1 /*
2  * Copyright 2016, The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_HARDWARE_MEDIA_OMX_V1_0__CONVERSION_H
18 #define ANDROID_HARDWARE_MEDIA_OMX_V1_0__CONVERSION_H
19 
20 #include <vector>
21 #include <list>
22 
23 #include <unistd.h>
24 
25 #include <hidl/MQDescriptor.h>
26 #include <hidl/Status.h>
27 #include <hidlmemory/mapping.h>
28 
29 #include <binder/Binder.h>
30 #include <binder/Status.h>
31 #include <ui/FenceTime.h>
32 #include <cutils/native_handle.h>
33 
34 #include <ui/GraphicBuffer.h>
35 #include <media/OMXFenceParcelable.h>
36 #include <media/OMXBuffer.h>
37 #include <media/hardware/VideoAPI.h>
38 
39 #include <android/hidl/memory/1.0/IMemory.h>
40 #include <android/hardware/media/omx/1.0/types.h>
41 #include <android/hardware/media/omx/1.0/IOmx.h>
42 #include <android/hardware/media/omx/1.0/IOmxNode.h>
43 #include <android/hardware/media/omx/1.0/IOmxBufferSource.h>
44 #include <android/hardware/media/omx/1.0/IOmxObserver.h>
45 #include <android/hardware/media/omx/1.0/IGraphicBufferSource.h>
46 
47 #include <android/IGraphicBufferSource.h>
48 #include <android/IOMXBufferSource.h>
49 
50 namespace android {
51 namespace hardware {
52 namespace media {
53 namespace omx {
54 namespace V1_0 {
55 namespace utils {
56 
57 using ::android::hardware::hidl_array;
58 using ::android::hardware::hidl_string;
59 using ::android::hardware::hidl_vec;
60 using ::android::hardware::hidl_handle;
61 using ::android::hardware::Return;
62 using ::android::hardware::Void;
63 using ::android::sp;
64 
65 using ::android::String8;
66 using ::android::OMXFenceParcelable;
67 
68 using ::android::hardware::media::omx::V1_0::Message;
69 using ::android::omx_message;
70 
71 using ::android::hardware::media::omx::V1_0::ColorAspects;
72 using ::android::hardware::media::V1_0::Rect;
73 using ::android::hardware::media::V1_0::Region;
74 
75 using ::android::hardware::graphics::common::V1_0::Dataspace;
76 
77 using ::android::hardware::graphics::common::V1_0::PixelFormat;
78 
79 using ::android::OMXBuffer;
80 
81 using ::android::hardware::media::V1_0::AnwBuffer;
82 using ::android::GraphicBuffer;
83 
84 using ::android::hardware::media::omx::V1_0::IOmx;
85 using ::android::IOMX;
86 
87 using ::android::hardware::media::omx::V1_0::IOmxNode;
88 using ::android::IOMXNode;
89 
90 using ::android::hardware::media::omx::V1_0::IOmxObserver;
91 using ::android::IOMXObserver;
92 
93 using ::android::hardware::media::omx::V1_0::IOmxBufferSource;
94 using ::android::IOMXBufferSource;
95 
96 // native_handle_t helper functions.
97 
98 /**
99  * \brief Take an fd and create a native handle containing only the given fd.
100  * The created handle will need to be deleted manually with
101  * `native_handle_delete()`.
102  *
103  * \param[in] fd The source file descriptor (of type `int`).
104  * \return The create `native_handle_t*` that contains the given \p fd. If the
105  * supplied \p fd is negative, the created native handle will contain no file
106  * descriptors.
107  *
108  * If the native handle cannot be created, the return value will be
109  * `nullptr`.
110  *
111  * This function does not duplicate the file descriptor.
112  */
native_handle_create_from_fd(int fd)113 inline native_handle_t* native_handle_create_from_fd(int fd) {
114     if (fd < 0) {
115         return native_handle_create(0, 0);
116     }
117     native_handle_t* nh = native_handle_create(1, 0);
118     if (nh == nullptr) {
119         return nullptr;
120     }
121     nh->data[0] = fd;
122     return nh;
123 }
124 
125 /**
126  * \brief Extract a file descriptor from a native handle.
127  *
128  * \param[in] nh The source `native_handle_t*`.
129  * \param[in] index The index of the file descriptor in \p nh to read from. This
130  * input has the default value of `0`.
131  * \return The `index`-th file descriptor in \p nh. If \p nh does not have
132  * enough file descriptors, the returned value will be `-1`.
133  *
134  * This function does not duplicate the file descriptor.
135  */
136 inline int native_handle_read_fd(native_handle_t const* nh, int index = 0) {
137     return ((nh == nullptr) || (nh->numFds == 0) ||
138             (nh->numFds <= index) || (index < 0)) ?
