1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/snapshot/serializer.h"
6
7 #include "src/macro-assembler.h"
8 #include "src/snapshot/natives.h"
9
10 namespace v8 {
11 namespace internal {
12
Serializer(Isolate * isolate)13 Serializer::Serializer(Isolate* isolate)
14 : isolate_(isolate),
15 external_reference_encoder_(isolate),
16 root_index_map_(isolate),
17 recursion_depth_(0),
18 code_address_map_(NULL),
19 num_maps_(0),
20 large_objects_total_size_(0),
21 seen_large_objects_index_(0) {
22 // The serializer is meant to be used only to generate initial heap images
23 // from a context in which there is only one isolate.
24 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
25 pending_chunk_[i] = 0;
26 max_chunk_size_[i] = static_cast<uint32_t>(
27 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
28 }
29
30 #ifdef OBJECT_PRINT
31 if (FLAG_serialization_statistics) {
32 instance_type_count_ = NewArray<int>(kInstanceTypes);
33 instance_type_size_ = NewArray<size_t>(kInstanceTypes);
34 for (int i = 0; i < kInstanceTypes; i++) {
35 instance_type_count_[i] = 0;
36 instance_type_size_[i] = 0;
37 }
38 } else {
39 instance_type_count_ = NULL;
40 instance_type_size_ = NULL;
41 }
42 #endif // OBJECT_PRINT
43 }
44
~Serializer()45 Serializer::~Serializer() {
46 if (code_address_map_ != NULL) delete code_address_map_;
47 #ifdef OBJECT_PRINT
48 if (instance_type_count_ != NULL) {
49 DeleteArray(instance_type_count_);
50 DeleteArray(instance_type_size_);
51 }
52 #endif // OBJECT_PRINT
53 }
54
55 #ifdef OBJECT_PRINT
CountInstanceType(Map * map,int size)56 void Serializer::CountInstanceType(Map* map, int size) {
57 int instance_type = map->instance_type();
58 instance_type_count_[instance_type]++;
59 instance_type_size_[instance_type] += size;
60 }
61 #endif // OBJECT_PRINT
62
OutputStatistics(const char * name)63 void Serializer::OutputStatistics(const char* name) {
64 if (!FLAG_serialization_statistics) return;
65 PrintF("%s:\n", name);
66 PrintF(" Spaces (bytes):\n");
67 for (int space = 0; space < kNumberOfSpaces; space++) {
68 PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
69 }
70 PrintF("\n");
71 for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
72 size_t s = pending_chunk_[space];
73 for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
74 PrintF("%16" PRIuS, s);
75 }
76 PrintF("%16d\n", large_objects_total_size_);
77 #ifdef OBJECT_PRINT
78 PrintF(" Instance types (count and bytes):\n");
79 #define PRINT_INSTANCE_TYPE(Name) \
80 if (instance_type_count_[Name]) { \
81 PrintF("%10d %10" PRIuS " %s\n", instance_type_count_[Name], \
82 instance_type_size_[Name], #Name); \
83 }
84 INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
85 #undef PRINT_INSTANCE_TYPE
86 PrintF("\n");
87 #endif // OBJECT_PRINT
88 }
89
SerializeDeferredObjects()90 void Serializer::SerializeDeferredObjects() {
91 while (deferred_objects_.length() > 0) {
92 HeapObject* obj = deferred_objects_.RemoveLast();
93 ObjectSerializer obj_serializer(this, obj, &sink_, kPlain, kStartOfObject);
94 obj_serializer.SerializeDeferred();
95 }
96 sink_.Put(kSynchronize, "Finished with deferred objects");
97 }
98
VisitPointers(Object ** start,Object ** end)99 void Serializer::VisitPointers(Object** start, Object** end) {
100 for (Object** current = start; current < end; current++) {
101 if ((*current)->IsSmi()) {
102 PutSmi(Smi::cast(*current));
103 } else {
104 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
105 }
106 }
107 }
108
EncodeReservations(List<SerializedData::Reservation> * out) const109 void Serializer::EncodeReservations(
110 List<SerializedData::Reservation>* out) const {
111 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
112 for (int j = 0; j < completed_chunks_[i].length(); j++) {
113 out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
114 }
115
116 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
117 out->Add(SerializedData::Reservation(pending_chunk_[i]));
118 }
119 out->last().mark_as_last();
