAgeSequence(heap, this);
394   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
395              IsPatchedDebugBreakSlotSequence()) {
396     StaticVisitor::VisitDebugTarget(heap, this);
397   } else if (RelocInfo::IsRuntimeEntry(mode)) {
398     StaticVisitor::VisitRuntimeEntry(this);
399   }
400 }
401 
402 
403 // -----------------------------------------------------------------------------
404 // Assembler.
405 
406 
CheckBuffer()407 void Assembler::CheckBuffer() {
408   if (buffer_space() <= kGap) {
409     GrowBuffer();
410   }
411 }
412 
413 
CheckTrampolinePoolQuick(int extra_instructions)414 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
415   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
416     CheckTrampolinePool();
417   }
418 }
419 
420 
CheckForEmitInForbiddenSlot()421 void Assembler::CheckForEmitInForbiddenSlot() {
422   if (!is_buffer_growth_blocked()) {
423     CheckBuffer();
424   }
425   if (IsPrevInstrCompactBranch()) {
426     // Nop instruction to preceed a CTI in forbidden slot:
427     Instr nop = SPECIAL | SLL;
428     *reinterpret_cast<Instr*>(pc_) = nop;
429     pc_ += kInstrSize;
430 
431     ClearCompactBranchState();
432   }
433 }
434 
435 
EmitHelper(Instr x,CompactBranchType is_compact_branch)436 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
437   if (IsPrevInstrCompactBranch()) {
438     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
439       // Nop instruction to preceed a CTI in forbidden slot:
440       Instr nop = SPECIAL | SLL;
441       *reinterpret_cast<Instr*>(pc_) = nop;
442       pc_ += kInstrSize;
443     }
444     ClearCompactBranchState();
445   }
446   *reinterpret_cast<Instr*>(pc_) = x;
447   pc_ += kInstrSize;
448   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
449     EmittedCompactBranchInstruction();
450   }
451   CheckTrampolinePoolQuick();
452 }
453 
454 template <>
455 inline void Assembler::EmitHelper(uint8_t x);
456 
457 template <typename T>
EmitHelper(T x)458 void Assembler::EmitHelper(T x) {
459   *reinterpret_cast<T*>(pc_) = x;
460   pc_ += sizeof(x);
461   CheckTrampolinePoolQuick();
462 }
463 
464 template <>
EmitHelper(uint8_t x)465 void Assembler::EmitHelper(uint8_t x) {
466   *reinterpret_cast<uint8_t*>(pc_) = x;
467   pc_ += sizeof(x);
468   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
469     CheckTrampolinePoolQuick();
470   }
471 }
472 
emit(Instr x,CompactBranchType is_compact_branch)473 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
474   if (!is_buffer_growth_blocked()) {
475     CheckBuffer();
476   }
477   EmitHelper(x, is_compact_branch);
478 }
479 
480 
481 }  // namespace internal
482 }  // namespace v8
483 
484 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
485