139             -1 : nh->data[index];
140 }
141 
142 /**
143  * Conversion functions
144  * ====================
145  *
146  * There are two main directions of conversion:
147  * - `inTargetType(...)`: Create a wrapper whose lifetime depends on the
148  *   input. The wrapper has type `TargetType`.
149  * - `toTargetType(...)`: Create a standalone object of type `TargetType` that
150  *   corresponds to the input. The lifetime of the output does not depend on the
151  *   lifetime of the input.
152  * - `wrapIn(TargetType*, ...)`: Same as `inTargetType()`, but for `TargetType`
153  *   that cannot be copied and/or moved efficiently, or when there are multiple
154  *   output arguments.
155  * - `convertTo(TargetType*, ...)`: Same as `toTargetType()`, but for
156  *   `TargetType` that cannot be copied and/or moved efficiently, or when there
157  *   are multiple output arguments.
158  *
159  * `wrapIn()` and `convertTo()` functions will take output arguments before
160  * input arguments. Some of these functions might return a value to indicate
161  * success or error.
162  *
163  * In converting or wrapping something as a Treble type that contains a
164  * `hidl_handle`, `native_handle_t*` will need to be created and returned as
165  * an additional output argument, hence only `wrapIn()` or `convertTo()` would
166  * be available. The caller must call `native_handle_delete()` to deallocate the
167  * returned native handle when it is no longer needed.
168  *
169  * For types that contain file descriptors, `inTargetType()` and `wrapAs()` do
170  * not perform duplication of file descriptors, while `toTargetType()` and
171  * `convertTo()` do.
172  */
173 
174 /**
175  * \brief Convert `Return<void>` to `binder::Status`.
176  *
177  * \param[in] t The source `Return<void>`.
178  * \return The corresponding `binder::Status`.
179  */
180 // convert: Return<void> -> ::android::binder::Status
toBinderStatus(Return<void> const & t)181 inline ::android::binder::Status toBinderStatus(
182         Return<void> const& t) {
183     return ::android::binder::Status::fromExceptionCode(
184             t.isOk() ? OK : UNKNOWN_ERROR,
185             t.description().c_str());
186 }
187 
188 /**
189  * \brief Convert `Return<Status>` to `binder::Status`.
190  *
191  * \param[in] t The source `Return<Status>`.
192  * \return The corresponding `binder::Status`.
193  */
194 // convert: Return<Status> -> ::android::binder::Status
toBinderStatus(Return<Status> const & t)195 inline ::android::binder::Status toBinderStatus(
196         Return<Status> const& t) {
197     return ::android::binder::Status::fromStatusT(
198             t.isOk() ? static_cast<status_t>(static_cast<Status>(t)) : UNKNOWN_ERROR);
199 }
200 
201 /**
202  * \brief Convert `Return<Status>` to `status_t`. This is for legacy binder
203  * calls.
204  *
205  * \param[in] t The source `Return<Status>`.
206  * \return The corresponding `status_t`.
207  *
208  * This function first check if \p t has a transport error. If it does, then the
209  * return value is the transport error code. Otherwise, the return value is
210  * converted from `Status` contained inside \p t.
211  *
212  * Note:
213  * - This `Status` is omx-specific. It is defined in `types.hal`.
214  * - The name of this function is not `convert`.
215  */
216 // convert: Status -> status_t
toStatusT(Return<Status> const & t)217 inline status_t toStatusT(Return<Status> const& t) {
218     return t.isOk() ? static_cast<status_t>(static_cast<Status>(t)) : UNKNOWN_ERROR;
219 }
220 
221 /**
222  * \brief Convert `Return<void>` to `status_t`. This is for legacy binder calls.
223  *
224  * \param[in] t The source `Return<void>`.
225  * \return The corresponding `status_t`.
226  */
227 // convert: Return<void> -> status_t
toStatusT(Return<void> const & t)228 inline status_t toStatusT(Return<void> const& t) {
229     return t.isOk() ? OK : UNKNOWN_ERROR;
230 }
231 
232 /**
233  * \brief Convert `Status` to `status_t`. This is for legacy binder calls.
234  *
235  * \param[in] t The source `Status`.
236  * \return the corresponding `status_t`.
237  */
238 // convert: Status -> status_t
toStatusT(Status const & t)239 inline status_t toStatusT(Status const& t) {
240     return static_cast<status_t>(t);
241 }
242 
243 /**
244  * \brief Convert `status_t` to `Status`.
245  *
246  * \param[in] l The source `status_t`.
247  * \return The corresponding `Status`.
248  */
249 // convert: status_t -> Status
toStatus(status_t l)250 inline Status toStatus(status_t l) {
251     return static_cast<Status>(l);
252 }
253 
254 /**
255  * \brief Wrap `native_handle_t*` in `hidl_handle`.
256  *
257  * \param[in] nh The source `native_handle_t*`.
258  * \return The `hidl_handle` that points to \p nh.