120 }
121 out->Add(SerializedData::Reservation(num_maps_ * Map::kSize));
122 out->last().mark_as_last();
123 out->Add(SerializedData::Reservation(large_objects_total_size_));
124 out->last().mark_as_last();
125 }
126
127 #ifdef DEBUG
BackReferenceIsAlreadyAllocated(SerializerReference reference)128 bool Serializer::BackReferenceIsAlreadyAllocated(
129 SerializerReference reference) {
130 DCHECK(reference.is_back_reference());
131 AllocationSpace space = reference.space();
132 if (space == LO_SPACE) {
133 return reference.large_object_index() < seen_large_objects_index_;
134 } else if (space == MAP_SPACE) {
135 return reference.map_index() < num_maps_;
136 } else {
137 int chunk_index = reference.chunk_index();
138 if (chunk_index == completed_chunks_[space].length()) {
139 return reference.chunk_offset() < pending_chunk_[space];
140 } else {
141 return chunk_index < completed_chunks_[space].length() &&
142 reference.chunk_offset() < completed_chunks_[space][chunk_index];
143 }
144 }
145 }
146 #endif // DEBUG
147
SerializeHotObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)148 bool Serializer::SerializeHotObject(HeapObject* obj, HowToCode how_to_code,
149 WhereToPoint where_to_point, int skip) {
150 if (how_to_code != kPlain || where_to_point != kStartOfObject) return false;
151 // Encode a reference to a hot object by its index in the working set.
152 int index = hot_objects_.Find(obj);
153 if (index == HotObjectsList::kNotFound) return false;
154 DCHECK(index >= 0 && index < kNumberOfHotObjects);
155 if (FLAG_trace_serializer) {
156 PrintF(" Encoding hot object %d:", index);
157 obj->ShortPrint();
158 PrintF("\n");
159 }
160 if (skip != 0) {
161 sink_.Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
162 sink_.PutInt(skip, "HotObjectSkipDistance");
163 } else {
164 sink_.Put(kHotObject + index, "HotObject");
165 }
166 return true;
167 }
SerializeBackReference(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)168 bool Serializer::SerializeBackReference(HeapObject* obj, HowToCode how_to_code,
169 WhereToPoint where_to_point, int skip) {
170 SerializerReference reference = reference_map_.Lookup(obj);
171 if (!reference.is_valid()) return false;
172 // Encode the location of an already deserialized object in order to write
173 // its location into a later object. We can encode the location as an
174 // offset fromthe start of the deserialized objects or as an offset
175 // backwards from thecurrent allocation pointer.
176 if (reference.is_attached_reference()) {
177 FlushSkip(skip);
178 if (FLAG_trace_serializer) {
179 PrintF(" Encoding attached reference %d\n",
180 reference.attached_reference_index());
181 }
182 PutAttachedReference(reference, how_to_code, where_to_point);
183 } else {
184 DCHECK(reference.is_back_reference());
185 if (FLAG_trace_serializer) {
186 PrintF(" Encoding back reference to: ");
187 obj->ShortPrint();
188 PrintF("\n");
189 }
190
191 PutAlignmentPrefix(obj);
192 AllocationSpace space = reference.space();
193 if (skip == 0) {
194 sink_.Put(kBackref + how_to_code + where_to_point + space, "BackRef");
195 } else {
196 sink_.Put(kBackrefWithSkip + how_to_code + where_to_point + space,
197 "BackRefWithSkip");
198 sink_.PutInt(skip, "BackRefSkipDistance");
199 }
200 PutBackReference(obj, reference);
201 }
202 return true;
203 }
204
PutRoot(int root_index,HeapObject * object,SerializerDeserializer::HowToCode how_to_code,SerializerDeserializer::WhereToPoint where_to_point,int skip)205 void Serializer::PutRoot(int root_index, HeapObject* object,
206 SerializerDeserializer::HowToCode how_to_code,
207 SerializerDeserializer::WhereToPoint where_to_point,
208 int skip) {
209 if (FLAG_trace_serializer) {
210 PrintF(" Encoding root %d:", root_index);
211 object->ShortPrint();
212 PrintF("\n");
213 }
214
215 // Assert that the first 32 root array items are a conscious choice. They are
216 // chosen so that the most common ones can be encoded more efficiently.
