1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/zone/zone.h"
6
7 #include <cstring>
8
9 #include "src/v8.h"
10
11 #ifdef V8_USE_ADDRESS_SANITIZER
12 #include <sanitizer/asan_interface.h>
13 #endif // V8_USE_ADDRESS_SANITIZER
14
15 namespace v8 {
16 namespace internal {
17
18 namespace {
19
20 #if V8_USE_ADDRESS_SANITIZER
21
22 const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8.
23
24 #else
25
26 #define ASAN_POISON_MEMORY_REGION(start, size) \
27 do { \
28 USE(start); \
29 USE(size); \
30 } while (false)
31
32 #define ASAN_UNPOISON_MEMORY_REGION(start, size) \
33 do { \
34 USE(start); \
35 USE(size); \
36 } while (false)
37
38 const size_t kASanRedzoneBytes = 0;
39
40 #endif // V8_USE_ADDRESS_SANITIZER
41
42 } // namespace
43
Zone(AccountingAllocator * allocator,const char * name)44 Zone::Zone(AccountingAllocator* allocator, const char* name)
45 : allocation_size_(0),
46 segment_bytes_allocated_(0),
47 position_(0),
48 limit_(0),
49 allocator_(allocator),
50 segment_head_(nullptr),
51 name_(name) {
52 allocator_->ZoneCreation(this);
53 }
54
~Zone()55 Zone::~Zone() {
56 allocator_->ZoneDestruction(this);
57
58 DeleteAll();
59
60 DCHECK(segment_bytes_allocated_ == 0);
61 }
62
New(size_t size)63 void* Zone::New(size_t size) {
64 // Round up the requested size to fit the alignment.
65 size = RoundUp(size, kAlignment);
66
67 // If the allocation size is divisible by 8 then we return an 8-byte aligned
68 // address.
69 if (kPointerSize == 4 && kAlignment == 4) {
70 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
71 } else {
72 DCHECK(kAlignment >= kPointerSize);
73 }
74
75 // Check if the requested size is available without expanding.
76 Address result = position_;
77
78 const size_t size_with_redzone = size + kASanRedzoneBytes;
79 const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_);
80 const uintptr_t position = reinterpret_cast<uintptr_t>(position_);
81 // position_ > limit_ can be true after the alignment correction above.
82 if (limit < position || size_with_redzone > limit - position) {
83 result = NewExpand(size_with_redzone);
84 } else {
85 position_ += size_with_redzone;
86 }
87
88 Address redzone_position = result + size;
89 DCHECK(redzone_position + kASanRedzoneBytes == position_);
90 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
91
92 // Check that the result has the proper alignment and return it.
93 DCHECK(IsAddressAligned(result, kAlignment, 0));
94 allocation_size_ += size;
95 return reinterpret_cast<void*>(result);
96 }
97
DeleteAll()98 void Zone::DeleteAll() {
99 // Traverse the chained list of segments and return them all to the allocator.
100 for (Segment* current = segment_head_; current;) {
101 Segment* next = current->next();
102 size_t size = current->size();
103
104 // Un-poison the segment content so we can re-use or zap it later.
105 ASAN_UNPOISON_MEMORY_REGION(current->start(), current->capacity());
106
107 segment_bytes_allocated_ -= size;
108 allocator_->ReturnSegment(current);
109 current = next;
110 }
111
112 position_ = limit_ = 0;
113 allocation_size_ = 0;
114 segment_head_ = nullptr;
115 }
116
117 // Creates a new segment, sets it size, and pushes it to the front
118 // of the segment chain. Returns the new segment.
NewSegment(size_t requested_size)119 Segment* Zone::NewSegment(size_t requested_size) {
120 Segment* result = allocator_->GetSegment(requested_size);
121 DCHECK_GE(result->size(), requested_size);
122 segment_bytes_allocated_ += result->size();
123 if (result != nullptr) {
124 result->set_zone(this);
125 result->set_next(segment_head_);
126 segment_head_ = result;
127 }
128 return result;
129 }
130
NewExpand(size_t size)131 Address Zone::NewExpand(size_t size) {
132 // Make sure the requested size is already properly aligned and that
133 // there isn't enough room in the Zone to satisfy the request.
134 DCHECK_EQ(size, RoundDown(size, kAlignment));
135 DCHECK(limit_ < position_ ||
136 reinterpret_cast<uintptr_t>(limit_) -
137 reinterpret_cast<uintptr_t>(position_) <
138 size);
139
140 // Compute the new segment size. We use a 'high water mark'
141 // strategy, where we increase the segment size every time we expand
142 // except that we employ a maximum segment size when we delete. This
143 // is to avoid excessive malloc() and free() overhead.
144 Segment* head = segment_head_;
145 const size_t old_size = (head == nullptr) ? 0 : head->size();
146 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
147 const size_t new_size_no_overhead = size + (old_size << 1);
148 size_t new_size = kSegmentOverhead + new_size_no_overhead;
149 const size_t min_new_size = kSegmentOverhead + size;
150 // Guard against integer overflow.
151 if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
152 V8::FatalProcessOutOfMemory("Zone");
153 return nullptr;
154 }
155 if (new_size < kMinimumSegmentSize) {
156 new_size = kMinimumSegmentSize;
157 } else if (new_size > kMaximumSegmentSize) {
158 // Limit the size of new segments to avoid growing the segment size
159 // exponentially, thus putting pressure on contiguous virtual address space.
160 // All the while making sure to allocate a segment large enough to hold the
161 // requested size.
162 new_size = Max(min_new_size, kMaximumSegmentSize);
163 }
164 if (new_size > INT_MAX) {
165 V8::FatalProcessOutOfMemory("Zone");
166 return nullptr;
167 }
168 Segment* segment = NewSegment(new_size);
169 if (segment == nullptr) {
170 V8::FatalProcessOutOfMemory("Zone");
171 return nullptr;
172 }
173
174 // Recompute 'top' and 'limit' based on the new segment.
175 Address result = RoundUp(segment->start(), kAlignment);
176 position_ = result + size;
177 // Check for address overflow.
178 // (Should not happen since the segment is guaranteed to accomodate
179 // size bytes + header and alignment padding)
180 DCHECK(reinterpret_cast<uintptr_t>(position_) >=
181 reinterpret_cast<uintptr_t>(result));
182 limit_ = segment->end();
183 DCHECK(position_ <= limit_);
184 return result;
185 }
186
187 } // namespace internal
188 } // namespace v8
189