259  */
260 // wrap: native_handle_t* -> hidl_handle
inHidlHandle(native_handle_t const * nh)261 inline hidl_handle inHidlHandle(native_handle_t const* nh) {
262     return hidl_handle(nh);
263 }
264 
265 /**
266  * \brief Wrap an `omx_message` and construct the corresponding `Message`.
267  *
268  * \param[out] t The wrapper of type `Message`.
269  * \param[out] nh The native_handle_t referred to by `t->fence`.
270  * \param[in] l The source `omx_message`.
271  * \return `true` if the wrapping is successful; `false` otherwise.
272  *
273  * Upon success, \p nh will be created to hold the file descriptor stored in
274  * `l.fenceFd`, and `t->fence` will point to \p nh. \p nh will need to be
275  * destroyed manually by `native_handle_delete()` when \p t is no longer needed.
276  *
277  * Upon failure, \p nh will not be created and will not need to be deleted. \p t
278  * will be invalid.
279  */
280 // wrap, omx_message -> Message, native_handle_t*
wrapAs(Message * t,native_handle_t ** nh,omx_message const & l)281 inline bool wrapAs(Message* t, native_handle_t** nh, omx_message const& l) {
282     *nh = native_handle_create_from_fd(l.fenceFd);
283     if (!*nh) {
284         return false;
285     }
286     t->fence = *nh;
287     switch (l.type) {
288         case omx_message::EVENT:
289             t->type = Message::Type::EVENT;
290             t->data.eventData.event = uint32_t(l.u.event_data.event);
291             t->data.eventData.data1 = l.u.event_data.data1;
292             t->data.eventData.data2 = l.u.event_data.data2;
293             t->data.eventData.data3 = l.u.event_data.data3;
294             t->data.eventData.data4 = l.u.event_data.data4;
295             break;
296         case omx_message::EMPTY_BUFFER_DONE:
297             t->type = Message::Type::EMPTY_BUFFER_DONE;
298             t->data.bufferData.buffer = l.u.buffer_data.buffer;
299             break;
300         case omx_message::FILL_BUFFER_DONE:
301             t->type = Message::Type::FILL_BUFFER_DONE;
302             t->data.extendedBufferData.buffer = l.u.extended_buffer_data.buffer;
303             t->data.extendedBufferData.rangeOffset =
304                     l.u.extended_buffer_data.range_offset;
305             t->data.extendedBufferData.rangeLength =
306                     l.u.extended_buffer_data.range_length;
307             t->data.extendedBufferData.flags = l.u.extended_buffer_data.flags;
308             t->data.extendedBufferData.timestampUs =
309                     l.u.extended_buffer_data.timestamp;
310             break;
311         case omx_message::FRAME_RENDERED:
312             t->type = Message::Type::FRAME_RENDERED;
313             t->data.renderData.timestampUs = l.u.render_data.timestamp;
314             t->data.renderData.systemTimeNs = l.u.render_data.nanoTime;
315             break;
316         default:
317             native_handle_delete(*nh);
318             return false;
319     }
320     return true;
321 }
322 
323 /**
324  * \brief Wrap a `Message` inside an `omx_message`.
325  *
326  * \param[out] l The wrapper of type `omx_message`.
327  * \param[in] t The source `Message`.
328  * \return `true` if the wrapping is successful; `false` otherwise.
329  */
330 // wrap: Message -> omx_message
wrapAs(omx_message * l,Message const & t)331 inline bool wrapAs(omx_message* l, Message const& t) {
332     l->fenceFd = native_handle_read_fd(t.fence);
333     switch (t.type) {
334         case Message::Type::EVENT:
335             l->type = omx_message::EVENT;
336             l->u.event_data.event = OMX_EVENTTYPE(t.data.eventData.event);
337             l->u.event_data.data1 = t.data.eventData.data1;
338             l->u.event_data.data2 = t.data.eventData.data2;
339             l->u.event_data.data3 = t.data.eventData.data3;
340             l->u.event_data.data4 = t.data.eventData.data4;
341             break;
342         case Message::Type::EMPTY_BUFFER_DONE:
343             l->type = omx_message::EMPTY_BUFFER_DONE;
344             l->u.buffer_data.buffer = t.data.bufferData.buffer;
345             break;
346         case Message::Type::FILL_BUFFER_DONE:
347             l->type = omx_message::FILL_BUFFER_DONE;
348             l->u.extended_buffer_data.buffer = t.data.extendedBufferData.buffer;
349             l->u.extended_buffer_data.range_offset =
350                     t.data.extendedBufferData.rangeOffset;
351             l->u.extended_buffer_data.range_length =
352                     t.data.extendedBufferData.rangeLength;
353             l->u.extended_buffer_data.flags = t.data.extendedBufferData.flags;
354             l->u.extended_buffer_data.timestamp =
355                     t.data.extendedBufferData.timestampUs;
356             break;
357         case Message::Type::FRAME_RENDERED:
358             l->type = omx_message::FRAME_RENDERED;
359             l->u.render_data.timestamp = t.data.renderData.timestampUs;
360             l->u.render_data.nanoTime = t.data.renderData.systemTimeNs;
361             break;
362         default:
363             return false;
364     }
365     return true;
366 }
367 
368 /**
369  * \brief Similar to `wrapTo(omx_message*, Message const&)`, but the output will
370  * have an extended lifetime.