217 STATIC_ASSERT(Heap::kEmptyDescriptorArrayRootIndex ==
218 kNumberOfRootArrayConstants - 1);
219
220 if (how_to_code == kPlain && where_to_point == kStartOfObject &&
221 root_index < kNumberOfRootArrayConstants &&
222 !isolate()->heap()->InNewSpace(object)) {
223 if (skip == 0) {
224 sink_.Put(kRootArrayConstants + root_index, "RootConstant");
225 } else {
226 sink_.Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
227 sink_.PutInt(skip, "SkipInPutRoot");
228 }
229 } else {
230 FlushSkip(skip);
231 sink_.Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
232 sink_.PutInt(root_index, "root_index");
233 hot_objects_.Add(object);
234 }
235 }
236
PutSmi(Smi * smi)237 void Serializer::PutSmi(Smi* smi) {
238 sink_.Put(kOnePointerRawData, "Smi");
239 byte* bytes = reinterpret_cast<byte*>(&smi);
240 for (int i = 0; i < kPointerSize; i++) sink_.Put(bytes[i], "Byte");
241 }
242
PutBackReference(HeapObject * object,SerializerReference reference)243 void Serializer::PutBackReference(HeapObject* object,
244 SerializerReference reference) {
245 DCHECK(BackReferenceIsAlreadyAllocated(reference));
246 sink_.PutInt(reference.back_reference(), "BackRefValue");
247 hot_objects_.Add(object);
248 }
249
PutAttachedReference(SerializerReference reference,HowToCode how_to_code,WhereToPoint where_to_point)250 void Serializer::PutAttachedReference(SerializerReference reference,
251 HowToCode how_to_code,
252 WhereToPoint where_to_point) {
253 DCHECK(reference.is_attached_reference());
254 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
255 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
256 (how_to_code == kFromCode && where_to_point == kStartOfObject) ||
257 (how_to_code == kFromCode && where_to_point == kInnerPointer));
258 sink_.Put(kAttachedReference + how_to_code + where_to_point, "AttachedRef");
259 sink_.PutInt(reference.attached_reference_index(), "AttachedRefIndex");
260 }
261
PutAlignmentPrefix(HeapObject * object)262 int Serializer::PutAlignmentPrefix(HeapObject* object) {
263 AllocationAlignment alignment = object->RequiredAlignment();
264 if (alignment != kWordAligned) {
265 DCHECK(1 <= alignment && alignment <= 3);
266 byte prefix = (kAlignmentPrefix - 1) + alignment;
267 sink_.Put(prefix, "Alignment");
268 return Heap::GetMaximumFillToAlign(alignment);
269 }
270 return 0;
271 }
272
AllocateLargeObject(int size)273 SerializerReference Serializer::AllocateLargeObject(int size) {
274 // Large objects are allocated one-by-one when deserializing. We do not
275 // have to keep track of multiple chunks.
276 large_objects_total_size_ += size;
277 return SerializerReference::LargeObjectReference(seen_large_objects_index_++);
278 }
279
AllocateMap()280 SerializerReference Serializer::AllocateMap() {
281 // Maps are allocated one-by-one when deserializing.
282 return SerializerReference::MapReference(num_maps_++);
283 }
284
Allocate(AllocationSpace space,int size)285 SerializerReference Serializer::Allocate(AllocationSpace space, int size) {
286 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
287 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
288 uint32_t new_chunk_size = pending_chunk_[space] + size;
289 if (new_chunk_size > max_chunk_size(space)) {
290 // The new chunk size would not fit onto a single page. Complete the
291 // current chunk and start a new one.