371  *
372  * \param[out] l The output `omx_message`.
373  * \param[in] t The source `Message`.
374  * \return `true` if the conversion is successful; `false` otherwise.
375  *
376  * This function calls `wrapto()`, then attempts to duplicate the file
377  * descriptor for the fence if it is not `-1`. If duplication fails, `false`
378  * will be returned.
379  */
380 // convert: Message -> omx_message
convertTo(omx_message * l,Message const & t)381 inline bool convertTo(omx_message* l, Message const& t) {
382     if (!wrapAs(l, t)) {
383         return false;
384     }
385     if (l->fenceFd == -1) {
386         return true;
387     }
388     l->fenceFd = dup(l->fenceFd);
389     return l->fenceFd != -1;
390 }
391 
392 /**
393  * \brief Wrap an `OMXFenceParcelable` inside a `hidl_handle`.
394  *
395  * \param[out] t The wrapper of type `hidl_handle`.
396  * \param[out] nh The native handle created to hold the file descriptor inside
397  * \p l.
398  * \param[in] l The source `OMXFenceParcelable`, which essentially contains one
399  * file descriptor.
400  * \return `true` if \p t and \p nh are successfully created to wrap around \p
401  * l; `false` otherwise.
402  *
403  * On success, \p nh needs to be deleted by the caller with
404  * `native_handle_delete()` after \p t and \p nh are no longer needed.
405  *
406  * On failure, \p nh will not need to be deleted, and \p t will hold an invalid
407  * value.
408  */
409 // wrap: OMXFenceParcelable -> hidl_handle, native_handle_t*
wrapAs(hidl_handle * t,native_handle_t ** nh,OMXFenceParcelable const & l)410 inline bool wrapAs(hidl_handle* t, native_handle_t** nh,
411         OMXFenceParcelable const& l) {
412     *nh = native_handle_create_from_fd(l.get());
413     if (!*nh) {
414         return false;
415     }
416     *t = *nh;
417     return true;
418 }
419 
420 /**
421  * \brief Wrap a `hidl_handle` inside an `OMXFenceParcelable`.
422  *
423  * \param[out] l The wrapper of type `OMXFenceParcelable`.
424  * \param[in] t The source `hidl_handle`.
425  */
426 // wrap: hidl_handle -> OMXFenceParcelable
wrapAs(OMXFenceParcelable * l,hidl_handle const & t)427 inline void wrapAs(OMXFenceParcelable* l, hidl_handle const& t) {
428     l->mFenceFd = native_handle_read_fd(t);
429 }
430 
431 /**
432  * \brief Convert a `hidl_handle` to `OMXFenceParcelable`. If `hidl_handle`
433  * contains file descriptors, the first file descriptor will be duplicated and
434  * stored in the output `OMXFenceParcelable`.
435  *
436  * \param[out] l The output `OMXFenceParcelable`.
437  * \param[in] t The input `hidl_handle`.
438  * \return `false` if \p t contains a valid file descriptor but duplication
439  * fails; `true` otherwise.
440  */
441 // convert: hidl_handle -> OMXFenceParcelable
convertTo(OMXFenceParcelable * l,hidl_handle const & t)442 inline bool convertTo(OMXFenceParcelable* l, hidl_handle const& t) {
443     int fd = native_handle_read_fd(t);
444     if (fd != -1) {
445         fd = dup(fd);
446         if (fd == -1) {
447             return false;
448         }
449     }
450     l->mFenceFd = fd;
451     return true;
452 }
453 
454 /**
455  * \brief Convert `::android::ColorAspects` to `ColorAspects`.
456  *
457  * \param[in] l The source `::android::ColorAspects`.
458  * \return The corresponding `ColorAspects`.
459  */
460 // convert: ::android::ColorAspects -> ColorAspects
toHardwareColorAspects(::android::ColorAspects const & l)461 inline ColorAspects toHardwareColorAspects(::android::ColorAspects const& l) {
462     return ColorAspects{
463             static_cast<ColorAspects::Range>(l.mRange),
464             static_cast<ColorAspects::Primaries>(l.mPrimaries),
465             static_cast<ColorAspects::Transfer>(l.mTransfer),
466             static_cast<ColorAspects::MatrixCoeffs>(l.mMatrixCoeffs)};
467 }
468 
469 /**
470  * \brief Convert `int32_t` to `ColorAspects`.
471  *
472  * \param[in] l The source `int32_t`.
473  * \return The corresponding `ColorAspects`.