292 sink_.Put(kNextChunk, "NextChunk");
293 sink_.Put(space, "NextChunkSpace");
294 completed_chunks_[space].Add(pending_chunk_[space]);
295 pending_chunk_[space] = 0;
296 new_chunk_size = size;
297 }
298 uint32_t offset = pending_chunk_[space];
299 pending_chunk_[space] = new_chunk_size;
300 return SerializerReference::BackReference(
301 space, completed_chunks_[space].length(), offset);
302 }
303
Pad()304 void Serializer::Pad() {
305 // The non-branching GetInt will read up to 3 bytes too far, so we need
306 // to pad the snapshot to make sure we don't read over the end.
307 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
308 sink_.Put(kNop, "Padding");
309 }
310 // Pad up to pointer size for checksum.
311 while (!IsAligned(sink_.Position(), kPointerAlignment)) {
312 sink_.Put(kNop, "Padding");
313 }
314 }
315
InitializeCodeAddressMap()316 void Serializer::InitializeCodeAddressMap() {
317 isolate_->InitializeLoggingAndCounters();
318 code_address_map_ = new CodeAddressMap(isolate_);
319 }
320
CopyCode(Code * code)321 Code* Serializer::CopyCode(Code* code) {
322 code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
323 int size = code->CodeSize();
324 code_buffer_.AddAll(Vector<byte>(code->address(), size));
325 return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
326 }
327
HasNotExceededFirstPageOfEachSpace()328 bool Serializer::HasNotExceededFirstPageOfEachSpace() {
329 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
330 if (!completed_chunks_[i].is_empty()) return false;
331 }
332 return true;
333 }
334
SerializePrologue(AllocationSpace space,int size,Map * map)335 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
336 int size, Map* map) {
337 if (serializer_->code_address_map_) {
338 const char* code_name =
339 serializer_->code_address_map_->Lookup(object_->address());
340 LOG(serializer_->isolate_,
341 CodeNameEvent(object_->address(), sink_->Position(), code_name));
342 }
343
344 SerializerReference back_reference;
345 if (space == LO_SPACE) {
346 sink_->Put(kNewObject + reference_representation_ + space,
347 "NewLargeObject");
348 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
349 if (object_->IsCode()) {
350 sink_->Put(EXECUTABLE, "executable large object");
351 } else {
352 sink_->Put(NOT_EXECUTABLE, "not executable large object");
353 }
354 back_reference = serializer_->AllocateLargeObject(size);
355 } else if (space == MAP_SPACE) {
356 DCHECK_EQ(Map::kSize, size);
357 back_reference = serializer_->AllocateMap();
358 sink_->Put(kNewObject + reference_representation_ + space, "NewMap");
359 // This is redundant, but we include it anyways.
360 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
361 } else {
362 int fill = serializer_->PutAlignmentPrefix(object_);
363 back_reference = serializer_->Allocate(space, size + fill);
364 sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
365 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
366 }
367
368 #ifdef OBJECT_PRINT
369 if (FLAG_serialization_statistics) {
370 serializer_->CountInstanceType(map, size);
371 }
372 #endif // OBJECT_PRINT
373
374 // Mark this object as already serialized.
375 serializer_->reference_map()->Add(object_, back_reference);
376
377 // Serialize the map (first word of the object).
378 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
379 }
380
SerializeExternalString()381 void Serializer::ObjectSerializer::SerializeExternalString() {
382 // Instead of serializing this as an external string, we serialize
383 // an imaginary sequential string with the same content.
384 Isolate* isolate = serializer_->isolate();
385 DCHECK(object_->IsExternalString());
386 DCHECK(object_->map() != isolate->heap()->native_source_string_map());
387 ExternalString* string = ExternalString::cast(object_);
388 int length = string->length();
389 Map* map;
390 int content_size;
391 int allocation_size;
392 const byte* resource;
393 // Find the map and size for the imaginary sequential string.