474  */
475 // convert: int32_t -> ColorAspects
toHardwareColorAspects(int32_t l)476 inline ColorAspects toHardwareColorAspects(int32_t l) {
477     return ColorAspects{
478             static_cast<ColorAspects::Range>((l >> 24) & 0xFF),
479             static_cast<ColorAspects::Primaries>((l >> 16) & 0xFF),
480             static_cast<ColorAspects::Transfer>(l & 0xFF),
481             static_cast<ColorAspects::MatrixCoeffs>((l >> 8) & 0xFF)};
482 }
483 
484 /**
485  * \brief Convert `ColorAspects` to `::android::ColorAspects`.
486  *
487  * \param[in] t The source `ColorAspects`.
488  * \return The corresponding `::android::ColorAspects`.
489  */
490 // convert: ColorAspects -> ::android::ColorAspects
toCompactColorAspects(ColorAspects const & t)491 inline int32_t toCompactColorAspects(ColorAspects const& t) {
492     return static_cast<int32_t>(
493             (static_cast<uint32_t>(t.range) << 24) |
494             (static_cast<uint32_t>(t.primaries) << 16) |
495             (static_cast<uint32_t>(t.transfer)) |
496             (static_cast<uint32_t>(t.matrixCoeffs) << 8));
497 }
498 
499 /**
500  * \brief Convert `int32_t` to `Dataspace`.
501  *
502  * \param[in] l The source `int32_t`.
503  * \result The corresponding `Dataspace`.
504  */
505 // convert: int32_t -> Dataspace
toHardwareDataspace(int32_t l)506 inline Dataspace toHardwareDataspace(int32_t l) {
507     return static_cast<Dataspace>(l);
508 }
509 
510 /**
511  * \brief Convert `Dataspace` to `int32_t`.
512  *
513  * \param[in] t The source `Dataspace`.
514  * \result The corresponding `int32_t`.
515  */
516 // convert: Dataspace -> int32_t
toRawDataspace(Dataspace const & t)517 inline int32_t toRawDataspace(Dataspace const& t) {
518     return static_cast<int32_t>(t);
519 }
520 
521 /**
522  * \brief Wrap an opaque buffer inside a `hidl_vec<uint8_t>`.
523  *
524  * \param[in] l The pointer to the beginning of the opaque buffer.
525  * \param[in] size The size of the buffer.
526  * \return A `hidl_vec<uint8_t>` that points to the buffer.
527  */
528 // wrap: void*, size_t -> hidl_vec<uint8_t>
inHidlBytes(void const * l,size_t size)529 inline hidl_vec<uint8_t> inHidlBytes(void const* l, size_t size) {
530     hidl_vec<uint8_t> t;
531     t.setToExternal(static_cast<uint8_t*>(const_cast<void*>(l)), size, false);
532     return t;
533 }
534 
535 /**
536  * \brief Create a `hidl_vec<uint8_t>` that is a copy of an opaque buffer.
537  *
538  * \param[in] l The pointer to the beginning of the opaque buffer.
539  * \param[in] size The size of the buffer.
540  * \return A `hidl_vec<uint8_t>` that is a copy of the input buffer.
541  */
542 // convert: void*, size_t -> hidl_vec<uint8_t>
toHidlBytes(void const * l,size_t size)543 inline hidl_vec<uint8_t> toHidlBytes(void const* l, size_t size) {
544     hidl_vec<uint8_t> t;
545     t.resize(size);
546     uint8_t const* src = static_cast<uint8_t const*>(l);
547     std::copy(src, src + size, t.data());
548     return t;
549 }
550 
551 /**
552  * \brief Wrap `GraphicBuffer` in `AnwBuffer`.
553  *
554  * \param[out] t The wrapper of type `AnwBuffer`.
555  * \param[in] l The source `GraphicBuffer`.
556  */
557 // wrap: GraphicBuffer -> AnwBuffer
wrapAs(AnwBuffer * t,GraphicBuffer const & l)558 inline void wrapAs(AnwBuffer* t, GraphicBuffer const& l) {
559     t->attr.width = l.getWidth();
560     t->attr.height = l.getHeight();
561     t->attr.stride = l.getStride();
562     t->attr.format = static_cast<PixelFormat>(l.getPixelFormat());
563     t->attr.layerCount = l.getLayerCount();
564     t->attr.usage = l.getUsage();
565     t->attr.id = l.getId();
566     t->attr.generationNumber = l.getGenerationNumber();
567     t->nativeHandle = hidl_handle(l.handle);
568 }
569 
570 /**
571  * \brief Convert `AnwBuffer` to `GraphicBuffer`.
572  *
573  * \param[out] l The destination `GraphicBuffer`.
574  * \param[in] t The source `AnwBuffer`.
575  *
576  * This function will duplicate all file descriptors in \p t.
577  */
578 // convert: AnwBuffer -> GraphicBuffer
579 // Ref: frameworks/native/libs/ui/GraphicBuffer.cpp: GraphicBuffer::flatten
convertTo(GraphicBuffer * l,AnwBuffer const & t)580 inline bool convertTo(GraphicBuffer* l, AnwBuffer const& t) {
581     native_handle_t* handle = t.nativeHandle == nullptr ?
582             nullptr : native_handle_clone(t.nativeHandle);
583 
584     size_t const numInts = 12 + (handle ? handle->numInts : 0);
585     int32_t* ints = new int32_t[numInts];
586 
587     size_t numFds = static_cast<size_t>(handle ? handle->numFds : 0);
588     int* fds = new int[numFds];
589 
590     ints[0] = 'GBFR';
591     ints[1] = static_cast<int32_t>(t.attr.width);
592     ints[2] = static_cast<int32_t>(t.attr.height);
593     ints[3] = static_cast<int32_t>(t.attr.stride);
594     ints[4] = static_cast<int32_t>(t.attr.format);
595     ints[5] = static_cast<int32_t>(t.attr.layerCount);
596     ints[6] = static_cast<int32_t>(t.attr.usage);
597     ints[7] = static_cast<int32_t>(t.attr.id >> 32);
598     ints[8] = static_cast<int32_t>(t.attr.id & 0xFFFFFFFF);
599     ints[9] = static_cast<int32_t>(t.attr.generationNumber);
600     ints[10] = 0;
601     ints[11] = 0;
602     if (handle) {
603         ints[10] = static_cast<int32_t>(handle->numFds);
604         ints[11] = static_cast<int32_t>(handle->numInts);
605         int* intsStart = handle->data + handle->numFds;
606         std::copy(handle->data, intsStart, fds);
607         std::copy(intsStart, intsStart + handle->numInts, &ints[12]);
608     }
609 
610     void const* constBuffer = static_cast<void const*>(ints);
611     size_t size = numInts * sizeof(int32_t);
612     int const* constFds = static_cast<int const*>(fds);
613     status_t status = l->unflatten(constBuffer, size, constFds, numFds);
614 
615     delete [] fds;
616     delete [] ints;
617     native_handle_delete(handle);
618     return status == NO_ERROR;
619 }
620 
621 /**
622  * \brief Wrap `OMXBuffer` in `CodecBuffer`.
623  *
624  * \param[out] t The wrapper of type `CodecBuffer`.
625  * \param[in] l The source `OMXBuffer`.
626  * \return `true` if the wrapping is successful; `false` otherwise.
627  */
628 // wrap: OMXBuffer -> CodecBuffer
wrapAs(CodecBuffer * t,OMXBuffer const & l)629 inline bool wrapAs(CodecBuffer* t, OMXBuffer const& l) {
630     t->sharedMemory = hidl_memory();
631     t->nativeHandle = hidl_handle();
632     switch (l.mBufferType) {
633         case OMXBuffer::kBufferTypeInvalid: {
634             t->type = CodecBuffer::Type::INVALID;
635             return true;
636         }
637         case OMXBuffer::kBufferTypePreset: {
638             t->type = CodecBuffer::Type::PRESET;
639             t->attr.preset.rangeLength = static_cast<uint32_t>(l.mRangeLength);
640             t->attr.preset.rangeOffset = static_cast<uint32_t>(l.mRangeOffset);
641             return true;
642         }
643         case OMXBuffer::kBufferTypeHidlMemory: {
644             t->type = CodecBuffer::Type::SHARED_MEM;
645             t->sharedMemory = l.mHidlMemory;
646             return true;
647         }
648         case OMXBuffer::kBufferTypeSharedMem: {
649             // This is not supported.
650             return false;
651         }
652         case OMXBuffer::kBufferTypeANWBuffer: {
653             t->type = CodecBuffer::Type::ANW_BUFFER;
654             if (l.mGraphicBuffer == nullptr) {
655                 t->attr.anwBuffer.width = 0;
656                 t->attr.anwBuffer.height = 0;
657                 t->attr.anwBuffer.stride = 0;
658                 t->attr.anwBuffer.format = static_cast<PixelFormat>(1);
659                 t->attr.anwBuffer.layerCount = 0;
660                 t->attr.anwBuffer.usage = 0;
661                 return true;
662             }
663             t->attr.anwBuffer.width = l.mGraphicBuffer->getWidth();
664             t->attr.anwBuffer.height = l.mGraphicBuffer->getHeight();
665             t->attr.anwBuffer.stride = l.mGraphicBuffer->getStride();
666             t->attr.anwBuffer.format = static_cast<PixelFormat>(
667                     l.mGraphicBuffer->getPixelFormat());
668             t->attr.anwBuffer.layerCount = l.mGraphicBuffer->getLayerCount();
669             t->attr.anwBuffer.usage = l.mGraphicBuffer->getUsage();
670             t->nativeHandle = l.mGraphicBuffer->handle;
671             return true;
672         }
673         case OMXBuffer::kBufferTypeNativeHandle: {
674             t->type = CodecBuffer::Type::NATIVE_HANDLE;
675             t->nativeHandle = l.mNativeHandle->handle();
676             return true;
677         }
678     }
679     return false;
680 }
681 
682 /**
683  * \brief Convert `CodecBuffer` to `OMXBuffer`.