394 bool internalized = object_->IsInternalizedString();
395 if (object_->IsExternalOneByteString()) {
396 map = internalized ? isolate->heap()->one_byte_internalized_string_map()
397 : isolate->heap()->one_byte_string_map();
398 allocation_size = SeqOneByteString::SizeFor(length);
399 content_size = length * kCharSize;
400 resource = reinterpret_cast<const byte*>(
401 ExternalOneByteString::cast(string)->resource()->data());
402 } else {
403 map = internalized ? isolate->heap()->internalized_string_map()
404 : isolate->heap()->string_map();
405 allocation_size = SeqTwoByteString::SizeFor(length);
406 content_size = length * kShortSize;
407 resource = reinterpret_cast<const byte*>(
408 ExternalTwoByteString::cast(string)->resource()->data());
409 }
410
411 AllocationSpace space =
412 (allocation_size > kMaxRegularHeapObjectSize) ? LO_SPACE : OLD_SPACE;
413 SerializePrologue(space, allocation_size, map);
414
415 // Output the rest of the imaginary string.
416 int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
417
418 // Output raw data header. Do not bother with common raw length cases here.
419 sink_->Put(kVariableRawData, "RawDataForString");
420 sink_->PutInt(bytes_to_output, "length");
421
422 // Serialize string header (except for map).
423 Address string_start = string->address();
424 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
425 sink_->PutSection(string_start[i], "StringHeader");
426 }
427
428 // Serialize string content.
429 sink_->PutRaw(resource, content_size, "StringContent");
430
431 // Since the allocation size is rounded up to object alignment, there
432 // maybe left-over bytes that need to be padded.
433 int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
434 DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
435 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
436
437 sink_->Put(kSkip, "SkipAfterString");
438 sink_->PutInt(bytes_to_output, "SkipDistance");
439 }
440
441 // Clear and later restore the next link in the weak cell or allocation site.
442 // TODO(all): replace this with proper iteration of weak slots in serializer.
443 class UnlinkWeakNextScope {
444 public:
UnlinkWeakNextScope(HeapObject * object)445 explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) {
446 if (object->IsWeakCell()) {
447 object_ = object;
448 next_ = WeakCell::cast(object)->next();
449 WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value());
450 } else if (object->IsAllocationSite()) {
451 object_ = object;
452 next_ = AllocationSite::cast(object)->weak_next();
453 AllocationSite::cast(object)->set_weak_next(
454 object->GetHeap()->undefined_value());
455 }
456 }
457
~UnlinkWeakNextScope()458 ~UnlinkWeakNextScope() {
459 if (object_ != nullptr) {
460 if (object_->IsWeakCell()) {
461 WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
462 } else {
463 AllocationSite::cast(object_)->set_weak_next(next_,
464 UPDATE_WEAK_WRITE_BARRIER);
465 }
466 }
467 }
468
469 private:
470 HeapObject* object_;
471 Object* next_;
472 DisallowHeapAllocation no_gc_;
473 };
474
Serialize()475 void Serializer::ObjectSerializer::Serialize() {
476 if (FLAG_trace_serializer) {
477 PrintF(" Encoding heap object: ");
478 object_->ShortPrint();
479 PrintF("\n");
480 }
481
482 // We cannot serialize typed array objects correctly.
483 DCHECK(!object_->IsJSTypedArray());
484
485 // We don't expect fillers.
486 DCHECK(!object_->IsFiller());
487
488 if (object_->IsScript()) {
489 // Clear cached line ends.
490 Object* undefined = serializer_->isolate()->heap()->undefined_value();
491 Script::cast(object_)->set_line_ends(undefined);
492 }
493
494 if (object_->IsExternalString()) {
495 Heap* heap = serializer_->isolate()->heap();
496 if (object_->map() != heap->native_source_string_map()) {
497 // Usually we cannot recreate resources for external strings. To work
498 // around this, external strings are serialized to look like ordinary
499 // sequential strings.