684  *
685  * \param[out] l The destination `OMXBuffer`.
686  * \param[in] t The source `CodecBuffer`.
687  * \return `true` if successful; `false` otherwise.
688  */
689 // convert: CodecBuffer -> OMXBuffer
convertTo(OMXBuffer * l,CodecBuffer const & t)690 inline bool convertTo(OMXBuffer* l, CodecBuffer const& t) {
691     switch (t.type) {
692         case CodecBuffer::Type::INVALID: {
693             *l = OMXBuffer();
694             return true;
695         }
696         case CodecBuffer::Type::PRESET: {
697             *l = OMXBuffer(
698                     t.attr.preset.rangeOffset,
699                     t.attr.preset.rangeLength);
700             return true;
701         }
702         case CodecBuffer::Type::SHARED_MEM: {
703             *l = OMXBuffer(t.sharedMemory);
704             return true;
705         }
706         case CodecBuffer::Type::ANW_BUFFER: {
707             if (t.nativeHandle.getNativeHandle() == nullptr) {
708                 *l = OMXBuffer(sp<GraphicBuffer>(nullptr));
709                 return true;
710             }
711             AnwBuffer anwBuffer;
712             anwBuffer.nativeHandle = t.nativeHandle;
713             anwBuffer.attr = t.attr.anwBuffer;
714             sp<GraphicBuffer> graphicBuffer = new GraphicBuffer();
715             if (!convertTo(graphicBuffer.get(), anwBuffer)) {
716                 return false;
717             }
718             *l = OMXBuffer(graphicBuffer);
719             return true;
720         }
721         case CodecBuffer::Type::NATIVE_HANDLE: {
722             *l = OMXBuffer(NativeHandle::create(
723                     native_handle_clone(t.nativeHandle), true));
724             return true;
725         }
726     }
727     return false;
728 }
729 
730 /**
731  * \brief Convert `IOMX::ComponentInfo` to `IOmx::ComponentInfo`.
732  *
733  * \param[out] t The destination `IOmx::ComponentInfo`.
734  * \param[in] l The source `IOMX::ComponentInfo`.
735  */
736 // convert: IOMX::ComponentInfo -> IOmx::ComponentInfo
convertTo(IOmx::ComponentInfo * t,IOMX::ComponentInfo const & l)737 inline bool convertTo(IOmx::ComponentInfo* t, IOMX::ComponentInfo const& l) {
738     t->mName = l.mName.string();
739     t->mRoles.resize(l.mRoles.size());
740     size_t i = 0;
741     for (auto& role : l.mRoles) {
742         t->mRoles[i++] = role.string();
743     }
744     return true;
745 }
746 
747 /**
748  * \brief Convert `IOmx::ComponentInfo` to `IOMX::ComponentInfo`.
749  *
750  * \param[out] l The destination `IOMX::ComponentInfo`.
751  * \param[in] t The source `IOmx::ComponentInfo`.
752  */
753 // convert: IOmx::ComponentInfo -> IOMX::ComponentInfo
convertTo(IOMX::ComponentInfo * l,IOmx::ComponentInfo const & t)754 inline bool convertTo(IOMX::ComponentInfo* l, IOmx::ComponentInfo const& t) {
755     l->mName = t.mName.c_str();
756     l->mRoles.clear();
757     for (size_t i = 0; i < t.mRoles.size(); ++i) {
758         l->mRoles.push_back(String8(t.mRoles[i].c_str()));
759     }
760     return true;
761 }
762 
763 /**
764  * \brief Convert `OMX_BOOL` to `bool`.
765  *
766  * \param[in] l The source `OMX_BOOL`.
767  * \return The destination `bool`.
768  */
769 // convert: OMX_BOOL -> bool
toRawBool(OMX_BOOL l)770 inline bool toRawBool(OMX_BOOL l) {
771     return l == OMX_FALSE ? false : true;
772 }
773 
774 /**
775  * \brief Convert `bool` to `OMX_BOOL`.
776  *
777  * \param[in] t The source `bool`.
778  * \return The destination `OMX_BOOL`.
779  */
780 // convert: bool -> OMX_BOOL
toEnumBool(bool t)781 inline OMX_BOOL toEnumBool(bool t) {
782     return t ? OMX_TRUE : OMX_FALSE;
783 }
784 
785 /**
786  * \brief Convert `OMX_COMMANDTYPE` to `uint32_t`.