500 // The exception are native source code strings, since we can recreate
501 // their resources. In that case we fall through and leave it to
502 // VisitExternalOneByteString further down.
503 SerializeExternalString();
504 return;
505 }
506 }
507
508 int size = object_->Size();
509 Map* map = object_->map();
510 AllocationSpace space =
511 MemoryChunk::FromAddress(object_->address())->owner()->identity();
512 SerializePrologue(space, size, map);
513
514 // Serialize the rest of the object.
515 CHECK_EQ(0, bytes_processed_so_far_);
516 bytes_processed_so_far_ = kPointerSize;
517
518 RecursionScope recursion(serializer_);
519 // Objects that are immediately post processed during deserialization
520 // cannot be deferred, since post processing requires the object content.
521 if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
522 serializer_->QueueDeferredObject(object_);
523 sink_->Put(kDeferred, "Deferring object content");
524 return;
525 }
526
527 UnlinkWeakNextScope unlink_weak_next(object_);
528
529 object_->IterateBody(map->instance_type(), size, this);
530 OutputRawData(object_->address() + size);
531 }
532
SerializeDeferred()533 void Serializer::ObjectSerializer::SerializeDeferred() {
534 if (FLAG_trace_serializer) {
535 PrintF(" Encoding deferred heap object: ");
536 object_->ShortPrint();
537 PrintF("\n");
538 }
539
540 int size = object_->Size();
541 Map* map = object_->map();
542 SerializerReference back_reference =
543 serializer_->reference_map()->Lookup(object_);
544 DCHECK(back_reference.is_back_reference());
545
546 // Serialize the rest of the object.
547 CHECK_EQ(0, bytes_processed_so_far_);
548 bytes_processed_so_far_ = kPointerSize;
549
550 serializer_->PutAlignmentPrefix(object_);
551 sink_->Put(kNewObject + back_reference.space(), "deferred object");
552 serializer_->PutBackReference(object_, back_reference);
553 sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
554
555 UnlinkWeakNextScope unlink_weak_next(object_);
556
557 object_->IterateBody(map->instance_type(), size, this);
558 OutputRawData(object_->address() + size);
559 }
560
VisitPointers(Object ** start,Object ** end)561 void Serializer::ObjectSerializer::VisitPointers(Object** start, Object** end) {
562 Object** current = start;
563 while (current < end) {
564 while (current < end && (*current)->IsSmi()) current++;
565 if (current < end) OutputRawData(reinterpret_cast<Address>(current));
566
567 while (current < end && !(*current)->IsSmi()) {
568 HeapObject* current_contents = HeapObject::cast(*current);
569 int root_index = serializer_->root_index_map()->Lookup(current_contents);
570 // Repeats are not subject to the write barrier so we can only use
571 // immortal immovable root members. They are never in new space.
572 if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
573 Heap::RootIsImmortalImmovable(root_index) &&
574 current_contents == current[-1]) {
575 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
576 int repeat_count = 1;
577 while (¤t[repeat_count] < end - 1 &&
578 current[repeat_count] == current_contents) {
579 repeat_count++;
580 }
581 current += repeat_count;
582 bytes_processed_so_far_ += repeat_count * kPointerSize;
583 if (repeat_count > kNumberOfFixedRepeat) {
584 sink_->Put(kVariableRepeat, "VariableRepeat");
585 sink_->PutInt(repeat_count, "repeat count");
586 } else {
587 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
588 }
589 } else {
590 serializer_->SerializeObject(current_contents, kPlain, kStartOfObject,
591 0);
592 bytes_processed_so_far_ += kPointerSize;
593 current++;
594 }
595 }
596 }
597 }
598
VisitEmbeddedPointer(RelocInfo * rinfo)599 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
600 int skip = OutputRawData(rinfo->target_address_address(),
601 kCanReturnSkipInsteadOfSkipping);
602 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
603 Object* object = rinfo->target_object();
604 serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
605 kStartOfObject, skip);
606 bytes_processed_so_far_ += rinfo->target_address_size();
607 }
608
VisitExternalReference(Address * p)609 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
610 int skip = OutputRawData(reinterpret_cast<Address>(p),
611 kCanReturnSkipInsteadOfSkipping);
612 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
613 sink_->PutInt(skip, "SkipB4ExternalRef");
614 Address target = *p;
615 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
616 bytes_processed_so_far_ += kPointerSize;
617 }
618
VisitExternalReference(RelocInfo * rinfo)619 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
620 int skip = OutputRawData(rinfo->target_address_address(),
621 kCanReturnSkipInsteadOfSkipping);
622 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
623 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
624 sink_->PutInt(skip, "SkipB4ExternalRef");