787  *
788  * \param[in] l The source `OMX_COMMANDTYPE`.
789  * \return The underlying value of type `uint32_t`.
790  *
791  * `OMX_COMMANDTYPE` is an enum type whose underlying type is `uint32_t`.
792  */
793 // convert: OMX_COMMANDTYPE -> uint32_t
toRawCommandType(OMX_COMMANDTYPE l)794 inline uint32_t toRawCommandType(OMX_COMMANDTYPE l) {
795     return static_cast<uint32_t>(l);
796 }
797 
798 /**
799  * \brief Convert `uint32_t` to `OMX_COMMANDTYPE`.
800  *
801  * \param[in] t The source `uint32_t`.
802  * \return The corresponding enum value of type `OMX_COMMANDTYPE`.
803  *
804  * `OMX_COMMANDTYPE` is an enum type whose underlying type is `uint32_t`.
805  */
806 // convert: uint32_t -> OMX_COMMANDTYPE
toEnumCommandType(uint32_t t)807 inline OMX_COMMANDTYPE toEnumCommandType(uint32_t t) {
808     return static_cast<OMX_COMMANDTYPE>(t);
809 }
810 
811 /**
812  * \brief Convert `OMX_INDEXTYPE` to `uint32_t`.
813  *
814  * \param[in] l The source `OMX_INDEXTYPE`.
815  * \return The underlying value of type `uint32_t`.
816  *
817  * `OMX_INDEXTYPE` is an enum type whose underlying type is `uint32_t`.
818  */
819 // convert: OMX_INDEXTYPE -> uint32_t
toRawIndexType(OMX_INDEXTYPE l)820 inline uint32_t toRawIndexType(OMX_INDEXTYPE l) {
821     return static_cast<uint32_t>(l);
822 }
823 
824 /**
825  * \brief Convert `uint32_t` to `OMX_INDEXTYPE`.
826  *
827  * \param[in] t The source `uint32_t`.
828  * \return The corresponding enum value of type `OMX_INDEXTYPE`.
829  *
830  * `OMX_INDEXTYPE` is an enum type whose underlying type is `uint32_t`.
831  */
832 // convert: uint32_t -> OMX_INDEXTYPE
toEnumIndexType(uint32_t t)833 inline OMX_INDEXTYPE toEnumIndexType(uint32_t t) {
834     return static_cast<OMX_INDEXTYPE>(t);
835 }
836 
837 /**
838  * \brief Convert `IOMX::PortMode` to `PortMode`.
839  *
840  * \param[in] l The source `IOMX::PortMode`.
841  * \return The destination `PortMode`.
842  */
843 // convert: IOMX::PortMode -> PortMode
toHardwarePortMode(IOMX::PortMode l)844 inline PortMode toHardwarePortMode(IOMX::PortMode l) {
845     return static_cast<PortMode>(l);
846 }
847 
848 /**
849  * \brief Convert `PortMode` to `IOMX::PortMode`.
850  *
851  * \param[in] t The source `PortMode`.
852  * \return The destination `IOMX::PortMode`.
853  */
854 // convert: PortMode -> IOMX::PortMode
toIOMXPortMode(PortMode t)855 inline IOMX::PortMode toIOMXPortMode(PortMode t) {
856     return static_cast<IOMX::PortMode>(t);
857 }
858 
859 /**
860  * \brief Convert `OMX_TICKS` to `uint64_t`.
861  *
862  * \param[in] l The source `OMX_TICKS`.
863  * \return The destination `uint64_t`.
864  */
865 // convert: OMX_TICKS -> uint64_t
toRawTicks(OMX_TICKS l)866 inline uint64_t toRawTicks(OMX_TICKS l) {
867 #ifndef OMX_SKIP64BIT
868     return static_cast<uint64_t>(l);
869 #else
870     return static_cast<uint64_t>(l.nLowPart) |
871             static_cast<uint64_t>(l.nHighPart << 32);
872 #endif
873 }
874 
875 /**
876  * \brief Convert `uint64_t` to `OMX_TICKS`.
877  *
878  * \param[in] l The source `uint64_t`.
879  * \return The destination `OMX_TICKS`.
880  */
881 // convert: uint64_t -> OMX_TICKS
toOMXTicks(uint64_t t)882 inline OMX_TICKS toOMXTicks(uint64_t t) {
883 #ifndef OMX_SKIP64BIT
884     return static_cast<OMX_TICKS>(t);
885 #else
886     return OMX_TICKS{
887             static_cast<uint32_t>(t & 0xFFFFFFFF),
888             static_cast<uint32_t>(t >> 32)};
889 #endif
890 }
891 
892 }  // namespace utils
893 }  // namespace V1_0
894 }  // namespace omx
895 }  // namespace media
896 }  // namespace hardware
897 }  // namespace android
898 
899 #endif  // ANDROID_HARDWARE_MEDIA_OMX_V1_0__CONVERSION_H
900