625 Address target = rinfo->target_external_reference();
626 DCHECK_NOT_NULL(target); // Code does not reference null.
627 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
628 bytes_processed_so_far_ += rinfo->target_address_size();
629 }
630
VisitInternalReference(RelocInfo * rinfo)631 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
632 // We can only reference to internal references of code that has been output.
633 DCHECK(object_->IsCode() && code_has_been_output_);
634 // We do not use skip from last patched pc to find the pc to patch, since
635 // target_address_address may not return addresses in ascending order when
636 // used for internal references. External references may be stored at the
637 // end of the code in the constant pool, whereas internal references are
638 // inline. That would cause the skip to be negative. Instead, we store the
639 // offset from code entry.
640 Address entry = Code::cast(object_)->entry();
641 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
642 intptr_t target_offset = rinfo->target_internal_reference() - entry;
643 DCHECK(0 <= pc_offset &&
644 pc_offset <= Code::cast(object_)->instruction_size());
645 DCHECK(0 <= target_offset &&
646 target_offset <= Code::cast(object_)->instruction_size());
647 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
648 ? kInternalReference
649 : kInternalReferenceEncoded,
650 "InternalRef");
651 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
652 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
653 }
654
VisitRuntimeEntry(RelocInfo * rinfo)655 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
656 int skip = OutputRawData(rinfo->target_address_address(),
657 kCanReturnSkipInsteadOfSkipping);
658 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
659 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
660 sink_->PutInt(skip, "SkipB4ExternalRef");
661 Address target = rinfo->target_address();
662 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
663 bytes_processed_so_far_ += rinfo->target_address_size();
664 }
665
VisitCodeTarget(RelocInfo * rinfo)666 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
667 int skip = OutputRawData(rinfo->target_address_address(),
668 kCanReturnSkipInsteadOfSkipping);
669 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
670 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
671 bytes_processed_so_far_ += rinfo->target_address_size();
672 }
673
VisitCodeEntry(Address entry_address)674 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
675 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
676 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
677 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
678 bytes_processed_so_far_ += kPointerSize;
679 }
680
VisitCell(RelocInfo * rinfo)681 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
682 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
683 Cell* object = Cell::cast(rinfo->target_cell());
684 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
685 bytes_processed_so_far_ += kPointerSize;
686 }
687
SerializeExternalNativeSourceString(int builtin_count,v8::String::ExternalOneByteStringResource ** resource_pointer,FixedArray * source_cache,int resource_index)688 bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
689 int builtin_count,
690 v8::String::ExternalOneByteStringResource** resource_pointer,
691 FixedArray* source_cache, int resource_index) {
692 Isolate* isolate = serializer_->isolate();
693 for (int i = 0; i < builtin_count; i++) {
694 Object* source = source_cache->get(i);
695 if (!source->IsUndefined(isolate)) {
696 ExternalOneByteString* string = ExternalOneByteString::cast(source);
697 typedef v8::String::ExternalOneByteStringResource Resource;
698 const Resource* resource = string->resource();
699 if (resource == *resource_pointer) {
700 sink_->Put(resource_index, "NativesStringResource");
701 sink_->PutSection(i, "NativesStringResourceEnd");
702 bytes_processed_so_far_ += sizeof(resource);
703 return true;
704 }
705 }
706 }
707 return false;
708 }
709
VisitExternalOneByteString(v8::String::ExternalOneByteStringResource ** resource_pointer)710 void Serializer::ObjectSerializer::VisitExternalOneByteString(
711 v8::String::ExternalOneByteStringResource** resource_pointer) {
712 DCHECK_EQ(serializer_->isolate()->heap()->native_source_string_map(),
713 object_->map());
714 DCHECK(ExternalOneByteString::cast(object_)->is_short());
715 Address references_start = reinterpret_cast<Address>(resource_pointer);
716 OutputRawData(references_start);
717 if (SerializeExternalNativeSourceString(
718 Natives::GetBuiltinsCount(), resource_pointer,
719 Natives::GetSourceCache(serializer_->isolate()->heap()),
720 kNativesStringResource)) {
721 return;
722 }
723 if (SerializeExternalNativeSourceString(
724 ExtraNatives::GetBuiltinsCount(), resource_pointer,
725 ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
726 kExtraNativesStringResource)) {
727 return;
728 }
729 // One of the strings in the natives cache should match the resource. We
730 // don't expect any other kinds of external strings here.
731 UNREACHABLE();
732 }
733
PrepareCode()734 Address Serializer::ObjectSerializer::PrepareCode() {
735 Code* code = Code::cast(object_);
736 if (FLAG_predictable) {
737 // To make snapshots reproducible, we make a copy of the code object
738 // and wipe all pointers in the copy, which we then serialize.
739 code = serializer_->CopyCode(code);
740 int mode_mask = RelocInfo::kCodeTargetMask |
741 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
742 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
743 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
744 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
745 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
746 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
747 RelocInfo* rinfo = it.rinfo();
748 rinfo->WipeOut();
749 }
750 // We need to wipe out the header fields *after* wiping out the
751 // relocations, because some of these fields are needed for the latter.
752 code->WipeOutHeader();
753 }
754 // Code age headers are not serializable.
755 code->MakeYoung(serializer_->isolate());
756 return code->address();
757 }
758
OutputRawData(Address up_to,Serializer::ObjectSerializer::ReturnSkip return_skip)759 int Serializer::ObjectSerializer::OutputRawData(
760 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
761 Address object_start = object_->address();
762 int base = bytes_processed_so_far_;
763 int up_to_offset = static_cast<int>(up_to - object_start);
764 int to_skip = up_to_offset - bytes_processed_so_far_;
765 int bytes_to_output = to_skip;
766 bytes_processed_so_far_ += to_skip;
767 // This assert will fail if the reloc info gives us the target_address_address
768 // locations in a non-ascending order. Luckily that doesn't happen.
769 DCHECK(to_skip >= 0);
770 bool outputting_code = false;
771 bool is_code_object = object_->IsCode();
772 if (to_skip != 0 && is_code_object && !code_has_been_output_) {
773 // Output the code all at once and fix later.
774 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
775 outputting_code = true;
776 code_has_been_output_ = true;
777 }
778 if (bytes_to_output != 0 && (!is_code_object || outputting_code)) {
779 if (!outputting_code && bytes_to_output == to_skip &&
780 IsAligned(bytes_to_output, kPointerAlignment) &&
781 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
782 int size_in_words = bytes_to_output >> kPointerSizeLog2;
783 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
784 to_skip = 0; // This instruction includes skip.
785 } else {
786 // We always end up here if we are outputting the code of a code object.
787 sink_->Put(kVariableRawData, "VariableRawData");
788 sink_->PutInt(bytes_to_output, "length");
789 }
790
791 if (is_code_object) object_start = PrepareCode();
792
793 const char* description = is_code_object ? "Code" : "Byte";
794 sink_->PutRaw(object_start + base, bytes_to_output, description);
795 }
796 if (to_skip != 0 && return_skip == kIgnoringReturn) {
797 sink_->Put(kSkip, "Skip");
798 sink_->PutInt(to_skip, "SkipDistance");
799 to_skip = 0;
800 }
801 return to_skip;
802 }
803
804 } // namespace internal
805 } // namespace v8
806